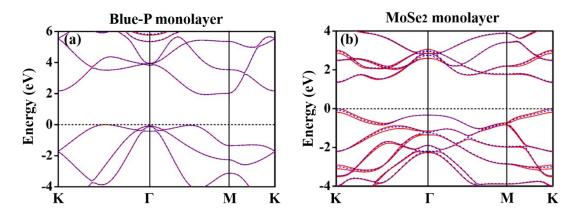
Supporting Information for

Enhancing electronic and optical properties of monolayer MoSe₂ via

MoSe₂/Blue phosphorene heterobilayer

Huabing Shu,*a Ying Wanga and Minglei Sun^b


^aSchool of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China

^bSchool of Mechanical Engineering, Southeast University, Nanjing, 211189, China

*E-mail: shuhuabing@just.edu.cn

Table S1 Calculated structural parameters and bandgaps of the monolayers and heterobilayers: lattice constants (a/b), bond lengths (l), interlayer distances (d), formation energies $(E_{\rm f})$, and bandgaps at DFT-PBE $(E_{\rm g-PBE})$ and G_0W_0 $(E_{\rm g-G0W_0})$ levels. "dir" and "ind" represent the direct and indirect of bandgap, respectively.

Name	a/b	$l_{ ext{P-P}}$	l _{Mo-Se}	d	E_{f}	E_{g-PBE}	$E_{g-G_0W_0}$
	(Å)	(Å)	(Å)	(Å)	(meV/unit)	(eV)	(eV)
MoSe ₂	3.322		2.549			1.44 ^{dir}	2.30 ^{dir}
Blue-P	3.269	2.271				1.92 ^{ind}	3.35 ^{ind}
AA-stacking	3.291	2.270	2.535	3.697	-211.9	1.15^{ind}	1.63 ^{ind}
AB_{Mo} -stacking	3.294	2.270	2.537	3.852	-185.4	1.12^{ind}	1.59 ^{ind}
AB_{Se} -stacking	3.288	2.269	2.535	3.809	-190.7	1.12^{ind}	1.58 ^{ind}

Fig. S1 Calculated band structures of monolayers with (red solid line) and without (blue dashed line) the spin-orbit coupling included at the DFT-PBE level: (a) Blue-P, (b) MoSe₂. The VBM is shifted to zero.

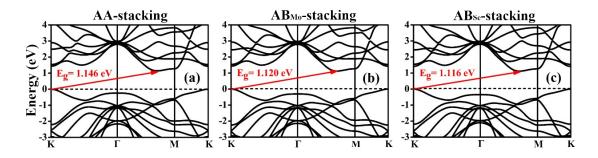


Fig. S2 Calculated band structures of $MoSe_2/Blue-P$ heterobilayer at the DFT-PBE level: (a) AA-stacking, (b) AB_{Mo} -stacking, and (c) AB_{Se} -stacking. The VBM is shifted to zero.

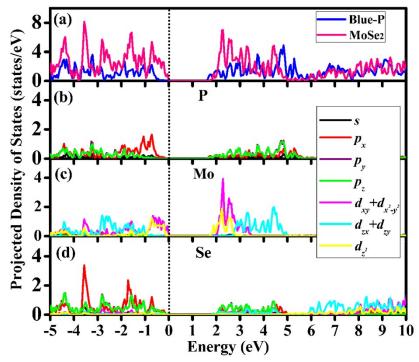
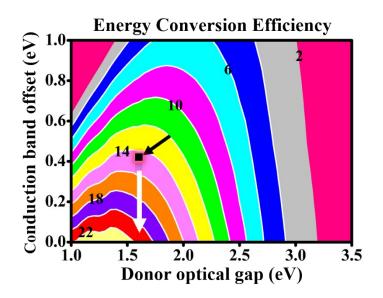



Fig. S3 (a), (b), (c) Projected density of states of the MoSe₂/Blue-P heterobilayer.

Fig. S4 Calculated energy-conversion efficiency contour as a function of the donor optical gap (MoSe₂ layer) and conduction band offset in MoSe₂/Blue-P heterobilayer. The white arrow indicates the trend of increase of energy-conversion efficiency through reducing the conduction band offset.