Supplementary Materials

Theoretical Study on Gas Phase Reaction of CH₂O+NH₃: Formation of CH₂O···NH₃, NH₂CH₂OH, or CH₂NH + H₂O

Mohamad Akbar Ali*

Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

*Corresponding author e-mail: <u>aamohamad@kfu.edu.sa</u>

Table of Contents

<u>CH₂O+NH₃ \rightarrow PRODUCTS</u>

Table S1. Optimized geometries of reactants, complexes, products and transition states obtained using M06- 2X/6-311++G(3df 3nd) Page 2
Table S2 . Vibrational frequencies of reactants, complexes, transition states and products obtained using M06- 2X/6 311++ $G(3df 3nd)$
Table S3 : Electronic energies + ZPE ($Ee + ZPE$) of reactants, complexes, products and transition states obtained using $CCSD(T)/6-311++G(3df,3pd)//M06-2X/6-311++G(3df,3pd)$.
Figure S1 (a): Harmonic vibrational frequencies as a function of $C-N$ distances
<i>Figure S2:</i> 1D rotational constants as a function of C–N distances <i>Page 9</i> <i>Figure S3:</i> 2D rotational constants as a function of C–N distances <i>Page 9</i>
Location of Transition of Barrierless Reaction using at M06-2X/6-311++G(3df,3pd) levelPage 10
Location of Transition of Barrierless Reaction using at ω B97XD/6-311++G(3df,3pd) levelPage 12
Figure S7: SCT tunnelling correction as a function of temperatures
<i>Figure S8.</i> Gibb free energy corrected PES of CH ₂ O+NH ₃ reaction computed at CCSD(T)/6- 311++G(3df,3pd)//M06-2X/6-311++G(3df,3pd)

OHCH₂NH₂+OH →PRODUCTS

 TableS7: Rate constants for OH+NH2CH2OH reaction
 Page 22

$\underline{CH_2O+ NH_3} \rightarrow Products$

Table S1: Optimized geometries of reactants, complexes, products and transition states obtained using M06-2X/6-311++G(3df,3pd).

CH_2O			
С	0.00000000	-0.52447100	0.00000000
Н	-0.93797900	-1.10444600	0.00000000
Н	0.93797800	-1.10444800	0.00000000
0	0.00000000	0.66946500	0.00000000
NH ₃			
N	0.00000000	0.00000000	0.11344200
Н	0.00000000	0.93915700	-0.26469800
Н	-0.81333400	-0.46957900	-0.26469800
Н	0.81333400	-0.46957900	-0.26469800
CH ₂ ONH	[3		
С	0.00000000	1.10058500	0.00000000
Н	0.58057500	1.15742200	0.93373000
Н	0.58057500	1.15742200	-0.93373000
Ν	0.86970200	-1.57900100	0.00000000
Н	1.21429200	-2.07357000	-0.81381200
Н	1.21429200	-2.07357000	0.81381200
0	-1.19226400	0.99458000	0.00000000
Н	-0.13953600	-1.67484600	0.00000000
NH ₂ CH ₂ Ol	H-1		
С	0.04291000	0.53866700	0.01615000
Н	0.03012400	1.19291300	-0.85997400
Н	0.08716800	1.16186200	0.91177900

Ν

2

-1.12467700 -0.31425600 -0.06016000

Н	-1.34225400	-0.72495800	0.83867400
Н	-1.93757000	0.18982900	-0.38714400
0	1.20850400	-0.24093200	0.05448200
Н	1.10978500	-0.92440300	-0.61497200

NH₂CH₂OH-2

С	-0.03408900	0.53637700	0.04810600
Н	-0.07386700	1.07583700	0.99620800
Н	-0.07886200	1.25906300	-0.76295800
Ν	1.22008500	-0.15859300	-0.01980500
Н	1.35295500	-0.78152900	0.76613300
Н	1.28647300	-0.70238700	-0.87072100
0	-1.19277200	-0.26399400	-0.11507500
Н	-1.28058700	-0.84714400	0.64193400

CH₂NH--H₂O

N	-0.90210100	0.65073100	0.00389800
Н	-1.69982300	1.28064600	-0.05584700
Н	1.05442400	0.43647600	-0.03364900
0	1.84392400	-0.12431000	-0.07451100
H CH-NH	2.49475100	0.30519200	0.48116300

С	0.05628700	0.58142600	0.00000000
Н	-0.84429800	1.19842500	0.00000000
Н	1.00853600	1.10768700	0.00000000
Ν	0.05628700	-0.67872600	0.00000000

H_2O

Н	0.00000000	0.76099200	-0.46653800
Ο	0.00000000	0.00000000	0.11663500
Н	0.00000000	-0.76099200	-0.46653800

TS1

С	0.00000000	0.66943500	0.00000000
Н	0.27911700	1.24168300	0.89795900
Н	0.27911700	1.24168300	-0.89795900
Ν	0.89042000	-0.62874600	0.00000000
Н	1.44033500	-0.79699100	-0.83597100
Н	1.44033500	-0.79699100	0.83597100
0	-1.18311200	0.06227600	0.00000000
Н	-0.20694900	-1.00297100	0.00000000

TS2

С	-0.03598900	0.54626600	0.04282600
Н	-0.14847100	1.12461600	0.96255600
Н	-0.01039800	1.24136800	-0.79573100
N	1.19209500	-0.24374900	0.11077200
Н	0.95820500	-1.20847200	-0.08967400
Н	1.85018300	0.04433400	-0.60086700
0	-1.16909100	-0.26590200	-0.15009100
Н	-1.42553000	-0.64598700	0.69208700

TS3

С	0.33637300	0.67471600	0.02082100
Н	0.29127600	1.23488300	0.95406000
Н	0.16603700	1.27530300	-0.86564000
Ν	1.07737800	-0.44447500	-0.12130200
Н	1.40511100	-0.77001800	0.78306100
Н	-0.21668600	-0.86183800	-0.24843300
0	-1.20368200	-0.18360000	-0.08593900
Н	-1.57616600	-0.34649600	0.78864700

CH2O	NH3	CH2O NH3	AM-1	AM-2	CH2NH H2O	CH2NH	H ₂ O	TS1	TS2	TS3
1219.95	1049.9	45.79	265.52	281.53	118.71	1076.99	1619.24	1384 <i>i</i>	320 <i>i</i>	1900.7 <i>i</i>
1277.9	1661.9	91.0	352.5	396.2	165.9	1122.4	3889.6	267.3	342.8	433.4
1540.6	1661.9	157.4	539.1	488.8	208.1	1169.7	3990.6	706.8	504.3	471.0
1884.1	3513.4	185.1	820.9	814.7	209.9	1370.4		789.4	845.7	666.2
2959.7	3637.3	298.1	974.0	915.0	371.3	1501.1		814.0	985.0	723.1
3030.2	3637.3	299.7	1031.3	1054.9	618.4	1745.0		1030.9	1079.1	764.4
		1077.7	1143.5	1120.6	1081.5	3068.8		1198.5	1118.5	1028.4
		1202.8	1227.9	1172.8	1132.4	3153.0		1215.2	1197.4	1082.9
		1273.5	1308.3	1372.2	1158.3	3471.7		1271.9	1295.9	1254.9
		1539.1	1391.1	1391.0	1378.3			1377.3	1396.4	1286.0
		1658.7	1465.5	1433.1	1503.0			1482.9	1449.8	1377.4
		1663.8	1543.1	1517.5	1642.3			1543.6	1545.9	1475.0
		1865.7	1643.9	1658.8	1749.6			1566.0	1646.3	1552.4
		2988.6	3049.6	3062.1	3076.3			2226.0	3047.6	1835.0
		3059.3	3089.3	3133.0	3177.9			2970.4	3097.1	3091.9
		3503.4	3546.7	3542.3	3496.4			2992.1	3547.4	3188.1
		3625.5	3637.1	3627.5	3719.1			3493.8	3625.3	3540.7
		3632.1	3880.6	3909.5	3971.1			3605.5	3915.7	3858.3

Table S2: Vibrational frequencies of reactants, complexes, products and transition statesobtained using M06-2X/6-311++G(3df,3pd).

Table S3: Electronic energies + ZPE ($E_e + ZPE$) of reactants, complexes, proc	lucts and
transition states obtained using CCSD(T)/6-311++G(3df,3pd)//M06-2X/6-311++G(3	df,3pd).

Species	ZPE	CCSDT	CCSDT+ZPE
CH ₂ O	0.027139	-114.335966	-114.308827
NH ₃	0.034541	-56.476677	-56.4421364
CH ₂ ONH ₃	0.06417	-170.817930	-170.75376
TS1	0.065045	-170.766318	-170.701273
AM-1	0.070418	-170.834942	-170.764524
TS2	0.069803	-170.828417	-170.758614
AM-2	0.070376	-170.836058	-170.765682
TS3	0.062943	-170.739401	-170.676458
CH ₂ NHH ₂ O	0.065563	-170.822989	-170.757426
CH ₂ NH	0.040276	-94.474849	-94.4345734
H ₂ O	0.021641	-76.337436	-76.3157951

Figure S1(a). Harmonic vibrational frequencies, as a function of C–N distances.

Figure S2 (a). 1D rotational constants as a function of C–N distances.

Figure S3 (a). 2D rotational constants as a function of C–N distances

Location of Transition State for Barrierless Reactions using CCSD(T)/6-311++G(3df,3pd)//M06-2X/6-311++G(3df,3pd) level.

Figure S4(a). ZPE corrected potential energy surface relative to energies of the pre-reactive complex as functions of R_{N-C} distances along the reaction pathway.

Figure S5. Optimized geometries at several R_{N-C} distances along the reaction pathway.

The CVTST "trial" rate constants computed using the potential energy, harmonic frequencies, and rotational constants along the reaction path are shown in **Figure S6** for different temperature 100K, 200K, 300K and 400K. Two minima in the "trial" rate constants are clearly present on each curve. Crudely speaking, each minimum is associated with staggered and eclipsed form of the $CH_2O\cdots NH_3$ complex. Thus, a two-transition-state (2-TS) model is needed to describe this single entrance channel. In previous works, Greenwald et al.⁷⁰, Senosiain et al.⁷¹ and Ali and Barker^{23, 54} have also shown multiple transition states for

similar atmospheric and combustion reaction systems and they used 2-TS model for the effective rate constants calculations. In this work, we used Miller ⁵⁶ 2-TS model to compute the effective microcanonical (k_{eff}^{micro}) rate constants as given in Eq. 6:

$$k_{eff}^{micro} = \left[\frac{1}{k_1(E,J)} + \frac{1}{k_2(E,J)}\right]^{-1}$$

where $k_1(E,J)$ and $k_2(E,J)$ are microcanonical rate constants for transition states 1 and 2.

Figure S6 (a): Trial CVTST rate constants for dissociation of $CH_2O\cdots NH_3$ complex as functions of R_{C-N} bond distances.

Location of Transition State for Barrierless Reactions using CCSD(T)/6-311++G(3df,3pd)//<u>\omegaB97XD/6-311++G(3df,3pd) level.</u>

Figure S1(b). Harmonic vibrational frequencies, as a function of C-N distances

Figure S2 (b). 1D rotational constants as a function of C–N distances.

Figure S3(b). 2D rotational constants as a function of C-N distances

Figure S4 (b). ZPE corrected potential energy surface relative to energies of the pre-reactive complex as functions of R_{N-C} distances along the reaction pathway.

Figure S6(b): Trial CVTST rate constants for dissociation of $CH_2O \cdots NH_3$ complex as functions of R_{C-N} bond distances.

Figure S6(c). Calculated rate constants in the falloff region for $CH_2O+NH_3 \rightarrow CH_2O\cdots NH_3$. The unified sum of states of the transition state are obtained from $CCSD(T)/6-311++G(3df,3pd)//\omegaB97XD/6-311++G(3df,3pd)$ level used in ME calculation.

Figure S7. SCT tunnelling correction as a function of temperatures.

Figure S8. Gibb free energy corrected PES of CH_2O+NH_3 reaction computed at CCSD(T)/6-311++G(3df,3pd)//M06-2X/6-311++G(3df,3pd).

$\underline{OHCH_2NH_2+OH \rightarrow PRODUCTS}$

Table S4. Optimized geometries of complexes, products and transition states obtained usingM06-2X/6-311++G(3df,3pd).

PRC

С	1.07344100	-0.08806500	0.35028700
Н	2.13231900	-0.26762500	0.14023500
Н	0.91549700	-0.11373300	1.42934100
Ν	0.71131800	1.20051600	-0.14140500
Н	0.87235500	1.32449100	-1.13366800
Н	-0.23860900	1.46644600	0.09898200
0	0.30577900	-1.20054200	-0.14760000
Н	0.55894100	-1.38443800	-1.05975300
0	-2.07777800	0.16548700	0.06576300
Н	-1.48438400	-0.61991700	0.06767600
TS1			
С	-0.41612800	0.00337800	0.45747900
Н	-0.67609500	0.10388600	1.51217500
Н	0.66884600	-0.41113100	0.42559900
Ν	-1.26738900	-0.93301600	-0.17074400
Н	-2.24533400	-0.84589200	0.06479500
Н	-1.13053700	-0.98398800	-1.17023400
0	-0.27807400	1.25798500	-0.17319600
Н	-1.14327600	1.66874800	-0.25367300
0			
0	2.01591200	-0.44261400	-0.04199800

TS2

С	-0.48598000	-0.01623800	0.49029200
Н	0.62715200	-0.27579500	0.60393900
Н	-0.92046400	0.02612000	1.48647300
Ν	-0.53324700	1.26940800	-0.13202700
Н	-0.08932200	1.24895500	-1.04218400
Н	-1.48770100	1.58872700	-0.24543400
0	-1.09952400	-1.07632800	-0.17876000
Н	-0.62836800	-1.23892600	-1.00143900
0	1.97182100	-0.27189500	-0.06960500
Н	2.16893600	0.64826800	0.16799900
TS3			
С	0.91394500	0.32162500	0.40309000
Н	1.84969100	0.89090500	0.40421400
Н	0.60445800	0.16146500	1.43796900
Ν	-0.05346600	1.06094800	-0.37804400
Н	-0.96225500	0.47757200	-0.49999800
Н	-0.31027700	1.92193600	0.09765900
0	1.08433900	-0.95650200	-0.14277200
Н	1.30813500	-0.85871000	-1.07315900
0	-1.87515700	-0.39319600	0.10382400
Н	-1.27261600	-1.15197800	0.17267300
TS4			
С	-0.65424600	-0.44660700	0.02145600
Н	-0.43533100	-1.08009700	-0.83908300
Н	-0.45129800	-1.00926100	0.93223100

Ν	0.16017000	0.75036800	-0.09891700
Н	0.14259300	1.28390100	0.76619500
Н	1.18969900	0.51914700	-0.39613500
0	-2.00550500	-0.08021000	0.08741200
Н	-2.21967900	0.42158100	-0.70403700
0	2.26169700	-0.25920400	-0.08717200
Н	2.52877300	0.00711000	0.80258400

OHCHNH₂

С	0.04818200	0.50811700	-0.16222000
Н	0.12702700	1.53438900	0.16329900
N	-1.19284000	-0.11323000	-0.01129700
Н	-1.31345600	-0.95403200	-0.55787700
Н	-1.50070000	-0.26480100	0.94448200
0	1.21194200	-0.18125300	0.06865900
Н	1.05238100	-1.12162500	-0.04677500

OHCH₂NH

С	0.05602700	0.50837300	0.00724800
Н	0.09661000	1.15843000	-0.87506000
N	1.27021900	-0.23453200	0.04105600
Н	1.04448600	-1.19120400	-0.24477200
0	-1.13167400	-0.24019500	-0.10528900
Н	-1.34629600	-0.62103800	0.74856200
Н	0.03089800	1.16685300	0.88270200

PRC	TS1	TS2	TS3	TS4	OHCHNH ₂	OHCH ₂ NH
23.1	-951.6	-867.6	-815.9	-861.7	205.3	246.0
85.3	77.3	106.9	71.4	75.7	331.4	286.2
172.4	131.9	192.0	149.6	149.4	511.0	492.8
212.3	234.4	349.6	223.9	192.2	913.3	654.8
356.7	327.9	364.3	365.8	321.2	995.1	710.8
435.3	402.1	499.4	449.8	354.9	1121.6	1071.1
514.6	494.4	517.3	505.1	481.2	1198.3	1122.7
580.6	721.0	661.7	678.8	656.4	1244.7	1239.4
780.6	798.1	845.4	776.7	728.9	1374.9	1294.9
910.9	976.2	1006.1	851.6	868.6	1404.4	1426.1
996.6	1040.4	1036.3	1064.6	1007.4	1462.4	1634.5
1125.7	1118.6	1134.8	1146.4	1132.5	3022.4	3217.0
1166.3	1187.8	1228.3	1155.3	1176.6	3053.7	3480.5
1368.4	1307.0	1230.6	1299.4	1235.4	3456.9	3611.8
1389.9	1382.3	1389.5	1383.6	1303.5	3912.2	3900.5
1422.6	1430.0	1431.7	1393.7	1364.6		
1513.0	1529.0	1526.1	1423.3	1416.0		
1651.6	1559.1	1550.1	1644.3	1635.9		
3089.0	1950.8	1907.7	1900.0	1721.6		
3152.5	3073.7	3026.8	3129.6	3087.8		
3536.1	3120.0	3081.0	3529.9	3562.9		
3572.2	3534.8	3535.3	3615.3	3662.9		
3634.3	3845.4	3770.2	3797.1	3786.4		
3874.6	3887.7	3880.8	3880.3	3877.4		

Table S5: Vibrational frequencies of complexes, products and transition states obtained usingM06-2X/6-311++G(3df,3pd).

Species	ZPE	CCSDT	CCSDT+ZPE
NH ₂ CH ₂ OH	0.070376	-170.8360575	-170.7656815
ОН	0.008583	-75.6398532	-75.6312702
PRC	0.081023	-246.4866351	-246.4008051
TS1	0.077001	-246.4866801	-246.4056571
TS2	0.07845	-246.471968	-246.394967
TS3	0.078076	-246.4751797	-246.3967297
TS4	0.077753	-246.4737091	-246.3956331
OHCHNH ₂	0.055562	-246.4723021	-246.3945491
OHCH2NH	0.055149	-170.1705642	-170.1150022
H ₂ O	0.021641	-170.1625501	-170.1074011

Table S6: Electronic energies + ZPE (E_e + ZPE) of reactants, complexes, products andtransition states obtained using CCSD(T)/6-311++G(3df,3pd)//M06-2X/6-311++G(3df,3pd).

Temp	k1_TS1	k2_TS2	k3_TS3	k4_TS4	k _{total}
200	1.20E-13	8.19E-12	1.53E-13	8.05E-14	8.54E-12
225	1.06E-13	2.24E-12	1.13E-13	6.55E-14	2.52E-12
250	1.05E-13	9.29E-13	9.50E-14	6.18E-14	1.19E-12
275	1.10E-13	5.33E-13	8.67E-14	6.29E-14	7.92E-13
300	1.18E-13	3.91E-13	8.31E-14	6.63E-14	6.58E-13
325	1.19E-13	3.83E-13	8.29E-14	6.67E-14	6.52E-13

Table S7: Rate constants (cm³ molecule⁻¹ s⁻¹) for OH + NH₂CH₂OH \rightarrow Products