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S1. SUBSTRATE DEPENDENT DIFFUSION COEFFICIENT

Following the arguments from ref. 1, we consider an enzyme in three states: open (o),

close (c), and close with a substrate attached to its active site (cs). Denoting by Eo and

Ec an enzyme in the open and close state, respectively, and by SEcs a substrate-enzyme

complex, one can assume the following simple kinetics

Ec
kc−−⇀↽−−
ko

Eo , (S1)

Eo + S
a−−⇀↽−−
d

S Ecs
k−−→ P + Eo , (S2)

where kc and ko are the close-to-open and open-to-closed ‘reaction’ rate constants, respec-

tively, a and d are the association and dissociation rate constants, respectively, and k is the

turnover number. The last step in eqn (S2) is the irreversible step of a catalytic reaction,

which may or may not occur, depending on whether S is a substrate or a competitive in-

hibitor. Note that here one accounts for the possibility that the configuration of the enzyme

in the complex with the substrate S may differ from the one in the c (without substrate)

state.

Assuming that the times taken by the Eo −−⇀↽−− Ec or Eo −−⇀↽−− SEcs transitions are

negligibly small (as compared to the life time of the corresponding states), one can write

the (long-time) diffusion coefficient of such a model enzyme

D = Dopo +Dcpc +Dcspcs , (S3)

where pα is the probability that the enzyme is in the state α = {o, c, cs} and Dα is the

corresponding diffusion coefficient. If one further assumes that the shapes of the enzyme in
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the states c and cs are similar, by writing Dcs = Dc + ∆Dfluct
cs one identifies ∆Dfluct

cs as the

contribution to the diffusion coefficient solely due to the reduction of internal (conforma-

tional) fluctuations by binding a substrate. Since the number of enzymes is conserved, it

follows that the steady-state probabilities of finding an enzyme in each of the three states

are

po(ρS) =
KMp

(0)

KM + ρS p(0)
, (S4a)

pcs(ρS) =
ρS p

(0)

KM + ρS p(0)
, (S4b)

and

pc(ρS) = 1− po(ρS)− pcs(ρS) =
KM(1− p(0))

KM + ρS p(0)
, (S4c)

where ρS is the number density of a substrate, KM = (d + k)/a is the Michaelis-Menten

constant, and

p(0) = po(ρS = 0) = kc/(ko + kc) (S5)

is the probability that an enzyme is in the open state in the absence of substrates. Note that

eqn (S4) capture the limiting behaviors po(ρS →∞) ∼ KM/ρS → 0 and pcs(ρS = 0) = 0, as

expected. By combining eqn (S3) and (S4), and denoting by D the diffusion coefficient of

the enzyme in the absence of substrate,

D = D(ρS = 0) = Dop
(0) +Dc(1− p(0)), (S6)

we have obtained for the relative change δD(ρS) in the diffusion coefficient, as a function of

substrate concentration,

δD(ρS) =
D(ρS)−D
D =

ρS δDmax

ρS +KM/p(0)
, (S7a)

where δDmax = δD(ρS = ∞) denotes the maximum relative enhancement of the diffusion

coefficient. The latter can be written as a sum of contributions arising solely from the shape

(size) changes and from the suppression of the internal fluctuations, respectively [1, 2]:

δDmax =
Dc −D
D +

∆Dfluct
cs

D = δDsize + δDfluct , (S7b)
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with δDsize ≥ 0 since Dc ≥ Do .

The probability p(0) can be determined from experiments at low and high (saturated)

substrate densities ρS as follows. From measurements of the diffusion constant D(ρS) in the

saturation regime, one obtains δDmax. At low densities, ρS � KM/p
(0), one has

δD ≈ δDmaxp
(0)

KM

ρS , (S8)

and thus p(0) can be unambiguously extracted from the slope of δD at low substrate/inhibitor

densities.
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S2. FLUCTUATING DUMBBELL MODEL OF ENZYMES

We consider a system of two beads (enzyme subunits) with the bead-bead interaction

potential given by eqn (6) in the main text. This potential models the open and closed

states of enzymes, allowing the jumps between these states. In order to test the additivity

of diffusion constant for such enzymes (eqn (S3) and eqn (1) of the main text), we considered

additionally two systems with the single-well interaction potentials Uc and Uo , corresponding

to the closed and open states. For Uc we took

Uc(l) =
16κ

(lo − lc)4
(lc − l)2gc(l), (S9)

where

gc(l) =

(lo − l)2, if l < lc

(l − 2lc + lo)
2, if l > lc

, (S10)

and similarly for Uo

Uo(`) =
16κ

(`o − `c)4
(`o − l)2go(l), (S11)

where

go(`) =

(`c − `)2, if ` > `o

(`− 2`o + `c)
2, if ` < `o

. (S12)

It is easy to see that functions gα(`) are continuous with continuous first derivatives, thus

producing continuous forces.

A. Brownian dynamics simulations

To perform Brownian dynamics (BD) simulations, we have used a customized version of

the simulation package BD BOX [3, 4]. The customization was to implement the interaction

potentials defined by eqn (5) and (6) of the main text, and eqn (S11).

Brownian dynamics trajectories have been generated by using the second order Iniesta-de

la Torre algorithm [4, 5]; within this algorithm, the position of ith bead at time t is

ri = r0
i +

1

2

∆t

kBT

N∑
j=1

(
D0

ijF
0
j + D′ijF

′
j

)
+ Ri, (S13)
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where N is the number of beads (two in our case), ∆t = t− t0 > 0 is the time step, r0
i is the

position of the ith bead at time t0, kB is the Boltzmann constant and T temperature. The

(position-dependent) diffusion matrix D0
ij (see below) and the force F 0

j acting on the jth

bead are evaluated at time t0, while D′ij and F ′j are evaluated for beads in a configuration

with the positions at an intermediate corrector step [5].

The 3N vector of random forces, R̂ = {Ri}, is given by R̂ = B̂X̂, where X̂ is a random

Gaussian vector, and the matrix B̂ = {Bij} is a ‘square root’ of the diffusion tensor, i.e.,

D̂ = B̂B̂T (S14)

where D̂ = {Dij}. For the Iniesta-de la Torre algorithm, the diffusion matrix used in eqn

(S14) is (D̂0 + D̂′)/2, so that the random forces satisfy

〈Ri〉 = 0, 〈RiR
T
j 〉 = ∆t

(
D0

ij + D′ij
)
. (S15)

We used Cholesky decomposition to calculate B̂, as implemented in BD BOX. In all simu-

lations, the time step was 0.1 ps.

To account for hydrodynamic interactions, we employed the generalized Rotne-Prager-

Yamakawa tensor [6, 7], which reads (ai is the bead’s hydrodynamic radius, rij the center-

to-center separation between the i’th and j’th beads, η is viscosity and I is a 3 × 3 unit

matrix):

Dii =
kBT

6πηai
I; (S16a)

Dij(rij) =
kBT

8πηrij

[(
1 +

a2
i + a2

j

3r2
ij

)
I +

(
1− a2

i + a2
j

r2
ij

)
rijr

T
ij

r2
ij

]
(S16b)

for rij > ai + aj;

Dij(rij) =
kBT

8πηrij

[
16r3

ij(aj + aj)− [(ai − aj)2 + 3r2
ij]

2

32r3
ij

I +
3[(ai − aj)2 − r2

ij]
2

32r3
ij

rijr
T
ij

r2
ij

]
(S16c)

for aMij − amij < rij < ai + aj, where aMij is the largest and amij the smallest of ai and aj; and

Dij =
kBT

6πηaMij
I, (S16d)
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for rij < aMij − amij .
It is necessary to stress that the diffusion matrix, eqn (S16), takes into account only

two-body far-field hydrodynamic interactions (formally extended to overlapping distances

between the beads). Accounting for the long-range many-body and for the near-field forces

may alter the simulation results quantitatively. Although we do not expect the main con-

clusions of this work to be altered (particularly regarding the effect of the dumbbell fluctu-

ations), it would nevertheless be interesting to study such effects explicitly (which can be

done, for instance, by using the HYDROLIB library [8, 9]). We note that our simulations are

already the next order approximation to the results of Refs. [1, 2], where only the contribu-

tion from the Oseen tensor was taken into account. However, our simulations demonstrate

a good agreement with these (theoretical) results, and it is reasonable to expect that even

higher order terms in the diffusion matrix will not change the results significantly.

In order to single out the effects related to the suppression of fluctuations and hydrody-

namic interactions, we neglected all interactions, except of the bead-bead binding potentials

U , as defined by eqn (5) and (6) of the main text, and eqn (S11); the force acting on a bead

is then F = −∇U . In a few cases, we also added the hard core repulsion between the beads.

However, no significant differences with the case of no steric interactions have been observed

that could have changed the conclusions of this work.

The box size was 1000Å×1000Å×1000Å and periodic boundary conditions were applied

in all three directions. In order to account for the long-range character of the hydrodynamic

interactions, we used the Ewald summation as proposed by Smith et al. [10] and implemented

in BD BOX [3, 4]. It is known that periodic boundary conditions lead to a correction in

the diffusion coefficient, inversely proportional to the box length [11, 12]. For our setup, we

estimated this correction to be about 6.2% to 3.5%, depending on the parameters. However,

here we are primarily interested in the difference between the diffusion coefficients at different

spring constants, in which case this correction simply cancels out; in other words, it will

merely shift the curves in Fig. 1e of the main text, Fig. S2e and Fig. S1e, by a few percent.

For all dumbbell enzymes, the starting configurations (i.e., the separations between the

beads) were chosen randomly according to the Boltzmann distribution defined by the bead-

bead interaction potentials (eqn (5) and (6) of the main text, and eqn (S11)). We performed

4000 to 6000 simulations (each of a duration of 1 µs), depending on the parameters, to

gather good statistics.
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B. Open and close state probabilities

For the interaction potential U(`), the probability of an enzyme to be in the open state

in the absence of the substrate (ρS = 0) is

po(0) =

∫ `m
0
`2e−U(`)/kBTd`∫∞

0
`2e−U(`)/kBTd`

, (S17)

and, accordingly, pc(0) = 1− po(0). Here `m = (`c + `o)/2 is the mid-point between the two

minima, which coincides with the location at which U(`) attends a local maximum.

For κ = 6.8 kBT , `o = 2.5 nm, and `c = 1.5 nm, eqn (S17) renders pc(0) ≈ 73%, which

agrees well with the results of our Brownian dynamics simulations.
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FIG. S1. Effect of stiffness of the interaction potential on the diffusion of flexible

dumbbell enzymes. The parameters and the presentation is the same as in Fig. 1 of the main

text, but without the hard core repulsion between the enzyme subunits. Here and in Fig. S2, the

second term in the parantheses in eqn (S18) is not defined (due to the soft potential, which allows

`→ 0) and thus the diffusion coefficent was approximated by the 〈m0〉 term only.
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FIG. S2. Effect of stiffness of the interaction potential on the diffusion of flexible

dumbbell enzymes. The presentation is the same as in Fig. 1 of the main text but for smaller

averaged separations between the enzyme subunits. The following parameters have been used:

The radii R1 = 1.5 nm and R2 = 1 nm, as in Fig. 1 of the main text, and the parameters of

the interaction potential were `o = 3 nm and `c = 2 nm. The subunits were allowed to overlap

(no hard core repulsion). Here and in Fig. S1, the second term in the parantheses in eqn (S18) is

not defined (due to the soft potential, which allows ` → 0) and thus the diffusion coefficient was

approximated by the 〈m0〉 term only.
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FIG. S3. Effect of fluctuations on the diffusion of flexible dumbbell enzymes. The

following parameters have been used: The bead radii R1 = 1.5 nm and R2 = 1 nm, and parameter

`c = 5 nm, as in Fig. 1 of the main text; the spring constant κ = 0.00017kBT and parameter `o = 6

nm (model A), and κ = 6.8kBT and `o = 7.55 nm (model B). The parameters were chosen such

that the average bead-bead separations in the two models are comparable, 〈`〉A ≈ 7.55 nm and

〈`〉B ≈ 7.56 nm, implying that the main contribution to the difference in the diffusion coefficients

comes from fluctuations. (a) Interaction potentials for models A and B. (b) Examples of bead-bead

separation from a single simulation, demonstrating that in both models the beads fluctuate around

the same average separation and that the fluctuations in model A are much stronger than in model

B. (c) Mean square displacements (MSDs) for models A and B. The MSDs are averages over 4000

independent simulaitons. The extracted diffusion coefficients are DA ≈ 0.972 × 10−10 m2/s and

DB ≈ 0.989× 10−10 m2/s, which differ by approximately 1.7%.
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S3. THEORETICAL ESTIMATE OF THE DIFFUSION CONSTANT

In order to estimate theoretically the diffusion coefficient of the flexible dumbbell enzyme,

we employ the results derived in ref. 1. In particular, the following expression, which accounts

for the hydrodynamic interactions between the two spherical beads in the Oseen limit (far-

field, large separation between beads, i.e., `� R1 +R2) ,

Deff =
1

4β

(
〈m0〉 −

2

3

〈γ0/`〉2
〈w0/`2〉

)
, (S18)

is used; here β := 1/(kBT ) (with kB the Boltzmann constant and T the temperature),

m0 :=
1

6πη

(
1

R1

+
1

R2

)
+

1

4πη`
, (S19a)

γ0 :=
1

6πη

(
1

R1

− 1

R2

)
, (S19b)

w0 :=
1

6πη

(
1

R1

+
1

R2

)
− 1

4πη`
, (S19c)

where

〈O〉 :=

∞∫
0

d` `2O exp[−βU(`)]

∞∫
0

d` `2 exp[−βU(`)]

,

and U(`) denotes the potential between the two beads (see Eqs. (4), (S6) - (S8) in ref. 1).

In addition to the potential Uc(`), eqn (5) in the main text, supplemented by the hard

core repulsion, i.e., ` > R1 +R2 (results shown in Fig. 1 in the main text) we have also used

a harmonic potential (with the same location, `0, of the minimum)

Uh(`) := Kh(`/`0 − 1)2 , (S20)

which was employed as an example in ref. 1, also combined with the hard core repulsion, i.e.,

` > R1 +R2. The following values of the geometric parameters have been chosen: R1 = 1.5

nm, R2 = 1 nm, `0 = 6 nm and `c = 5 nm, and the viscosity is set to the value 10−3 Pa s,

i.e., the viscosity of water. The ranges for the “spring constants” κ and Kh are set by noting

that ∆ = 16βκ[(2− `c/`0)/(1− `c/`0)]2 ≈ 784βκ and ∆ = βKh, respectively, represent the

energy (in units of the thermal energy) needed to stretch the corresponding dumbbell to

twice its equilibrium length `0. Accordingly, κ and Kh are varied such that the “stretching

energy” ∆ varies from fractions of kBT (a very loose spring) to thousands of kBT (a very

stiff spring).
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FIG. S4. Theoretical estimates for the effective diffusion constant. Diffusion constant

Deff is shown in units of D0 = (kBT )/(6πηR) ≈ 3.6×10−10 m2/s (where 1/R = 1/R1 +1/R2, and

R1 and R2 are the bead radii) and presented as a function of the ‘stretching energy’ ∆ (see the

text). The results correspond to hard-core interaction between the beads and a confining potential

given by eqn (5) of the main text (red circles) and by eqn (S20) (blue triangles), respectively. The

green dashed line marks the value ∆ = 1 of the ‘stretching energy’.

The diffusion constants Deff , in units of D0 := (kBT )/(6πηR) ' 3.6×10−10 m2/s (where

1/R := 1/R1 + 1/R2), corresponding to the two potentials are compared in Fig. S4. It

can be seen that in both cases for values ∆c,cs > 1, which are both physically rational (in

that the thermal fluctuations of the extension of the dumbbell enzyme should not become

unreasonably large) as well as a necessary condition for the theoretical calculations leading

to eqn (S18) (separation of time scales between the relaxation of the vibrational modes and

the rotational diffusion, see ref. 1), the increase in the diffusion coefficient upon a switch of

the spring constant from the c state to the cs one is expected to be well below 3 - 4% (which

is the increase if the c state is taken as the extreme case ∆ = 1).
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