Triplet state structure-property relationships in a series of platinum acetylides: effect of chromophore length and electronic properties

Thomas M. Cooper,*[†] Joy E. Haley,[†] Jennifer L. Fore,[†] David J. Stewart,[‡] Douglas M. Krein,[‡] Aaron R. Burke,[‡] Jonathan E. Slagle,[§]

[†]Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States

[‡]General Dynamics Information Technology, Dayton, Ohio 45431, United States

[§]Slagle Photonics, Dayton, Ohio 45433, United States

Electronic Supporting Information

Contents

Linear spectroscopy data	2
Computational Chemistry Figures	13
Triplet state absorption spectra	14
Computational chemistry data tables	20

Linear spectroscopy data

Ground state absorption spectra of these compounds dissolved methyl-THF, emission and excitation spectra collected from methyl-THF glass at 77 K were collected by Abigail Shelton from Kirk Schanze's group, Department of Chemistry, University of Florida, Gainesville FL. Emission spectra(10 nm ex/em bandwidth) were obtained by exciting the sample at the ground state spectrum absorption maximum while excitation spectra(10 nm ex/em bandwidth) were obtained by monitoring emission intensity at the emission maximum. The spectra have been converted to transition dipole moment representation and corrected for inner filter effects. (Angulo, Grampp, & Rosspeintner, 2006)

Fig S1 Emission(black line), excitation(red line) and absorption(blue line) spectra for NH₂.

Fig S3 Emission(black line), excitation(red line) and absorption(blue line) spectra for DPA.

FigS4 Emission(black line), excitation(red line) and absorption(blue line) spectra for t-Bu.

Fig S5 Emission(black line), excitation(red line) and absorption(blue line) spectra for CH₃.

Fig S6 Emission(black line), excitation(red line) and absorption(blue line) spectra for H.

Fig S7 Emission(black line), excitation(red line) and absorption(blue line) spectra for F.

Fig S8 Emission(black line), excitation(red line) and absorption(blue line) spectra for CF₃.

Fig S9 Emission(black line), excitation(red line) and absorption(blue line) spectra for BTH.

Fig S10 Emission(black line), excitation(red line) and absorption(blue line) spectra for CN.

 $FigS11 {\rm Emission} ({\rm black\, line}), excitation (red line) and absorption (blue line) {\rm spectra\, for}\, NO_2.$

Computational Chemistry Figures

FigS12 Upper panel: PES scan of the **H** ground and triplet state; Lower panel: Boltzmann-weighted dihedral angle distribution for chromophore **H**.

Triplet state absorption spectra

The samples were dissolved in benzene and deoxygenated by three successive freeze-pump-thaw cycles.Nanosecond transient absorption measurements were carried out using the third harmonic (355 nm) of a Q-switched Nd:YAG laser (Quantel Brilliant, pulse width of ~5 ns). Pulse fluences of up to 1 mJ cm-2 at the excitation wavelength were typically used. A detailed description of the laser flash photolysis apparatus was published earlier. (Rogers, Cooper, Fleitz, Glass, & McLean, 2002)

Fig S13 Triplet state absorption spectrum of DPA.

Fig S14 Triplet state absorption spectrum of NH₂.

Fig S15 Triplet state absorption spectrum of CF₃.

Fig S16 Triplet state absorption spectrum of CN.

Fig S17 Triplet state absorption spectrum of BTH.

Fig S18 Triplet state absorption spectrum of NO_2 .

Computational chemistry data tables

Calculations were done using Gaussian 09W, Version 7.0. (Frisch, G.W., Schlegel, & G. E. Scuseria) The chromophores were modeled as trans-Pt(PMe₃)₂(C=C-Phenyl-X)₂ in THF through use of PCM. We performed DFT energy minimizations for the ground state using B3LYP/6-311g(2d,p) and TDDFT calculations using CAM-B3LYP/6-311g(2d,p). The basis set for the central Pt atom was SDD.

For all calculations the angle θ between the phenyl rings was 90 deg.

Ligand	$E(S_0)^a$	$E(S_0) (T_1)^b$	ΔE^{c}	$E(T_1)^d$	E _H	EL	EA^{f}
NH ₂	-1768.39606	-1768.38113	0.406	-1768.29393	-5.02898	-0.82288	0.52572
OCH ₃	-1886.75848	-1886.74509	0.364	-1886.65584	-5.24776	-0.90479	0.69933
DPA	-2692.81217	-2692.80075	0.311	-2692.71997	-5.02898	-1.13472	1.0656
t-Bu	-1972.24079	-1972.22657	0.387	-1972.13716	-5.39770	-1.01581	0.93825
CH ₃	-1736.29960	-1736.28546	0.385	-1736.19653	-5.41021	-1.00683	0.94396
H	-1657.64252	-1657.62853	0.381	-1657.53809	-5.50681	-1.06833	1.0555
F	-1856.17748	-1856.16331	0.386	-1856.07291	-5.51661	-1.06234	1.0672
BTH	-3100.89742	-3100.88432	0.357	-3100.81590	-5.55770	-1.99461	2.1165
CF ₃	-2331.94370	-2331.93050	0.359	-2331.84314	-5.73865	-1.45283	1.6972
CN	-1842.18888	-1842.17698	0.324	-1842.09610	-5.83362	-1.84876	2.1693
NO_2	-2066.78035	-2066.77052	0.267	-2066.70045	-5.93240	-2.67572	2.8232

Table S1 Calculated ground(S₀) and triplet state(T₁) energies.

^aEnergy(relaxed S₀ geometry, perpendicular conformation(au).

^bEnergy(ground state, relaxed T₁ geometry(au).

^cE(S₀, relaxed T₁ geometry) – E(relaxed S₀ geometry, perpendicular conformation)(eV). ^dE(relaxed T₁ geometry)(au).

^eHOMO, LUMO energies, relaxed S₀ geometry, perpendicular conformation(eV). ^fLigand electron affinity(- E(LUMO)(eV).

X	ΔE^{a}	$\Delta E_1 b$	$\Delta E_2 \Delta E$	3 ΔE 4	ΔE_5
NH ₂	3.99	2.84	2.94 3.7	1 3.74	3.92
OCH ₃	4.07	2.90	3.01 3.9	0 3.91	3.97
DPA ^c	3.76	2.67	2.75 3.1	4 3.14	3.47
t-Bu	4.09	2.90	3.00 3.9	6 4.22	4.29
CH ₃	4.10	2.89	2.99 3.9	7 4.22	4.24
Н	4.12	2.92	3.03 3.9	9 4.22	4.33
F	4.14	2.92	3.04 3.9	9 4.09	4.11
BTH	3.53	2.34	2.39 3.2	1 3.27	3.83
CF ₃	4.06	2.81	2.91 4.0	1 4.11	4.30
CN	3.88	2.60	2.68 3.9	6 3.98	4.28
NO_2	3.53	2.46	2.53 2.7	4 2.75	3.39

Table S2 Summary of TDDFT Calculations for $\theta = 90$ deg.

^aTransition energy in for the $S_0 \rightarrow S_1$ transition(eV) for state 1.

^bTransition energy for the $S_0 \rightarrow T_1$ transition(eV), and $S_0 \rightarrow T_2$, T_3 , T_4 and T_5 states in columns 4-7.

^cAdditional S₀ \rightarrow T_n transitions(eV) for DPA. State 6: 3.59;State 7: 3.69; State 8: 3.70,

^dAdditional S₀ \rightarrow T_n transitions(eV) for NO₂. State 6: 3.39; State 7: 3.80.

$-\frac{2}{1} \xrightarrow{4} \xrightarrow{5} 6 X$								
Ligand	1 ^a	2	3	4	5	6		
NH ₂	2.0077	1.2459	1.4330	1.4229	1.4000	1.4189		
OCH ₃	2.0070	1.2454	1.4330	1.4193	1.4055	1.4105		
DPA	2.0144	1.2432	1.4361	1.4213	1.4014	1.4143		
t-Bu	2.0062	1.2454	1.4332	1.4230	1.3999	1.4182		
CH ₃	2.0062	1.2453	1.4335	1.4214	1.4039	1.4129		
Η	2.0050	1.2454	1.4332	1.4236	1.4037	1.4102		
F	2.0043	1.2451	1.4326	1.4240	1.4033	1.3994		
BTH	2.0074	1.2439	1.4314	1.4226	1.3989	1.4160		
CF ₃	2.0023	1.2450	1.4299	1.4240	1.3990	1.4105		
CN	2.0037	1.2447	1.4298	1.4244	1.3982	1.4175		
NO ₂	1.9997	1.2447	1.4287	1.4252	1.3974	1.4090		

Table S3 Selected bond lengths from equilibrium ground state geometry

^aGround state bond length 1(Å). The other bonds are labeled 2-6.

$-\frac{2}{1} \frac{4}{5} \frac{6}{5} X$								
Ligand	1 ^a	2	3	4	5	6		
NH ₂	1.9817	1.2799	1.3725	1.4816	1.3758	1.4431		
OCH ₃	1.9795	1.2820	1.3708	1.4772	1.3712	1.4466		
DPA	1.9932	1.2712	1.3806	1.4775	1.3705	1.4566		
t-Bu	1.9778	1.2837	1.3703	1.4811	1.3807	1.4401		
CH ₃	1.9778	1.2835	1.3704	1.4777	1.3749	1.4506		
Η	1.9754	1.2852	1.3701	1.4805	1.3796	1.4387		
F	1.9750	1.2847	1.3696	1.4836	1.3790	1.4271		
BTH	1.9934	1.2607	1.3962	1.4576	1.3708	1.4667		
CF ₃	1.9740	1.2817	1.3736	1.4750	1.3746	1.4439		
CN	1.9800	1.2757	1.3770	1.4747	1.3703	1.4592		
NO ₂	1.9757	1.2695	1.3867	1.4605	1.3755	1.4433		

Table S4 Selected bond lengths from equilibrium T_1 state geometry.

^aTriplet state bond length 1(Å). The other bonds are labeled 2-6.

Ligand	d ¹	π*2	$\Delta \rho^3$	
NH2	0.11	0.50	0.39	
OCH3	0.15	0.47	0.32	
DPA	0.06	0.36	0.30	
t-Bu	0.17	0.43	0.26	
CH3	0.17	0.43	0.26	
Н	0.19	0.42	0.23	
F	0.18	0.43	0.25	
BTH	0.14	0.06	-0.08	
CF3	0.21	0.24	0.03	
CN	0.19	0.15	-0.04	
NO2	0.21	0.05	-0.16	

Table S5 Electron central platinum atom population change upon excitation to the S_1 state.

¹Ground state electron density of d orbital on Pt atom.

 2S_1 state electron density of π^* orbital on Pt atom.

³Calculated from population analysis of S₁ state when platinum complex is in an out-of-plane conformation. Change in population is defined as $population(\pi^* \text{ orbital, platinum atom}) - population(d orbital, platinum atom}).$

$-\frac{2}{1} \frac{4}{3} \frac{5}{6} X$								
Ligand	\mathbf{Pt}^1	$\mathbf{C}\mathbf{C}^2$	Phenyl ³	End Cap(X) ⁴	Remainder ⁵			
NH ₂	0.24079	0.47223	0.95941	0.19662	0.13095			
OCH ₃	0.21824	0.53472	1.0377	0.10705	0.10230			
DPA	0.14693	0.39034	1.0701	0.33764	0.055008			
t-Bu	0.20722	0.56586	1.1312	0.0028490	0.092854			
CH ₃	0.20448	0.56052	1.1330	0.011192	0.090758			
Н	0.21530	0.59700	1.1275	-0.036182	0.096352			
F	0.21529	0.58816	1.0630	0.039800	0.093796			
BTH	0.10496	0.31934	0.90661	0.63572	0.033368			
CF ₃	0.19391	0.58325	1.1109	0.032180	0.079750			
CN	0.16647	0.51310	1.0977	0.15673	0.065982			
NO ₂	0.18419	0.44802	0.80913	0.48414	0.074516			

Table S6 Summary of spin density data

¹Spin density on central platinum atom ²Spin density on acetylene bond ³Spin density on phenyl ring ⁴Spin density on end cap

⁵Remainder spin density on the rest of the molecule(Remainder = 2-(SD(Pt)+SD(CC)+SD(Phenyl)+SD(X))

 Table S7 HOMO, LUMO and T1 state Spin Density images

References

- Angulo, G., Grampp, G., & Rosspeintner, A. (2006). Recalling the appropriate representation of electronic spectra. *Spectrochimica Acta Part A*, 65, 727-731.
- Frisch, M., G.W., T., Schlegel, H., & G. E. Scuseria, G. e. (n.d.). Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT, 2013.
- Haley, J. E., Krein, D. M., Monahan, J. L., Burke, A. R., McLean, D. G., Slagle, J. E., ... Cooper, T. M.
 (2011). Photophysical properties of a series of electron-donating and -withdrawing platinum acetylide two-photon chromophores. *Journal of Physical Chemistry A*, *113*, 265-273.
- Rogers, J. E., Cooper, T. M., Fleitz, P. A., Glass, D. J., & McLean, D. G. (2002). Photophysical Characterization of a Series of Platinum(II)-Containing Phenyl-Ethynyl Oligomers. *Journal of Physical Chemistry A, 106*, 10108-10115.