Supporting information

Metal-bipyridine complexes as electrocatalysts for the reduction of CO₂: A density functional theory study

Peng Zhang^{1,2,3}, Xuejing Yang³, Xiuli Hou^{*,3}, Xuejian Xu³, Beibei Xiao⁴, Jun Huang^{*,2},

Catherine Stampfl*,1

¹ School of Physics, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia

² Laboratory for Catalysis Engineering, Sydney Nano Institute, School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales 2006, Australia

³ Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

⁴ School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China

**E-mail:* houxiuli@ujs.edu.cn, jun.huang@sydney.edu.au, catherine.stampfl@sydney.edu.au

Table S1. Adsorption energies (E_{ad}) of CO on $[Mn(bpy)(CO)_3]^0$ with different supercell size. All results are in unit of eV.

$E_{\rm ad}/{\rm eV}$	25×25×20	30×30×25	40×40×30
СО	0.73	0.73	0.73

		А	В	С	D	Е	F	G	Н	Ι
	E	-51858.944	-51862.8244	-48768.776	-48772.431	-53915.200	-53927.074	-53930.511	-53943.691	-48768.776
V	ZPE	5.095	5.085	4.882	4.822	5.230	5.552	5.445	5.833	4.882
	TS	1.178	1.147	0.750	0.771	1.103	1.101	1.128	1.075	0.750
	E	-54540.323	-54543.350	-51450.018	-51453.506	-56595.472	-56607.644	-56611.856	-56624.887	-51450.018
Cr	ZPE	5.180	5.082	4.953	4.882	5.187	5.539	5.519	5.904	4.953
	TS	1.179	1.052	1.033	0.785	1.112	1.170	1.193	1.053	1.033
	E	-57388.872	-57391.482	-54299.468	-54302.937	-59445.076	-59457.946	-59461.005	-59473.811	-54299.468
Mn	ZPE	5.119	4.986	4.948	4.900	5.227	5.593	5.488	5.852	4.948
	TS	1.165	1.022	0.951	0.863	0.996	1.135	0.998	1.200	0.951
	E	-129309.734	-129313.692	-126219.612	-126223.360	-131365.033	-131377.796	-131381.487	-131394.546	-126219.612
Nb	ZPE	5.061	5.049	4.850	4.835	5.166	5.524	5.424	5.787	4.850
	TS	1.139	1.260	0.947	1.073	1.033	1.242	1.216	1.279	0.947
	E	-136621.541	-136624.655	-133531.287	-133534.736	-138676.802	-138688.840	-138693.130	-138706.191	-133531.287
Mo	ZPE	5.130	5.033	4.923	4.850	5.156	5.495	5.484	5.862	4.923
	TS	0.962	0.997	0.806	0.905	1.025	1.252	1.044	1.195	0.806
	E	-419179.405	-419183.426	-416088.822	-416092.649	-421235.580	-421247.680	-421251.468	-421263.971	-416088.822
Та	ZPE	5.095	5.074	4.880	4.821	5.198	5.540	5.455	5.803	4.880
	TS	1.093	1.164	0.994	1.095	1.075	1.167	1.082	1.163	0.994
	E	-459151.466	-459154.677	-456060.808	-456064.501	-461206.807	-461218.746	-461223.116	-461235.889	-456060.808
W	ZPE	5.157	5.064	4.946	4.859	5.204	5.526	5.520	5.894	4.946
	TS	1.084	1.202	0.758	0.971	1.092	1.120	1.341	1.193	0.758
	E	-404812.425	-404815.215	-401722.610	-401726.125	-406868.448	-406881.398	-406884.648	-406897.245	-401722.610
Re	ZPE	5.104	5.021	4.939	4.871	5.215	5.564	5.470	5.873	4.939
	TS	0.946	1.160	0.805	0.865	1.096	1.012	1.070	1.081	0.805

Table S2. Calculated total energies (*E*), zero-point energies (*ZPE*), and *TS* values. *T* is temperature and equals 298.15 K. *S* is the entropy. All results are in the unit of eV. The corresponding structures are shown in Fig. 2.

Table S3. The reaction free energies of elemental steps at the electrode potential U = 0 V. All results are in the unit of eV. The reaction free energies of single electron reduction steps are

Step	1	2	3	4	5	6	7	8	9	10	11
V	0.42	1.90	1.78	0.54	-0.95	-0.18	0.71	-1.58	-1.37	0.83	0.54
Cr	1.28	1.30	1.62	0.97	-0.24	-0.51	0.03	-1.54	-1.13	0.48	0.97
Mn	1.68	0.01	0.84	0.85	-0.20	-1.27	1.25	-1.15	-1.27	0.22	0.85
Nb	0.19	1.70	1.50	0.39	-0.56	-0.24	0.51	-1.28	-1.39	0.87	0.39
Mo	1.03	1.22	1.60	0.66	-0.14	-0.55	0.19	-1.43	-1.46	0.90	0.66
Та	0.17	1.99	1.86	0.29	-0.79	-0.48	0.49	-1.05	-0.86	0.94	0.29
W	0.86	1.60	2.17	0.29	-0.34	-0.27	-0.22	-1.20	-0.88	1.11	0.29
Re	1.19	0.63	1.19	0.64	-0.47	-1.14	0.88	-0.76	-0.83	0.52	0.64

shown in red colour.

Fig. S1. Highest occupied molecule orbitals (HOMO) of [M(bpy)(CO)₃]⁻¹.

Figure S2. Different products of hydrogenation steps of [Mn(bpy)(CO)₃CO₂]⁻¹ and [Mn(bpy)(CO)₃COOH]⁻¹. (a) the structure F and (d) the structure H in Figure 2.

V(bpy)(CO) ₄			Cr(bpy)(CO) ₄			Mn(bpy)(CO) ₄		
3 <i>d</i>	4s	spin	3 <i>d</i>	4s	spin	3 <i>d</i>	4s	spin
4.179	0.23	0.3515	5.36	0.299	0	6.139	0.254	0
Nb(bpy)(CO) ₄ Mo(bpy)(CO) ₄				D) ₄				
4d	5 <i>s</i>	spin	4 <i>d</i>	5 <i>s</i>	spin			
3.975	0.295	0.245	5.161	0.318	0			
Та	(bpy)(C	CO) ₄	W(bpy)(CC)) ₄	Re(Re(bpy)(CO) ₄	
5 <i>d</i>	6 <i>s</i>	spin	5 <i>d</i>	6 <i>s</i>	spin	5 <i>d</i>	6 <i>s</i>	spin
3.669	0.525	0.118	4.806	0.642	0	5.086	0.745	0

Table S4. Electronic and spin states of transition metals in M(bpy)(CO)₄ based on Mulliken charge population with GGA-PW91 functional by the DMol³ code.

Table S5. Electronic and spin states of transition metals in M(bpy)(CO)₄ based on Mulliken

charge population with B3LYP functional by the DMol³ code.

V(bpy)(CO) ₄			Cr(bpy)(CC))4	Mn(bpy)(CO) ₄		
3 <i>d</i>	4s	spin	3 <i>d</i>	4s	spin	3 <i>d</i>	4s	spin
4.197	0.18	0.419	5.387	0.234	0	6.169	0.213	0
Nb(bpy)(CO) ₄ Mo(bpy)(CO) ₄				D) ₄				
4d	5 <i>s</i>	spin	4 <i>d</i>	5 <i>s</i>	spin			
3.87	0.232	0	5.099	0.261	0			
Ta(bpy)(CO) ₄			W(bpy)(CO) ₄			Re(bpy)(CO) ₄		
5 <i>d</i>	6 <i>s</i>	spin	5 <i>d</i>	6 <i>s</i>	spin	5 <i>d</i>	6 <i>s</i>	spin
3.518	0.495	0	4.657	0.615	0	5.637	0.707	0

Table S6. Relative energy of different products of hydrogenation steps of [Mn(bpy)(CO)₃CO₂]⁻¹ and [Mn(bpy)(CO)₃COOH]⁻¹ in Fig. S2. All results are in the unit eV. The energies of structures (a) and (d) in Fig. S2 are defined as 0 eV. The positive energy value indicates that the corresponding structure are unstable compared with the reference structure.

Structure	a	b	с
Energy	0	5.04	3.14
Structure	d	e	f
Energy	0	1.11	2.51

Fig. S3. Highest occupied molecule orbital (HOMO) of [Mn(bpy)(CO)₃CO₂]⁻¹.