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Fig. S1: (from left to right) Digital images of ZnGa2O4:Cr3+,Yb3+ precursor glass, nano glass-ceramics 
elaborated via glass crystallization at Tcryst1 = 900 °C and Tcryst2 = 1000 °C, respectively.

Figure S2: (a) XRPD pattern of ZnGa2O4 (blue), ZnGa2O4:Cr3+ (red) and ZnGa2O4:Cr3+,Yb3+ glass-ceramics 
elaborated at 1000 °C. (b) zoom between 25 ° and 45 ° of the XRPD pattern of the same samples. 
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Fig. S3: Comparison of the normalized photoluminescence spectra recorded at different temperatures 
(100, 300 and 500 K). This comparison is exposed for samples crystallized at 800, 900 and 1000 °C. (λexc 
= 330 nm)

Fig. S4: Photoluminescence spectra (normalized on the right side) of ZnGa2O4:Cr3+,Yb3+ - nGC 1000 °C 
recorded at temperatures ranging from 100 K to 600 K. (λexc = 330 nm)

These figures show a drastic thermal quenching of 2E → 4A2 emission. Nevertheless, an 
interesting rise of the 4T2 → 4A2 broad contribution is observed as the sample temperature is 
increased. On the normalized spectra a noticeable increase of the Yb3+ emission relatively to 
Cr3+ emission is displayed with increasing temperature. This points out the rise of the Cr3+ to 
Yb3+ energy transfer with temperature.
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Fig. S5: Comparison of normalized photoluminescence spectra of singly and co-doped ZnGa2O4 nGC 
elaborated at different temperatures. (λexc = 365 nm)

The comparison of the normalized photoluminescence spectrum of singly and co-coped 
materials shows that co-doping leads to the appearance of Yb3+ emission (λexc =  975 nm) and 
the decrease of the broad band attributed to the 4T2 → 4A2 transition. It also shows that this 
decrease is less and less pronounced as Tcryst increases.
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Fig. S6: Comparison of persistent luminescence intensities (2 minutes after UV excitation) of Cr3+ and 
Yb3+ in samples prepared with different crystallization temperatures. The values have been taken 
relatively to the Cr3+ afterglow intensity of the sample elaborated at 1000 °C. Logarithm scale is used 
for the vertical axis to underline weak variations.

The comparison of afterglow intensities shows that the sample elaborated at 1000 °C have 
much higher afterglow intensities for both Cr3+ and Yb3+. The difference for the Cr3+ afterglow 
intensities is really impressive. On the other hand, for Yb3+ persistent intensity, the difference 
is quite small especially going from 900 °C to 1000 °C. This may be due to the balance between 
the lower energy transfer but more efficient Cr3+ persistent emission using materials 
elaborated at higher temperatures.



6

Fig. S7. 2D PL/PLE spectra of the singly doped sample.

On that supplementary figure, it can be observed that no distinct excitation band located at 
975 nm is obtained looking at Cr3+ emission in the singly doped material. This corroborates 
the effect of Yb3+ in the up conversion properties obtained with the co-doped sample. 
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Fig. S8: (a) Cooperative sensitization up-conversion mechanism. (b) Possible ETU mechanism as erbium 
is a common impurity in the ytterbium doped compounds. In the inset, the PL spectrum of the sample 
is depicted (λexc = 976 nm).

As described in the manuscript, excitation through the Yb3+ band (i.e. λ = 975 nm) corresponds 
to an energy of 1.27 eV while two photon excitation (2.54 eV i.e. 487.5 nm) appears, as seen 
on Figure 5, in the Cr3+ 4A2 → 4T2 excitation band. Therefore, as proposed in other hosts by 
Heer et al., the involved two photon up-conversion mechanism may be the cooperative 
sensitization from two Yb3+ to Cr3+.1,2 The cooperative sensitization from two Yb3+ to Cr3+ is 
depicted in Figure S8 (a). Moreover, on the photoluminescence spectra exciting in the Yb3+ 
2F7/2 → 2F5/2 band (λexc = 976 nm), it is possible to observe additional bands around 600 nm 
(inset of figure S8 (b)). Due to its spectral position, these bands can be attributed to Er3+ 4F9/2 
→ 4I15/2. Indeed, it is very likely to find Er3+ as an impurity coming from the ytterbium oxide 
precursor. Hence, an energy transfer up-conversion (ETU) mechanism may be considered as 
it is well known that Yb3+ efficiently acts as an efficient sensitizer of Er3+.3–5 Though the Er3+ 
presence is very minute, its up-conversion efficiency with Yb3+ is significant. Therefore, some 
contribution from Er3+ in the up-conversion process can be expected. This related up-
conversion mechanism is depicted in figure 8 (b).
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Fig. S9: Thermoluminescence spectrum of ZnGa2O4:Cr3+,Yb3+ nGC – 1000 °C  recorded at different 
temperatures.

On the one hand, the thermoluminescence spectrum shows an increase of the Cr3+ 
thermoluminescence intensity until 330 K followed by its decrease. On the other hand, the 
Yb3+ thermoluminescence intensity shows an increase until 380 K followed by its decrease. 
This reveals the effect of temperature on the persistent energy transfer from Cr3+ to Yb3+.
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