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Fig. S1: (from left to right) Digital images of ZnGa,0,:Cr3*,Yb3* precursor glass, nano glass-ceramics
elaborated via glass crystallization at Tys;; = 900 °C and Ty = 1000 °C, respectively.
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Figure S2: (a) XRPD pattern of ZnGa,0, (blue), ZnGa,0,:Cr?** (red) and ZnGa,0,:Cr3*,Yb3* glass-ceramics
elaborated at 1000 °C. (b) zoom between 25 ° and 45 ° of the XRPD pattern of the same samples.
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Fig. S3: Comparison of the normalized photoluminescence spectra recorded at different temperatures
(100, 300 and 500 K). This comparison is exposed for samples crystallized at 800, 900 and 1000 °C. (A«
=330 nm)
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Fig. S4: Photoluminescence spectra (normalized on the right side) of ZnGa,0,:Cr3*,Yb3* - nGC 1000 °C
recorded at temperatures ranging from 100 K to 600 K. (A¢xc = 330 nm)

These figures show a drastic thermal quenching of 2E — %A, emission. Nevertheless, an
interesting rise of the T, — “A, broad contribution is observed as the sample temperature is
increased. On the normalized spectra a noticeable increase of the Yb3* emission relatively to
Cr3* emission is displayed with increasing temperature. This points out the rise of the Cr3* to
Yb3* energy transfer with temperature.
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Fig. S5: Comparison of normalized photoluminescence spectra of singly and co-doped ZnGa,0, nGC
elaborated at different temperatures. (Ao = 365 nm)

The comparison of the normalized photoluminescence spectrum of singly and co-coped
materials shows that co-doping leads to the appearance of Yb3* emission (Aexe = 975 nm) and
the decrease of the broad band attributed to the T, - %A, transition. It also shows that this
decrease is less and less pronounced as T increases.
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Fig. S6: Comparison of persistent luminescence intensities (2 minutes after UV excitation) of Cr3* and
Yb3* in samples prepared with different crystallization temperatures. The values have been taken
relatively to the Cr3* afterglow intensity of the sample elaborated at 1000 °C. Logarithm scale is used
for the vertical axis to underline weak variations.

The comparison of afterglow intensities shows that the sample elaborated at 1000 °C have
much higher afterglow intensities for both Cr3* and Yb3*. The difference for the Cr3* afterglow
intensities is really impressive. On the other hand, for Yb3* persistent intensity, the difference
is quite small especially going from 900 °C to 1000 °C. This may be due to the balance between
the lower energy transfer but more efficient Cr3* persistent emission using materials
elaborated at higher temperatures.
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Fig. S7. 2D PL/PLE spectra of the singly doped sample.

On that supplementary figure, it can be observed that no distinct excitation band located at
975 nm is obtained looking at Cr3* emission in the singly doped material. This corroborates
the effect of Yb3* in the up conversion properties obtained with the co-doped sample.
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Fig. S8: (a) Cooperative sensitization up-conversion mechanism. (b) Possible ETU mechanism as erbium
is a common impurity in the ytterbium doped compounds. In the inset, the PL spectrum of the sample
is depicted (Aexe =976 NM).

As described in the manuscript, excitation through the Yb3* band (i.e. A = 975 nm) corresponds
to an energy of 1.27 eV while two photon excitation (2.54 eV i.e. 487.5 nm) appears, as seen
on Figure 5, in the Cr3* 4A, - T, excitation band. Therefore, as proposed in other hosts by
Heer et al., the involved two photon up-conversion mechanism may be the cooperative
sensitization from two Yb3* to Cr3*.12 The cooperative sensitization from two Yb3* to Cr3* is
depicted in Figure S8 (a). Moreover, on the photoluminescence spectra exciting in the Yb3*
2F;/2 = 2Fs5/; band (Aexe = 976 nm), it is possible to observe additional bands around 600 nm
(inset of figure S8 (b)). Due to its spectral position, these bands can be attributed to Er3* 4Fg,
- %l15/,. Indeed, it is very likely to find Er3* as an impurity coming from the ytterbium oxide
precursor. Hence, an energy transfer up-conversion (ETU) mechanism may be considered as
it is well known that Yb3* efficiently acts as an efficient sensitizer of Er3*.3=> Though the Er3*
presence is very minute, its up-conversion efficiency with Yb3* is significant. Therefore, some
contribution from Er3* in the up-conversion process can be expected. This related up-
conversion mechanism is depicted in figure 8 (b).
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Fig. S9: Thermoluminescence spectrum of ZnGa204:Cr3+,Yb3+ nGC — 1000 °C recorded at different
temperatures.

On the one hand, the thermoluminescence spectrum shows an increase of the Cr3*
thermoluminescence intensity until 330 K followed by its decrease. On the other hand, the
Yb3* thermoluminescence intensity shows an increase until 380 K followed by its decrease.
This reveals the effect of temperature on the persistent energy transfer from Cr3* to Yb3*.
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