Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Electronic Supplementary Information

Enhancing C-C Bond Formation by the Surface Strain: Investigating the C2 and C3 Intermediate Formation on the Strained Cu Surfaces

Yu-Te Chan, I-Shou Huang, Ming-Kang Tsai*

Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.

Figure S1. A set of 4×3 Cu(100) models (4 layers) are chosen, (a) top view of pristine model and (b) the schematic representation of $N_a > 0$ and $N_b > 0$ model. In order to simulate the surface strain, a combination of compressed or elongated cell constant \vec{a} and \vec{b} scenarios are constructed. The choices of constant \vec{a} corresponds to a 0 to 10 percent compression of a pristine cell (11 grids) and those of cell constant \vec{b} corresponds to a 0 to 10 percent elongation (11 grids). There were totally $11 \times 11 = 121$ models being described by following equation:

Cell constant_{strained} = (Cell constant_{pristine}) × (100 + N)% where $N_a = -10 \sim 0$ and $N_b = 0 \sim 10$, respectively. Notably, the C–C bond of C2 intermediates like *OCCOH lying along the *b*-axis. The bottom three layers were frozen during each optimization calculation.

Figure S2. The schematic representation of the various surface strain models $(N_a, N_b) Cu(100)$ models where (a) top views, (b) electron localization function maps, and (c) side vews. The $\Delta x_{z(a,b,...)}$ represent the average displacement of atoms (a, b, ...) of each optimized slab model from the pristine bulk z coordinate.

* CO _t	* CO _b	* СООН				
	dee					
222	222	222				
* <i>CHO</i>	* оссон	*#				
000	000	000				
	888	888				
Figure S3. Schematic representations of top and side views of the selected intermediates along the CO_2RR/HER pathway on the Cu(100) surface: (a) * CO_{atop} ,						

intermediates along the CO_2RR/HER pathway on the Cu(100) surface: (a) * CO_{atop} , (b) * CO_{bridge} , (c) *COOH, (d) *CHO, (e) *OCCOH, (f) *H. Cu, C, O and H atoms are depicted as orange, black, red and white spheres.

Figure S7. Partial density of states (PDOS) of carbon atoms in *OCCOH and the contacted four Cu atoms on surface. The pink dash line indicates the bonding orbital between C(=O) and Cu shift to lower energy under the strain condition.

Figure S8. (top) Schematic representation of the explicit water solvation model; (down) the calculated electrostatic potential (in respect to Fermi energy) of the aforementioned two *CO absorbed on pristine Cu(100) surface.

morphology with the average Cu–Cu distance along \vec{a} and \vec{b} .

Table S1. Correction terms calculated	from frequencies	for free energy	calculations (in eV)
	E _{zpe}	-TS	Correction term
*OCCO_(-10,10)_32H ₂ O_INI	0.502	-0.269	0.233
*OCCO_(-10,10)_ 32H ₂ O_TS	0.466	-0.237	0.230
*OCCO_(-10,10)_ 32H ₂ O_FIN	0.493	-0.218	0.275
*OCCO_(-6,10)_32H ₂ O_INI	0.500	-0.273	0.227
*OCCO_(-6,10)_32H ₂ O_TS	0.464	-0.238	0.226
*OCCO_(-6,10)_ 32H ₂ O_FIN	0.499	-0.195	0.304
*OCCO_(0,0)_32H ₂ O_INI	0.496	-0.267	0.230
*OCCO_(0,0)_ 32H ₂ O_TS	0.461	-0.218	0.243
*OCCO_(0,0)_ 32H ₂ O_FIN	0.496	-0.202	0.294
*CCH_(-10,0)_ 32H ₂ O_INI	0.775	-0.229	0.546
*CCH_(-10,0)_ 32H ₂ O_TS	0.736	-0.305	0.431
*CCH_(-10,0)_32H ₂ O_FIN	0.820	-0.183	0.637
*CCH_(-10,10)_32H ₂ O_INI	0.770	-0.254	0.516
*CCH_(-10,10)_32H ₂ O_TS	0.745	-0.245	0.500
*CCH_(-10,10)_ 32H ₂ O_FIN	0.814	-0.191	0.623
*CCOH_(-10,0)_ 32H ₂ O_INI	0.930	-0.260	0.670
*CCOH_(-10,0)_32H ₂ O_TS	0.919	-0.286	0.633
*CCOH_(-10,0)_ 32H ₂ O_FIN	0.974	-0.273	0.702
*CCOH_(-10,10)_ 32H ₂ O_INI	0.901	-0.288	0.613
*CCOH_(-10,10)_32H ₂ O_TS	0.908	-0.267	0.642
*CCOH_(-10,10)_32H ₂ O_FIN	0.969	-0.257	0.711

Table S2. Calculated energies of reactant (INI), TS, and product (FIN) states for the C-C coupling processes of Figure 4						
	Model	INI	TS	FIN	$\Delta E(TS)$	$\Delta E(rxn)$
	(-10,10) 1	-666.97	-666.48	-666.71	0.49	0.26
	(-10,10) 2	-667.32	-666.83	-666.87	0.49	0.45
	(-10,10) 3	-667.41	-666.59	-666.90	0.82	0.51
	(-10,10)_4	-666.89	-666.42	-666.76	0.47	0.13
	(-10,10)_5	-667.41	-666.82	-666.93	0.59	0.48
	(-6,10)_1	-669.82	-668.96	-669.51	0.86	0.31
	(-6,10)_2	-669.99	-669.41	-669.86	0.58	0.13
2CO	(-6,10)_3	-669.90	-669.29	-669.83	0.61	0.07
	(-6,10)_4	-670.20	-669.36	-669.84	0.84	0.36
	(-6,10)_5	-669.98	-669.43	-669.87	0.55	0.11
	(0,0)_1	-673.29	-672.73	-673.08	0.56	0.21
	(0,0)_2	-673.31	-672.60	-672.98	0.71	0.33
	(0,0)_3	-673.43	-672.87	-673.09	0.56	0.34
	(0,0)_4	-673.35	-672.78	-673.07	0.57	0.28
	(0,0)_5	-673.28	-672.84	-673.05	0.44	0.23
	(-10,0)_1	-672.48	-671.94	-672.42	0.54	0.06
	(-10,0)_2	-672.66	-672.10	-672.69	0.56	-0.03
	(-10,0)_3	-672.78	-672.17	-672.74	0.61	0.04
	(-10,0)_4	-672.68	-672.07	-672.58	0.61	0.10
	(-10,0)_5	-672.67	-672.14	-672.64	0.53	0.03
ССН						
	(-10,10)_1	-671.21	-670.73	-671.02	0.48	0.19
	(-10,10)_2	-671.21	-670.71	-671.15	0.50	0.06
	(-10,10)_3	-670.77	-670.24	-670.79	0.53	-0.02
	(-10,10) 4	-671.18	-670.65	-671.13	0.53	0.05
	(-10,10)_5	-671.13	-670.54	-671.03	0.59	0.10
	(-10,0) 1	-679.23	-678.61	-679.31	0.62	-0.08
	(-10,0) 2	-679.31	-678.81	-679.52	0.50	-0.21
ССОН	(-10,0) 3	-679.04	-678.40	-679.24	0.64	-0.20
	(-10,0) 4	-679.30	-678.48	-679.17	0.82	0.13
	(-10,0)_5	-679.39	-678.61	-679.22	0.78	0.17

Electronic Supplementary Information

(-10,10)_1	-677.54	-677.00	-677.84	0.54	-0.30
(-10,10)_2	-678.00	-677.39	-678.24	0.61	-0.24
(-10,10)_3	-678.09	-677.60	-678.40	0.49	-0.31
(-10,10)_4	-678.42	-678.05	-678.66	0.37	-0.24
(-10,10)_5	-678.48	-677.96	-678.85	0.52	-0.37

(1). The notation of model (x,y)_z denotes the strain condition (x,y) and the trial of AIMD calculations (z).

(2). $\Delta E(TS)$ and $\Delta E(rxn)$ denote the reaction barrier and reaction energy, respectively.

(3). All energy values are shown in eV.

Table S3. The statistical details of mean relative energetics, and standard deviations.							
	Model	Term ^{1,2}	³ INI	TS	FIN		
		E(mean)	0.00	0.57	0.37		
	(10.10)	STD	0.25	0.15	0.16		
	(-10,10)	ZPE-TΔS	0.23	0.23	0.28		
		$\Delta G = \Delta (E + ZPE - TS)$	0.00	0.57	0.41		
		E(mean)	0.00	0.69	0.20		
200	(610)	STD	0.14	0.15	0.13		
200	(-0,10)	ZPE-TΔS	0.23	0.23	0.30		
		ΔG	0.00	0.69	0.27		
		E(mean)	0.00	0.57	0.28		
	(0,0)	STD	0.06	0.10	0.06		
		ZPE-TΔS	0.23	0.24	0.29		
		ΔG	0.00	0.58	0.34		
	(-10,0)	E(mean)	0.00	0.57	0.04		
		STD	0.11	0.04	0.05		
		ZPE-TΔS	0.55	0.43	0.64		
ССН		ΔG	0.00	0.45	0.13		
	(-10,-10)	E(mean)	0.00	0.53	0.08		
		STD	0.19	0.04	0.08		
		ZPE-TΔS	0.52	0.50	0.62		
		ΔG	0.00	0.51	0.18		
ССОН	(-10,0)	E(mean)	0.00	0.67	-0.04		

Electronic Supplementary Information

		STD	0.13	0.13	0.18
		ΖΡΕ-ΤΔ	0.67	0.63	0.70
		ΔG	0.00	0.63	-0.01
		E(mean)	0.00	0.51	-0.29
(-10,-10)	(10, 10)	STD	0.38	0.09	0.05
	ΖΡΕ-ΤΔ	0.61	0.64	0.71	
		ΔG	0.00	0.53	-0.19

(1). E(mean) denotes the average energy of the five optimized solvated models.

$$STD = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(x-\bar{x})^2}$$

(2). STD denotes the standard deviation using

(3). STD of INI is calculated using the sampled electronic energy of INI configurations.

References

1. Mavrikakis, M.; Hammer, B.; Nørskov, J. K., Effect of Strain on the Reactivity of Metal Surfaces. *Phys. Rev. Lett.* **1998**, 81, 2819-2822.

2. Montoya, J. H.; Shi, C.; Chan, K. Nørskov, J. K., Theoretical Insights into a CO Dimerization Mechanism in CO₂ Electroreduction. *J. Phys. Chem. Lett.* **2015**, 6, 2032-2037.

3. Li, C. W.; Ciston, J.; Kanan, M. W., Electroreduction of carbon monoxide to liquid fuel on oxidederived nanocrystalline copper. *Nature* **2014**, 508, 504.