Supplementary Information

Switching Charge Transfer Characteristics of Quaterthiophene from p-type to n-type via Interactions with Carbon Nanotube

Ankita Joshi and C.N. Ramachandran* Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India-247667 *e-mail: ramcnfcy@iitr.ac.in

Calculation of Charge Transport Parameters

The transfer integral for an electron (*t*.) can be calculated from the energies of LUMO and LUMO+1,

$$t_{-} = \frac{E_{LUMO + 1} - E_{LUMO}}{2}$$
(1)

and that for a hole (t_+) can be determined from the energies of HOMO and HOMO-1,

$$t_{-} = \frac{E_{HOMO} - E_{HOMO - 1}}{2}$$
(2)

The reorganization energy for any charged species (hole/electron) is given by,

(E (charged species) - E°) (charged species) + (E (neutral geometry obtained from the charged species) – E° (neutral geometry)), where E is the energy of unoptimized and E° is the energy of optimized species.

The rate of charge transfer (k) is calculated based on Marcus theory,

$$k = \frac{4\pi^2}{h} \frac{1}{\sqrt{4\pi k_B T}} t^2 e^{-\lambda / k_B T}$$
(3)

where, *h* is the Planck's constant, *T* is the room temperature (298 K) and k_B is the Boltzmann constant.

The diffusion coefficient D is given by

$$D = \frac{kL^2}{2} \tag{4}$$

where L is the nearest center-to-center distance

The Einstein relation for the mobility of charge carriers (μ) is given by,

$$\mu = \frac{eD}{k_B T} \tag{5}$$

Figure S1. Optimized geometries of 4T, 4T@CNT and 4T-CNT obtained at B3LYP-GD3 and ω B97X-D levels.

B97-D	B3LYP-GD3	ωB97X-D
$E_{LUMO+1} = -2.93 \text{ eV}$	$E_{LUMO+1} = -2.60 \text{ eV}$	$E_{LUMO+1} = -1.42 \text{ eV}$
$E_{LUMO} = -3.11 \text{ eV}$	$E_{LUMO} = -2.79 \text{ eV}$	$E_{LUMO} = -1.66 \text{ eV}$
$E_{HOMO} = -3.76 \text{ eV}$	$E_{HOMO} = -4.29 \text{ eV}$	$E_{HOMO} = -5.64 \text{ eV}$
$E_{HOMO-1} = -3.91 \text{ eV}$	$E_{HOMO-1} = -4.44 \text{ eV}$	$E_{HOMO-1} = -3.86 \text{ eV}$

Figure S2. Selected molecular orbitals and the corresponding energy for **4T@CNT** obtained at different levels.

B97-D	B3LYP-GD3	ωΒ97Χ-D
s Fires	روچھیچور	رون المحقق ور
000 0	A	
		6 6
00000	00 A 20	0000 C
	•	
$E_{LUMO+1} = -2.90 \text{ eV}$	$E_{LUMO+1} = -2.56 \text{ eV}$	$E_{LUMO+1} = -1.40 \text{ eV}$
3 Pares	رون المنكور	CONTRACTOR OF CONTRACTOR
$E_{-2.00}$ eV	E - 2.79 eV	E = 1.65 eV
$E_{LUMO} = -3.09 \text{ eV}$	$E_{LUMO} = -2.78 \text{ eV}$	$E_{LUMO} = -1.65 \text{ eV}$
Je Starley	, and the second	, Caller
@®@	6889 A	2 ⁹ 92
	6 6	6 0
· පිළ ඉති	80 g 88	000 0 ⁰⁰
$E_{HOMO} = -3.89 \text{ eV}$	$E_{HOMO} = -4.26 \text{ eV}$	$E_{HOMO} = -5.61 \text{ eV}$
and the second sec	روياليتهم	COLORIDA COLORIDA
	Concernant of the	No.
$E_{HOMO-1} = -4.08 \text{ eV}$	$E_{HOMO-1} = -4.47 \text{ eV}$	$E_{HOMO-1} = -5.84 \text{ eV}$

Figure S3. Selected molecular orbitals and the corresponding energy for **4T-CNT** obtained at different levels.

Figure S4. Optimized geometry of the exohedral complex of **long CNT** with **4T** obtained at B3LYP-GD3 level.

Figure S5. Simulated absorption spectra of (a) 4T@(7,7)CNT and (b) 4T-(7,7)CNT at B3LYP-GD3/6-31G(d,p) level.

Table S1. Calculated values of ionization energy (IE), electron affinity (EA), energy gap between HOMO and LUMO (ΔE_{H-L}) for **4T**, **CNT** and their complexes at different levels. All values are in eV.

Complex	Functional	VIE	AIE	VEA	AEA	ΔE _{H-L}
	B97-D	6.01	5.89	-0.72	-0.82	1.87
4T	B3LYP-GD3	6.33	6.13	-0.59	-0.77	3.15 (3.13 ^a)
	ωB97X-D	6.86	6.49	-0.21	-0.56	6.93
	B97-D	4.93	4.90	-2.15	-2.17	0.80
(6,6)CNT ^b	B3LYP-GD3	5.06	5.03	-2.06	-2.09	1.47
	ωB97X-D	5.50	5.43	-1.83	-1.90	3.97
	B97-D	c	c	-2.13	-2.15	0.64
4T@CNT	B3LYP-GD3	5.03	5.01	-2.04	-2.07	1.50
	ωB97X-D	5.48	5.43	-1.81	-1.87	3.98
	B97-D	4.86	4.83	-2.13	-2.15	0.80
4T-CNT	B3LYP-GD3	5.01	4.97	-2.04	-2.07	1.45
	ωB97X-D	5.45	5.37	-1.81	-1.88	3.96

^aRef. [48] ^bRef. [42-44] ^cConvergence criteria not met.

Table S2. Calculated values of maximum absorption wavelength (λ_{max}), oscillator strength (f) and light-harvesting efficiency (LHE) for **4T** at different levels.

Functional	λ_{\max} (nm)	f	LHE (%)
B97-D	490	1.14	93
B3LYP-GD3	423 (<i>436</i>) ^a	1.19	94
ωB97X-D	344	1.20	94

^aRef. [59]

Table S3. The absorption wavelength, oscillator strength, orbital contribution and molecular orbitals involved in the transition of the complex 4T@CNT obtained at B3LYP-GD3/6-31G(d,p) level.

Wavelength (nm)	Oscillator strength	Orbital contribution (%)	Molecular orbitals involved		
		48			
738	0.76		НОМО-2	LUMO	
		47	HOMO	LUMO+1	
473	0.27	22	HOMO-7	LUMO	
		20	Номо-5	LUMO+1	
468	0.05	67	HOMO-8	LUMO+1	
		35		6699 699 699 699 699 699 699 699 699 69	

463	0.05		НОМО-2	LUMO+9
		42		6
			HOMO-2	LUMO+10

458	0.19	25	HOMO-1	LUMO+14
453	0.16	46	HOMO-1	LUMO+14
445	0.10	54	HOMO-1	LUMO+15

Table S4. The absorption wavelength, oscillator strength, orbital contribution and molecular orbitals involved in the transition of the complex 4T-CNT obtained at B3LYP-GD3/6-31G(d,p) level.

Wavelength (nm)	Oscillator strength	Orbital contribution (%)	Molecular orbitals involved		
721	0.68	44	HOMO-1	LUMO	
/31	0.08	42	HOMO	LUMO+1	
685	0.17	87	HOMO-2	LUMO	
464	0.24	61	HOMO-2	LUMO+3	
462	0.26	50	HOMO-2	LUMO+4	
460	0.32	26	HOMO-2	LUMO+3	
459	0.31	34	HOMO-2	LUMO+4	

448	0.07	30	НОМО-10	LUMO
	0.07	19	HOMO-9	LUMO
446	0.14	35	НОМО-2	LUMO+5
445 0.09	0.09	24	НОМО-2	LUMO+5
	0.07	52	НОМО	LUMO+12
439	0.05	19	HOMO-1	LUMO+14

Table S5. Calculated values of transfer integral (*t*), internal reorganization energy (λ), rate constant (*k*) and carrier mobility (μ) for the complexes at different distance between centres of **4T** and **CNT** (d_{cc}) obtained at B3LYP-GD3/6-31G(d,p) level.

Complex	d _{c-c} (Å)	λ^+ (meV)	λ- (meV)	t ⁺ (meV)	t ⁻ (meV)	k ⁺ (s ⁻¹)	k- (s-1)	μ^+ (cm ² V ⁻¹ s ⁻¹)	$\mu^{-}(cm^2 V^{-1}s^{-1})$
4T@(7,7)CNT	4.29	59	52	60	67	0.24×10^{14}	0.51×10^{14}	0.86	1.83
4T-(7,7)CNT	3.31	63	58	57	63	0.20×10^{14}	0.29×10^{14}	0.42	0.62