Supplementary Information for:

"Effect of Confinement on the Adsorption Behavior of Inorganic

and Organic Ions at Aqueous-Cyclohexane Interfaces:

A Molecular Dynamics Study"

Monir Hosseini Anvari, Phillip Choi*

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9

* Corresponding author: phillip.choi@ualberta.ca / Phone: +1-780-492-9018

Figure *S*¹. The initial structure, composed of kaolinite (001) surfaces (octahedral sheet at the bottom and tetrahedral sheet at the top), cyclohexane phase (1000 molecules, 28 wt% on a dry clay basis), ⁵⁰ decanoate molecules (with equal number of sodium ions), and the water phase (2000 molecules, 12.12 wt% on a dry clay basis) with 0.5 or 1.0 M concentration of NaCl, NaOH, CaCl₂ or Ca(OH)₂.

Table S1. Non-bond and bond parameters for hydroxide [47], cyclohexane and decanoate [52]

Non-bonded Interactions (^{12 – 6} LJ)				
Atom Type	ε (kcal/mol)	σ (Å)		
$O_h(O_{hydroxide})$	0.161	3.670		
$O_c(O_{carboxylate})$	0.120	3.029		
$C_c(C_{carboxylate})$	0.070	3.564		
$C_{m2}(C_{methylene-bridge})$	0.056	3.581		
$C_{m3}(C_{methyl})$	0.078	3.653		
$H_{m2}(H_{methylene-bridge})$	0.035	2.388		
$H_{m3}(H_{methyl})$	0.024	2.388		
Bonded Interactions				
Harmonic Bond $\left[E_b = K_b (r - r_0)^2\right]$	$K_b(kcal/(mol Å^2))$	r ₀ (Å)		
$O_h - H_h$		1.00		
$O_c - C_c$	525.000	1.26		
$C_c - C_{m2}$	200.000	1.52		
$C_{m2} - C_{m3}$	222.500	1.53		
$C_{m2} - H_{m2}$	309.000	1.11		
$C_{m3} - H_{m3}$	322.000	1.11		
Harmonic Angle $\left[E_b = K_b (r - r_0)^2\right]$	$K_a(kcal/(mol rad^2))$	θ (degrees)		
$O_c - C_c - O_c$	100.00	128.00		
$O_c - C_c - C_{m2}$	40.00	116.00		
$C_c - C_{m2} - C_{m2}$	52.00	108.00		
$C_c - C_{m2} - H_{m2}$	33.00	109.50		
$C_{m2} - C_{m2} - C_{m2}$	58.35	113.60		
$C_{m2} - C_{m2} - H_{m2}$	26.50	110.10		
$H_{m2} - C_{m2} - H_{m2}$	35.50	109.00		
$C_{m2} - C_{m2} - C_{m3}$	58.00	115.00		
$H_{m2} - C_{m2} - C_{m3}$	34.60	110.10		
$C_{m2} - C_{m3} - H_{m3}$	34.60	110.10		
$H_{m3} - C_{m3} - H_{m3}$	35.50	108.40		

Bonded Interactions				
Charmm Dihedral $\begin{bmatrix} E_d = K_d(1 + \cos(n\varphi - d)) \end{bmatrix}$	K _d (kcal/mol)	n	d	
$O_c - C_c - C_{m2} - C_{m2}$	0.050	6	180	
$O_c - C_c - C_{m2} - H_{m2}$	0.05	6	180	
$C_c - C_{m2} - C_{m2} - C_{m2}$	0.065	2	0	
$C_c - C_{m2} - C_{m2} - H_{m2}$	0.195	3	0	
$C_{m2} - C_{m2} - C_{m2} - H_{m2}$	0.195	3	0	
$H_{m2} - C_{m2} - C_{m2} - H_{m2}$	0.220	3	0	
$C_{m2} - C_{m2} - C_{m2} - C_{m3}$	0.151	2	0	
$H_{m2} - C_{m2} - C_{m2} - C_{m3}$	0.180	3	0	
$C_{m2} - C_{m2} - C_{m3} - H_{m3}$	0.160	3	0	
$H_{m2} - C_{m2} - C_{m3} - H_{m3}$	0.160	3	0	

Signature Signature Table Signature Signature

Figure *S*². Potential-energy profile of the decanoate head-group oxygens in the presence of 1.0 *M* solution of a) NaCl, b) NaOH, c) CaCl₂ and d) Ca(OH)₂ in between kaolinite surfaces.