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1 Exciton states in HOIPs
An exciton consists of an electron in the conduction band and a hole in the valence band. According
to the newly developed effective-mass theory, the conduction- and valence-band basis functions for
both 3D1 and 2D HOIPs2 can be expressed in terms of Pb 6s orbital denoted S and 6p orbitals denoted
X , Y , and Z,

v+(−) = S ↑ (↓), (1)

c+(−) = +(−)cosξ√
2
[X− (+)iY ] ↑ (↓)− sinξ Z ↓ (↑), (2)

where tan2ξ = 2
√

2λ

λ−3δ
with λ and δ charactering the spin-orbit coupling (SOC) and crystal-field splitting.

The angular momentum is s= 1/2 for the valence band v±, and j = 1/2 ( jjj = lll+sss with l = 1 and s= 1/2)
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for the first conduction band c±. Denoting a hole in the valence band as v̄± (time reversal of v±), we
characterize exciton wavefunctions of HOIPs via representations of the C4 group1,

Γ1 =
1√
2
(c+v̄−− c−v̄+)

= −1
2

cosξ (X + iY )S ↓e↓h +
1
2

cosξ (X− iY )S ↑e↑h −
1
2

sinξ ZS(↑e↓h + ↓e↑h), (3)

Γ2 =
1√
2
(c+v̄−+ c−v̄+)

= −1
2

cosξ (X + iY )S ↓e↓h −
1
2

cosξ (X− iY )S ↑e↑h −
1
2

sinξ ZS(↑e↓h − ↓e↑h), (4)

Γ
+
5 = c+v̄+ =− 1√

2
cosξ (X + iY )S ↓e↑h −sinξ ZS ↑e↑h, (5)

Γ
−
5 = c−v̄− =− 1√

2
cosξ (X− iY )S ↑e↓h +sinξ ZS ↓e↓h . (6)

2 Optical selection rules
The optical selection rules of these exciton states can be derived from the matrix elements of the
momentum operator, eee · ppp with eee being the electric-field polarization of the electromagnetic wave.
According to the effective-mass model1, we have

〈Γ1|eee · ppp|G〉 = 0, (7)

〈Γ2|eee · ppp|G〉 = i
m
h̄

sinξ P‖eeez (8)

〈Γ±5 |eee · ppp|G〉 = i
m
h̄

cosξ P⊥eee± (9)

where m is the free-electron mass, and P‖ and P⊥ are the Kane parameters. Hence Γ1 is dark, Γ2

absorbs light polarized along the z-axis, and doublet Γ
±
5 absorbs light polarized in the x-y plane.

3 Derivation of Eq. (2) in the main text
The polar coupling of electrons and electron-hole pairs in HOIPs have been examined in Refs.3,4, and
can be expressed as

He
p = i∑

qqq

(4παe

V

)1/2 h̄Ωs

q

( h̄
2meΩs

)1/4
(bqqqeiqqq·rrre−b†

qqqe−iqqq·rrre), (10)

for electron and

Hh
p =−i∑

qqq

(4παh

V

)1/2 h̄Ωs

q

( h̄
2mhΩs

)1/4
(bqqqeiqqq·rrrh−b†

qqqe−iqqq·rrrh), (11)

for hole. Here αe/αh =
√

me/mh, and rrre and rrrh are electron and hole coordinates, which are related
to the center-of-mass and relative coordinates RRR and rrr via rrre = RRR+ perrr and rrrh = RRR− phrrr. The polar
coupling of an exciton is then Hex

p = He
p +Hh

p , whose matrix elements between excitons with wave
vectors kkk and kkk−qqq is5

〈Φkkk|Hex
p |Φkkk−qqq〉=V ex

p (qqq)(bqqq +b†
qqq), (12)
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V ex
p (qqq) =

∫
d3r
( 1

πa3
0

)2
e−2r/a0

W
q

(
eipeqqq·rrr− e−iphqqq·rrr

)
=

W
q

( 1
[1+(pea0q/2)2]2

− 1
[1+(pha0q/2)2]2

)
, (13)

with W = i(4παe/V )1/2h̄Ωs.

4 Exciton bandwidths
The hopping ti j in Hamiltonian (4) of the main text is due ultimately to the Coulomb interaction5

V (rrri− rrr j) =
e2

|rrri− rrr j|
, (14)

between electrons located at rrri and rrr j. Electron rrri can be expressed as rrri = ρρρ i +RRRi, with RRRi being the
location of site i. Since a tightly bound exciton in 2D HOIPs can be regarded as localized at a single
PbX6 octahedron, its wavefunction can be approximately expressed as Φ̃i(rrri) = φ∗c (rrri)φv(rrri), and ti j is
then

ti j =
1
2
〈Φ̃i|V (rrri− rrr j)|Φ̃ j〉

=
1
2

∫
φ
∗
c (rrri)φv(rrri)V (rrri− rrr j)φ

∗
v (rrr j)φc(rrr j)d3rid3r j, (15)

Since φc(v)(rrr) is highly localized, we can expand the Coulomb potential

V (rrri− rrr j) =
e2

|RRRi j|
+(ρρρ i−ρρρ j) ·∇V (RRRi j)+

1
2
(ρρρ i−ρρρ j)(ρρρ i−ρρρ j) : ∇∇V (RRRi j)+ ... (16)

The contribution from the first term is zero because the conduction and valence wave functions are
orthogonal,

∫
d3riφ

∗
c (rrri)φv(rrri)→ 0. The first finite contribution to ti j comes from the third terms in Eq.

(16),

ti j =
dddi ·ddd∗j
|RRR ji|3

−3
(dddi ·RRR ji)(ddd∗j ·RRR ji)

|RRR ji|5
, (17)

where
dddi =

∫
d3

ρiφ
∗
c (ρρρ i)errriφv(ρρρ i). (18)

For the Γ5 excitons, the transition dipole is

ddd± = 〈Γ±5 |eeee · rrr|G〉=−i
eh̄

mEg
〈Γ±5 |eee · ppp|G〉. (19)

Since the oscillator strength from Γ5 is defined as5

f± =
2

mEg
|〈Γ±5 |eee · ppp|G〉|

2 =
2mP2

⊥ cos2 ξ

h̄2Eg
, (20)

the transition dipole associated with Γ
±
5 excitons is

ddd± = d0eee±, d0 =
eh̄

mEg

√
f± (21)
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Since the dipole-dipole interaction decays with distance rapidly, we consider only the nearest
neighbor coupling. If we denote the nearest-neighboring coupling of the tetragonal structure as tq
(q = x,y,z), for ddd = d0eee+,

tx =
ddd ·ddd∗

a3 −3
(ddd · eeex)(ddd∗ · eeex)

a3 =−
d2

0
2a3 , (22)

ty =
ddd ·ddd∗

a3 −3
(ddd · eeey)(ddd∗ · eeey)

a3 =−
d2

0
2a3 , (23)

tz =
ddd ·ddd∗

c3 −3
(ddd · eeez)(ddd∗ · eeez)

c3 =
d2

0
c3 . (24)

The exciton dispersion would be

E0
kkk = E0 +2tx cos(kxa)+2ty cos(kya)+2tz cos(kzc). (25)

Thus we have the exciton bandwidths

B⊥ =−8tx =−8ty = 4d2
0/a3, Bz = 4tz = 4d2

0/c3, (26)

which is Eq. (6) of the main text.

5 Evaluation of Green’s function
Here we evaluate the exciton Green’s function,

G0(0,E) =
1
N ∑

kkk

1
E−E0

kkk
. (27)

We denote k′x = kxa, k′y = kya, and k′z = k′zc, and express the Green’s function as

G0(0,E) =
1

8π3

∫
π

−π

dk′x

∫
π

−π

dk′y

∫
π

−π

dk′z
1

(E− B⊥
2 −

Bz
2 )−

1
2Bz cosk′z +

B⊥
2 cos

k′x+k′y
2 cos

k′x−k′y
2

. (28)

By introducing variables x =
k′x+k′y

2 and y =
k′x−k′y

2 , the integration of x and y in Eq. (28) can be worked
out first, which has the form

I1 ≡
∫

π

−π

dk′x

∫
π

−π

dk′y
1

A−Bcos
k′x+k′y

2 cos
k′x−k′y

2

=
∫

π/2

−π/2
dx
∫

π/2

−π/2
dy

4
A−Bcosxcosy

. (29)

Using ∫
π

0
dy

1
A′−B′ cosy

=
π√

A′2−B′2
, (30)

we have

I1 = 4π

∫
π/2

−π/2
dx

1

A
√

1− B2

A2 cos2 x
=

4π

A
K(B/A), (31)

where K(x) is the complete elliptic integral of the first kind. Thus we have the result displayed in the
main text,

G0(0,E) = − 4
π2

∫
π/2

0
dkz

[ 1
B⊥+Bz[1− cos(kzc)]−2E

K
( B⊥

B⊥+Bz[1− cos(kzc)]−2E

)
+

1
B⊥+Bz[1+ cos(kzc)]−2E

K
( B⊥

B⊥+Bz[1+ cos(kzc)]−2E

)
. (32)
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6 Bandwidths in the presence of out-of-plane tilting
In the presence of an out-of-plane tilt, two adjacent PbX6 octahedra within a layer have θ1 =−θ2 = θ ,
φ1 =−φ2 = φ , while those across layers have θ1 = θ2 = θ , φ1 = φ2 = φ . The two adjacent PbX6 octahedra
within a layer then have transition dipoles

ddd1 = d0

(1+ cosθ

2
eiφ eee++

1− cosθ

2
e−iφ eee−+

1√
2

sinθeeez

)
, (33)

ddd2 = d0

(1+ cosθ

2
e−iφ eee++

1− cosθ

2
eiφ eee−−

1√
2

sinθeeez

)
. (34)

The strengths of dipole-dipole interaction along the x-, y-, and z-axis are

tx =
ddd1 ·ddd∗2

a3 −3
(ddd1 · eeex)(ddd∗2 · eeex)

a3

= −1
4
(cos2

θ +1)cos2φ +
1
4

sin2
θ − 1

2
icosθ sin2φ , (35)

ty =
ddd1 ·ddd∗2

a3 −3
(ddd1 · eeey)(ddd∗2 · eeey)

a3

= −1
4
(cos2

θ +1)cos2φ − 1
4

sin2
θ − 1

2
icosθ sin2φ , (36)

tz =
ddd1 ·ddd∗1

c3 −3
(ddd1 · eeez)(ddd∗1 · eeez)

c3

=
d2

0
c3

(
1− 3

2
sin2

θ

)
. (37)

Since tx and ty are complex while tz is real, the corresponding intra-band widths for small θ are

B⊥ = 8|txt∗x |1/2 = 8|tyt∗y |1/2 ' 4
d2

0
a3 cos2

θ , Bz = 4tz =
4d2

0
c3

(
1− 3

2
sin2

θ

)
, (38)

which are the results displayed in Eq. (14) of the main text.

7 Justification of parameter values
We can estimate the ODP strength and exciton bandwidths using typical material properties of 2D
HOIPs. If we choose la = 6 Å, me = 0.291m, mh = 0.321m6, from

A =−π h̄2

l3
a

( 1
me

+
1

mh

)
+Z∗

εa− εb

ε(la + lb)
, (39)

we have A =−0.76 eV/Å if we neglect the third term, which, for a binding energy of 200 meV and lb =
2la, would be about 0.01 eV/Å. The strength γ frequently used in the main text is γ = −A(h̄/MΩ)1/2.
By using h̄Ωs = 14 meV, γ = 0.037 eV for Pb-I layers and 0.047 eV for Pb-Br ones. Since the effective-
masses of electron and hole, according to different first-principles calculations, can be as small as
0.10m, γ may reach 0.1 eV.

The transition dipole strength can be estimated from the oscillator strength,

d2
0 =

e2h̄2 f⊥
2mEg

, B⊥ = 4d2
0/a3. (40)

Using the band gap Eg = 2.5 eV and the oscillator strength of (C10H21NH3)2PbI4
7, B⊥ = 4d2

0/a3 = 0.2
eV. The values of γ and B⊥ used in the main text are based on the above estimates.
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8 Exciton bandwidths in corrugated 2D HOIPs
In the corrugated 2D structure displayed in Fig. 5 of the main text, the arrangement of PbX6 octahedra
along the x-axis is the same as in the flat one. Thus the strength of dipole-dipole interaction along the
x-axis, for ddd = d0eee+, is

tx =
ddd ·ddd∗

a3 −3
(ddd · eeex)(ddd∗ · eeex)

a3 =−
d2

0
2a3 , (41)

where a is the center-to-center distance between adjacent PbX6 octahedra. The arrangement of PbX6
octahedra along the y-axis, however, differs from that in the flat one. In particular, the displacement
between adjacent octahedra, RRRi j =

a√
2
(eeey± eeez), have an angle of π/4 against the y axis. Consequently,

the strength of dipole-dipole interaction along the y-axis becomes

ty =
ddd ·ddd∗

a3 −3
(ddd ·RRRi j)(ddd∗ ·RRRi j)

a3 =
d2

0
4a3 =−1

2
tx. (42)

Thus the bandwidth along the y-axis is only one half of that along the x-axis in the corrugated struc-
ture.

In the main text, instead of evaluating the Green’s function in Eq. (9) of the main text using
different tx and ty, we apply the results obtained for tx = ty to the corrugated structure with an effective
B⊥. We consider two cases: One has B⊥ = 8

√
|txty| and the other has B⊥ = 8|ty|, which should set the

upper and lower limits of the STE’s energy in the corrugated structure, for the smaller one of tx and ty
controls the onset of STE.

9 X-Pb-X stretching in 2D structures
In 2D HOIPs, a Pb-X layer can be considered as a perfect quantum well (QW) with its thickness
determined by the distance between two apical X atoms in a PbX6 octahedron. Vibration of the two X
atoms normal to the Pb-X layer will alter the QW’s thickness and shifts the quantized electron and hole
energies in the QW. The normal modes of the X atoms’ motion can be analyzed by considering the
three-atom chain, X-Pb-X, perpendicular to the Pb-X layer. The three-atom vibration problem can be
readily solved and the results are particularly simple if we include only the nearest-neighbor coupling
between X and Pb. If we denote K∗ as the spring constant of the Pb-X bond and MX(Pb) as the mass of
an X (Pb) atom, the three eign modes of this X-Pb-X chain are: an acoustic mode (Mode 1) in which
the three atoms moving to the same direction with ω1 = 0, an optical mode (Mode 2) in which the
central Pb is stationary and the two X atoms move out-of-phase with frequency of ω2 =

√
K∗/MX,

and an optical mode (Mode 3) in which the two X atom move in-phase and the central Pb move
toward one of X atoms while keeping the center-of-mass of the three atoms fixed, with frequency of

ω3 =

√
K∗
(

1
MX

+ 2
MPb

)
. The three modes are displayed in Fig. 1.

Optical mode 2, i.e., the B1g mode, induces no electric field but changes the thickness of the Pb-X
QW, leading to a strong ODP coupling to excitons in 2D HOIPs. Optical mode 3 generates an electric
field and a polar coupling to electron and hole. However, it does not alter the thickness of Pb-X QWs,
and therefore couples minimally to excitons in 2D HOIPs. Acoustic mode 1 also does not alter the
thickness of Pb-X QWs.

10 Coupling between excitons and acoustic phonons
Acoustic phonons can also couple to excitons. However, they do not change the QW thickness to
affect the quantized electron and hole energies. Their coupling to excitons arise from modulating the
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1

2

Figure 1 Eigen modes of the X-Pb-X chain. Green (black) circles represent Pb (X) ions. Red arrows indicate
atomic motions in each eigen mode.

excitons’ dipole-dipole coupling. If we write the exciton Hamiltonian as

Hex = ∑
i

E0c†
i ci +∑

〈i j〉
ti j(RRRi j)c

†
i c j, (43)

acoustic motions would modify RRRi j, the distance between adjacent PbX6 octahedra, which in turn
would alter ti j and give rise to an exciton-phonon coupling. Here we follow Davydov’s work to obtain
the exciton coupling to acoustic phonons8. If we denote the lattice displacement at the ith site as of
uuui, RRRi = RRR0

i +uuui, the exciton-phonon coupling can be written as

Hac = ∑
〈i j〉

c†
i c j ∑

ν

(
uν

i
∂

∂uν
i
+uν

j
∂

∂uν
j

)
ti j(RRR0

i j), (44)

where uν
i (ν = x,y,z) represents the ν component of uuui. Expressing displacement in terms of phonon

operators,

uν
i = ∑

sqqq

( h̄
2MNΩs(qqq)

)1/2
gν

s (bqqqs +b†
−qqqs)e

iqqq·RRR0
i , (45)

where gggs is the eign vector of the sth mode and Ωs(qqq) the phonon frequency at wavevector qqq, and
using the fact of ti j depending only on RRRi j, we obtain the interaction between excitons and acoustic
phonons,

Hac = ∑
skkk,qqq

Fs(kkk,qqq)c
†
kkk+qqqckkk(bqqqs +b†

−qqqs), (46)

where c†
kkk (ckkk) creates (destroys) an exciton with wavevector (kkk), and

Fs(kkk,qqq) = ∑
ν , j

eν
s (qqq)

( h̄
2MNΩs(qqq)

)1/2( ∂

∂uν
0
+ eiqqq·RRR0

0 j
∂

∂uν
j

)
t0 je

ikkk·RRR0
0 j . (47)

Since the exciton’s dipole-dipole coupling in 2D HOIPs has been evaluated in Sec. I,

tx
0 j =−

d2
0

2|RRR±xxx−RRR0|3
, ty

0 j =−
d2

0
2|RRR±yyy−RRR0|3

, tz
0 j =

d2
0

2|RRR±zzz−RRR0|3
, (48)

where RRR±qqq is the two neighboring sites of RRR0 along the ±eeeq (q = x,y,z) direction, Eq. (34) can be
readily evaluated.
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For kkk||qqq||eeex, kkk||qqq||eeey, only the longitudinal acoustic phonons contribute to the exciton-phonon cou-
pling,

F(kkk,qqq) = −12i
( h̄

2MNΩs(qqq)

)1/2
tx cos

(
ka+

qa
2

)
sin
(qa

2

)
= i

3
4

( h̄a
NMv⊥

)1/2 B⊥
a

cos
[(

k+
q
2

)
a
]√

sin
(qa

2

)
' i

3
4

( h̄
NMv⊥a

)1/2
B⊥ cos

(qa
2

)√
sin
(qa

2

)
(49)

Here we have assumed ka� 1 because exciton density is not very high and mostly is localized around
k ∼ 0 and used the acoustic phonon dispersion,

Ωl(q) =
v⊥
a

sin
qa
2
, (50)

with v⊥ being the intra-layer speed of sound. Similarly for kkk||qqq||eeez, the longitudinal acoustic phonon
has a dispersion of Ωl(q) =

vz
c sin qc

2 (vz being the inter-layer speed of sound, and contributes to the
exciton-phonon coupling,

F(0,qqq)'−i
3
2

( h̄
NMvzc

)1/2
Bz cos

(qc
2

)√
sin
(qc

2

)
, (51)

The calculated Vac(qqq)≡ F(0,qqq) is plotted in Fig. 1b. The measured intra-layer and inter-layer Young’s
moduli of (C4H9NH3)2PbI4 are cintra = 11.2±1.4 GPa9 andcinter = 3.3±0.1 GPa10. The speed of sound
can be obtained from the Young’s modulus, v⊥ =

√
cintra/ρ and vz =

√
cinter/ρ, where ρ ≡ NM is the

material’s mass density. For ρ = 2.5 g/cm3, we have v⊥ = 2.1× 105 cm/s and vz = 1.1× 105 cm/s,
which are consistent with the observed speeds of sound along and across Pb-X layers11. Using these
parameters, an upper bound of the exciton bandwidth B⊥ = 0.4 eV, and c = 2.5a, we find that Vac(qqq)
is orders-of-magnitude weaker than the ODP. Thus we can safely neglected the acoustic phonons in
studying STEs in 2D HOIPs.
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