Electronic supplementary information on Optical deformation potential and self-trapped excitons in 2D hybrid perovskites

zhi-gang.yu@wsu.edu

August 28, 2019

Contents

1 Exciton states in HOIPs 1
2 Optical selection rules 2
3 Derivation of Eq. (2) in the main text 2
4 Exciton bandwidths 3
5 Evaluation of Green's function 4
6 Bandwidths in the presence of out-of-plane tilting 5
7 Justification of parameter values 5
8 Exciton bandwidths in corrugated 2D HOIPs 6
$9 \mathrm{X}-\mathrm{Pb}-\mathrm{X}$ stretching in 2D structures 6
10 Coupling between excitons and acoustic phonons 6

1 Exciton states in HOIPs

An exciton consists of an electron in the conduction band and a hole in the valence band. According to the newly developed effective-mass theory, the conduction- and valence-band basis functions for both $3 \mathrm{D}^{1}$ and 2D HOIPs ${ }^{2}$ can be expressed in terms of Pb 6 s orbital denoted S and 6 p orbitals denoted X, Y, and Z,

$$
\begin{align*}
& \mathrm{v}_{+(-)}=S \uparrow(\downarrow) \tag{1}\\
& \mathrm{c}_{+(-)}=+(-) \frac{\cos \xi}{\sqrt{2}}[X-(+) i Y] \uparrow(\downarrow)-\sin \xi Z \downarrow(\uparrow), \tag{2}
\end{align*}
$$

where $\tan 2 \xi=\frac{2 \sqrt{2} \lambda}{\lambda-3 \delta}$ with λ and δ charactering the spin-orbit coupling (SOC) and crystal-field splitting. The angular momentum is $s=1 / 2$ for the valence band $\mathrm{v}_{ \pm}$, and $j=1 / 2(\boldsymbol{j}=\boldsymbol{l}+\boldsymbol{s}$ with $l=1$ and $s=1 / 2)$
for the first conduction band $c_{ \pm}$. Denoting a hole in the valence band as $\bar{v}_{ \pm}$(time reversal of $\mathrm{v}_{ \pm}$), we characterize exciton wavefunctions of HOIPs via representations of the C_{4} group 1,

$$
\begin{align*}
\Gamma_{1} & =\frac{1}{\sqrt{2}}\left(\mathrm{c}_{+} \overline{\mathrm{v}}_{-}-\mathrm{c}_{-} \overline{\mathrm{v}}_{+}\right) \\
& =-\frac{1}{2} \cos \xi(X+i Y) S \downarrow_{e \downarrow_{h}+\frac{1}{2} \cos \xi(X-i Y) S \uparrow_{e} \uparrow_{h}-\frac{1}{2} \sin \xi Z S\left(\uparrow_{e \downarrow_{h}}+\downarrow_{e} \uparrow_{h}\right),}^{\Gamma_{2}} \tag{3}
\end{align*}=\frac{1}{\sqrt{2}}\left(\mathrm{c}_{+} \overline{\mathrm{v}}_{-}+\mathrm{c}_{-} \overline{\mathrm{v}}_{+}\right) .
$$

2 Optical selection rules

The optical selection rules of these exciton states can be derived from the matrix elements of the momentum operator, $\boldsymbol{e} \cdot \boldsymbol{p}$ with \boldsymbol{e} being the electric-field polarization of the electromagnetic wave. According to the effective-mass model ${ }^{1}$, we have

$$
\begin{align*}
\left\langle\Gamma_{1}\right| \boldsymbol{e} \cdot \boldsymbol{p}|\mathrm{G}\rangle & =0, \tag{7}\\
\left\langle\Gamma_{2}\right| \boldsymbol{e} \cdot \boldsymbol{p}|\mathrm{G}\rangle & =i \frac{m}{\hbar} \sin \xi P_{\|} \boldsymbol{e}_{z} \tag{8}\\
\left\langle\Gamma_{5}^{ \pm}\right| \boldsymbol{e} \cdot \boldsymbol{p}|\mathrm{G}\rangle & =i \frac{m}{\hbar} \cos \xi P_{\perp} \boldsymbol{e}_{ \pm} \tag{9}
\end{align*}
$$

where m is the free-electron mass, and $P_{\|}$and P_{\perp} are the Kane parameters. Hence Γ_{1} is dark, Γ_{2} absorbs light polarized along the z-axis, and doublet $\Gamma_{5}^{ \pm}$absorbs light polarized in the x - y plane.

3 Derivation of Eq. (2) in the main text

The polar coupling of electrons and electron-hole pairs in HOIPs have been examined in Refs. ${ }^{3,4}$, and can be expressed as

$$
\begin{equation*}
H_{\mathrm{p}}^{\mathrm{e}}=i \sum_{q}\left(\frac{4 \pi \alpha_{\mathrm{e}}}{\mathscr{V}}\right)^{1 / 2} \frac{\hbar \Omega_{\mathrm{s}}}{q}\left(\frac{\hbar}{2 m_{\mathrm{e}} \Omega_{\mathrm{s}}}\right)^{1 / 4}\left(b_{q} e^{i q \cdot r_{\mathrm{e}}}-b_{q}^{\dagger} e^{-i q \cdot r_{\mathrm{e}}}\right), \tag{10}
\end{equation*}
$$

for electron and

$$
\begin{equation*}
H_{\mathrm{p}}^{\mathrm{h}}=-i \sum_{q}\left(\frac{4 \pi \alpha_{\mathrm{h}}}{\mathscr{V}}\right)^{1 / 2} \frac{\hbar \Omega_{\mathrm{s}}}{q}\left(\frac{\hbar}{2 m_{\mathrm{h}} \Omega_{\mathrm{s}}}\right)^{1 / 4}\left(b_{q} e^{i q \cdot r_{\mathrm{h}}}-b_{q}^{\dagger} e^{-i q \cdot r_{\mathrm{h}}}\right), \tag{11}
\end{equation*}
$$

for hole. Here $\alpha_{\mathrm{e}} / \alpha_{\mathrm{h}}=\sqrt{m_{\mathrm{e}} / m_{\mathrm{h}}}$, and \boldsymbol{r}_{e} and \boldsymbol{r}_{h} are electron and hole coordinates, which are related to the center-of-mass and relative coordinates \boldsymbol{R} and \boldsymbol{r} via $\boldsymbol{r}_{e}=\boldsymbol{R}+p_{\mathrm{e}} \boldsymbol{r}$ and $\boldsymbol{r}_{h}=\boldsymbol{R}-p_{\mathrm{h}} \boldsymbol{r}$. The polar coupling of an exciton is then $H_{\mathrm{p}}^{\mathrm{ex}}=H_{\mathrm{p}}^{\mathrm{e}}+H_{\mathrm{p}}^{\mathrm{h}}$, whose matrix elements between excitons with wave vectors \boldsymbol{k} and $\boldsymbol{k}-\boldsymbol{q}$ is ${ }^{5}$

$$
\begin{equation*}
\left\langle\Phi_{\boldsymbol{k}}\right| H_{\mathrm{p}}^{\mathrm{ex}}\left|\Phi_{\boldsymbol{k}-\boldsymbol{q}}\right\rangle=V_{\mathrm{p}}^{\mathrm{ex}}(\boldsymbol{q})\left(b_{\boldsymbol{q}}+b_{\boldsymbol{q}}^{\dagger}\right), \tag{12}
\end{equation*}
$$

$$
\begin{align*}
V_{\mathrm{p}}^{\mathrm{ex}}(\boldsymbol{q}) & =\int d^{3} r\left(\frac{1}{\pi a_{0}^{3}}\right)^{2} e^{-2 r / a_{0}} \frac{W}{q}\left(e^{i p_{\mathrm{e}} \boldsymbol{q} \cdot \boldsymbol{r}}-e^{-i p_{\mathrm{h}} \cdot \boldsymbol{r}}\right) \\
& =\frac{W}{q}\left(\frac{1}{\left[1+\left(p_{\mathrm{e}} a_{0} q / 2\right)^{2}\right]^{2}}-\frac{1}{\left[1+\left(p_{\mathrm{h}} a_{0} q / 2\right)^{2}\right]^{2}}\right), \tag{13}
\end{align*}
$$

with $W=i\left(4 \pi \alpha_{\mathrm{e}} / \mathscr{V}\right)^{1 / 2} \hbar \Omega_{\mathrm{s}}$.

4 Exciton bandwidths

The hopping $t_{i j}$ in Hamiltonian (4) of the main text is due ultimately to the Coulomb interaction ${ }^{5}$

$$
\begin{equation*}
V\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)=\frac{e^{2}}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|}, \tag{14}
\end{equation*}
$$

between electrons located at \boldsymbol{r}_{i} and \boldsymbol{r}_{j}. Electron \boldsymbol{r}_{i} can be expressed as $\boldsymbol{r}_{i}=\boldsymbol{\rho}_{i}+\boldsymbol{R}_{i}$, with \boldsymbol{R}_{i} being the location of site i. Since a tightly bound exciton in 2D HOIPs can be regarded as localized at a single PbX_{6} octahedron, its wavefunction can be approximately expressed as $\tilde{\Phi}_{i}\left(\boldsymbol{r}_{i}\right)=\phi_{c}^{*}\left(\boldsymbol{r}_{i}\right) \phi_{v}\left(\boldsymbol{r}_{i}\right)$, and $t_{i j}$ is then

$$
\begin{align*}
t_{i j} & =\frac{1}{2}\left\langle\tilde{\Phi}_{i}\right| V\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)\left|\tilde{\Phi}_{j}\right\rangle \\
& =\frac{1}{2} \int \phi_{c}^{*}\left(\boldsymbol{r}_{i}\right) \phi_{v}\left(\boldsymbol{r}_{i}\right) V\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right) \phi_{v}^{*}\left(\boldsymbol{r}_{j}\right) \phi_{c}\left(\boldsymbol{r}_{j}\right) d^{3} r_{i} d^{3} r_{j} \tag{15}
\end{align*}
$$

Since $\phi_{c(v)}(\boldsymbol{r})$ is highly localized, we can expand the Coulomb potential

$$
\begin{equation*}
V\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)=\frac{e^{2}}{\left|\boldsymbol{R}_{i j}\right|}+\left(\boldsymbol{\rho}_{i}-\boldsymbol{\rho}_{j}\right) \cdot \nabla V\left(\boldsymbol{R}_{i j}\right)+\frac{1}{2}\left(\boldsymbol{\rho}_{i}-\boldsymbol{\rho}_{j}\right)\left(\boldsymbol{\rho}_{i}-\boldsymbol{\rho}_{j}\right): \nabla \nabla V\left(\boldsymbol{R}_{i j}\right)+\ldots \tag{16}
\end{equation*}
$$

The contribution from the first term is zero because the conduction and valence wave functions are orthogonal, $\int d^{3} r_{i} \phi_{c}^{*}\left(\boldsymbol{r}_{i}\right) \phi_{v}\left(\boldsymbol{r}_{i}\right) \rightarrow 0$. The first finite contribution to $t_{i j}$ comes from the third terms in Eq. (16),

$$
\begin{equation*}
t_{i j}=\frac{\boldsymbol{d}_{i} \cdot \boldsymbol{d}_{j}^{*}}{\left|\boldsymbol{R}_{j i}\right|^{3}}-3 \frac{\left(\boldsymbol{d}_{i} \cdot \boldsymbol{R}_{j i}\right)\left(\boldsymbol{d}_{j}^{*} \cdot \boldsymbol{R}_{j i}\right)}{\left|\boldsymbol{R}_{j i}\right|^{5}} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{d}_{i}=\int d^{3} \rho_{i} \phi_{c}^{*}\left(\boldsymbol{\rho}_{i}\right) e r_{i} \phi_{v}\left(\boldsymbol{\rho}_{i}\right) \tag{18}
\end{equation*}
$$

For the Γ_{5} excitons, the transition dipole is

$$
\begin{equation*}
\boldsymbol{d}_{ \pm}=\left\langle\Gamma_{5}^{ \pm}\right| e \boldsymbol{e} \cdot \boldsymbol{r}|\mathrm{G}\rangle=-i \frac{e \hbar}{m E_{\mathrm{g}}}\left\langle\Gamma_{5}^{ \pm}\right| \boldsymbol{e} \cdot \boldsymbol{p}|\mathrm{G}\rangle . \tag{19}
\end{equation*}
$$

Since the oscillator strength from Γ_{5} is defined as ${ }^{5}$

$$
\begin{equation*}
\left.f_{ \pm}=\frac{2}{m E_{\mathrm{g}}}\left|\left\langle\Gamma_{5}^{ \pm}\right| \boldsymbol{e} \cdot \boldsymbol{p}\right| \mathrm{G}\right\rangle\left.\right|^{2}=\frac{2 m P_{\perp}^{2} \cos ^{2} \xi}{\hbar^{2} E_{\mathrm{g}}}, \tag{20}
\end{equation*}
$$

the transition dipole associated with $\Gamma_{5}^{ \pm}$excitons is

$$
\begin{equation*}
\boldsymbol{d}_{ \pm}=d_{0} \boldsymbol{e}_{ \pm}, d_{0}=\frac{e \hbar}{m E_{\mathrm{g}}} \sqrt{f_{ \pm}} \tag{21}
\end{equation*}
$$

Since the dipole-dipole interaction decays with distance rapidly, we consider only the nearest neighbor coupling. If we denote the nearest-neighboring coupling of the tetragonal structure as t_{q} ($q=x, y, z$), for $\boldsymbol{d}=d_{0} \boldsymbol{e}_{+}$,

$$
\begin{align*}
& t_{x}=\frac{\boldsymbol{d} \cdot \boldsymbol{d}^{*}}{a^{3}}-3 \frac{\left(\boldsymbol{d} \cdot \boldsymbol{e}_{x}\right)\left(\boldsymbol{d}^{*} \cdot \boldsymbol{e}_{x}\right)}{a^{3}}=-\frac{d_{0}^{2}}{2 a^{3}} \tag{22}\\
& t_{y}=\frac{\boldsymbol{d} \cdot \boldsymbol{d}^{*}}{a^{3}}-3 \frac{\left(\boldsymbol{d} \cdot \boldsymbol{e}_{y}\right)\left(\boldsymbol{d}^{*} \cdot \boldsymbol{e}_{y}\right)}{a^{3}}=-\frac{d_{0}^{2}}{2 a^{3}} \tag{23}\\
& t_{z}=\frac{\boldsymbol{d} \cdot \boldsymbol{d}^{*}}{c^{3}}-3 \frac{\left(\boldsymbol{d} \cdot \boldsymbol{e}_{z}\right)\left(\boldsymbol{d}^{*} \cdot \boldsymbol{e}_{z}\right)}{c^{3}}=\frac{d_{0}^{2}}{c^{3}} \tag{24}
\end{align*}
$$

The exciton dispersion would be

$$
\begin{equation*}
E_{k}^{0}=E_{0}+2 t_{x} \cos \left(k_{x} a\right)+2 t_{y} \cos \left(k_{y} a\right)+2 t_{z} \cos \left(k_{z} c\right) \tag{25}
\end{equation*}
$$

Thus we have the exciton bandwidths

$$
\begin{equation*}
B_{\perp}=-8 t_{x}=-8 t_{y}=4 d_{0}^{2} / a^{3}, B_{z}=4 t_{z}=4 d_{0}^{2} / c^{3} \tag{26}
\end{equation*}
$$

which is Eq. (6) of the main text.

5 Evaluation of Green's function

Here we evaluate the exciton Green's function,

$$
\begin{equation*}
G^{0}(0, E)=\frac{1}{N} \sum_{k} \frac{1}{E-E_{\boldsymbol{k}}^{0}} \tag{27}
\end{equation*}
$$

We denote $k_{x}^{\prime}=k_{x} a, k_{y}^{\prime}=k_{y} a$, and $k_{z}^{\prime}=k_{z}^{\prime} c$, and express the Green's function as

$$
\begin{equation*}
G^{0}(0, E)=\frac{1}{8 \pi^{3}} \int_{-\pi}^{\pi} d k_{x}^{\prime} \int_{-\pi}^{\pi} d k_{y}^{\prime} \int_{-\pi}^{\pi} d k_{z}^{\prime} \frac{1}{\left(E-\frac{B_{\perp}}{2}-\frac{B_{z}}{2}\right)-\frac{1}{2} B_{z} \cos k_{z}^{\prime}+\frac{B_{\perp}}{2} \cos \frac{k_{x}^{\prime}+k_{y}^{\prime}}{2} \cos \frac{k_{x}^{\prime}-k_{y}^{\prime}}{2}} . \tag{28}
\end{equation*}
$$

By introducing variables $x=\frac{k_{x}^{\prime}+k_{y}^{\prime}}{2}$ and $y=\frac{k_{x}^{\prime}-k_{y}^{\prime}}{2}$, the integration of x and y in Eq. (28) can be worked out first, which has the form

$$
\begin{align*}
I_{1} & \equiv \int_{-\pi}^{\pi} d k_{x}^{\prime} \int_{-\pi}^{\pi} d k_{y}^{\prime} \frac{1}{A-B \cos \frac{k_{x}^{\prime}+k_{y}^{\prime}}{2} \cos \frac{k_{x}^{\prime}-k_{y}^{\prime}}{2}} \\
& =\int_{-\pi / 2}^{\pi / 2} d x \int_{-\pi / 2}^{\pi / 2} d y \frac{4}{A-B \cos x \cos y} \tag{29}
\end{align*}
$$

Using

$$
\begin{equation*}
\int_{0}^{\pi} d y \frac{1}{A^{\prime}-B^{\prime} \cos y}=\frac{\pi}{\sqrt{A^{\prime 2}-B^{\prime 2}}} \tag{30}
\end{equation*}
$$

we have

$$
\begin{equation*}
I_{1}=4 \pi \int_{-\pi / 2}^{\pi / 2} d x \frac{1}{A \sqrt{1-\frac{B^{2}}{A^{2}} \cos ^{2} x}}=\frac{4 \pi}{A} K(B / A) \tag{31}
\end{equation*}
$$

where $K(x)$ is the complete elliptic integral of the first kind. Thus we have the result displayed in the main text,

$$
\begin{align*}
G^{0}(0, E) & =-\frac{4}{\pi^{2}} \int_{0}^{\pi / 2} d k_{z}\left[\frac{1}{B_{\perp}+B_{z}\left[1-\cos \left(k_{z} c\right)\right]-2 E} K\left(\frac{B_{\perp}}{B_{\perp}+B_{z}\left[1-\cos \left(k_{z} c\right)\right]-2 E}\right)\right. \\
& +\frac{1}{B_{\perp}+B_{z}\left[1+\cos \left(k_{z} c\right)\right]-2 E} K\left(\frac{B_{\perp}}{B_{\perp}+B_{z}\left[1+\cos \left(k_{z} c\right)\right]-2 E}\right) . \tag{32}
\end{align*}
$$

6 Bandwidths in the presence of out-of-plane tilting

In the presence of an out-of-plane tilt, two adjacent PbX_{6} octahedra within a layer have $\theta_{1}=-\theta_{2}=\theta$, $\phi_{1}=-\phi_{2}=\phi$, while those across layers have $\theta_{1}=\theta_{2}=\theta, \phi_{1}=\phi_{2}=\phi$. The two adjacent PbX_{6} octahedra within a layer then have transition dipoles

$$
\begin{align*}
& \boldsymbol{d}_{1}=d_{0}\left(\frac{1+\cos \theta}{2} e^{i \phi} \boldsymbol{e}_{+}+\frac{1-\cos \theta}{2} e^{-i \phi} \boldsymbol{e}_{-}+\frac{1}{\sqrt{2}} \sin \theta \boldsymbol{e}_{z}\right), \tag{33}\\
& \boldsymbol{d}_{2}=d_{0}\left(\frac{1+\cos \theta}{2} e^{-i \phi} \boldsymbol{e}_{+}+\frac{1-\cos \theta}{2} e^{i \phi} \boldsymbol{e}_{-}-\frac{1}{\sqrt{2}} \sin \theta \boldsymbol{e}_{z}\right) . \tag{34}
\end{align*}
$$

The strengths of dipole-dipole interaction along the x-, y-, and z-axis are

$$
\begin{align*}
t_{x} & =\frac{\boldsymbol{d}_{1} \cdot \boldsymbol{d}_{2}^{*}}{a^{3}}-3 \frac{\left(\boldsymbol{d}_{1} \cdot \boldsymbol{e}_{x}\right)\left(\boldsymbol{d}_{2}^{*} \cdot \boldsymbol{e}_{x}\right)}{a^{3}} \\
& =-\frac{1}{4}\left(\cos ^{2} \theta+1\right) \cos 2 \phi+\frac{1}{4} \sin ^{2} \theta-\frac{1}{2} i \cos \theta \sin 2 \phi, \tag{35}\\
t_{y} & =\frac{\boldsymbol{d}_{1} \cdot \boldsymbol{d}_{2}^{*}}{a^{3}}-3 \frac{\left(\boldsymbol{d}_{1} \cdot \boldsymbol{e}_{y}\right)\left(\boldsymbol{d}_{2}^{*} \cdot \boldsymbol{e}_{y}\right)}{a^{3}} \\
& =-\frac{1}{4}\left(\cos ^{2} \theta+1\right) \cos 2 \phi-\frac{1}{4} \sin ^{2} \theta-\frac{1}{2} i \cos \theta \sin 2 \phi, \tag{36}\\
t_{z} & =\frac{\boldsymbol{d}_{1} \cdot \boldsymbol{d}_{1}^{*}}{c^{3}}-3 \frac{\left(\boldsymbol{d}_{1} \cdot \boldsymbol{e}_{z}\right)\left(\boldsymbol{d}_{1}^{*} \cdot \boldsymbol{e}_{z}\right)}{c^{3}} \\
& =\frac{d_{0}^{2}}{c^{3}}\left(1-\frac{3}{2} \sin ^{2} \theta\right) . \tag{37}
\end{align*}
$$

Since t_{x} and t_{y} are complex while t_{z} is real, the corresponding intra-band widths for small θ are

$$
\begin{equation*}
B_{\perp}=8\left|t_{x} t_{x}^{*}\right|^{1 / 2}=8\left|t_{y} t_{y}^{*}\right|^{1 / 2} \simeq 4 \frac{d_{0}^{2}}{a^{3}} \cos ^{2} \theta, B_{z}=4 t_{z}=\frac{4 d_{0}^{2}}{c^{3}}\left(1-\frac{3}{2} \sin ^{2} \theta\right) \tag{38}
\end{equation*}
$$

which are the results displayed in Eq. (14) of the main text.

7 Justification of parameter values

We can estimate the ODP strength and exciton bandwidths using typical material properties of 2D HOIPs. If we choose $l_{\mathrm{a}}=6 \AA, m_{\mathrm{e}}=0.291 m, m_{\mathrm{h}}=0.321 m^{6}$, from

$$
\begin{equation*}
A=-\frac{\pi \hbar^{2}}{l_{\mathrm{a}}^{3}}\left(\frac{1}{m_{\mathrm{e}}}+\frac{1}{m_{\mathrm{h}}}\right)+Z^{*} \frac{\varepsilon_{a}-\varepsilon_{b}}{\varepsilon\left(l_{\mathrm{a}}+l_{\mathrm{b}}\right)}, \tag{39}
\end{equation*}
$$

we have $A=-0.76 \mathrm{eV} / \AA$ if we neglect the third term, which, for a binding energy of 200 meV and $l_{\mathrm{b}}=$ $2 l_{\mathrm{a}}$, would be about $0.01 \mathrm{eV} / \AA \AA$. The strength γ frequently used in the main text is $\gamma=-A(\hbar / M \Omega)^{1 / 2}$. By using $\hbar \Omega_{\mathrm{s}}=14 \mathrm{meV}, \gamma=0.037 \mathrm{eV}$ for $\mathrm{Pb}-\mathrm{I}$ layers and 0.047 eV for $\mathrm{Pb}-\mathrm{Br}$ ones. Since the effectivemasses of electron and hole, according to different first-principles calculations, can be as small as $0.10 \mathrm{~m}, \gamma$ may reach 0.1 eV .

The transition dipole strength can be estimated from the oscillator strength,

$$
\begin{equation*}
d_{0}^{2}=\frac{e^{2} \hbar^{2} f_{\perp}}{2 m E_{\mathrm{g}}}, B_{\perp}=4 d_{0}^{2} / a^{3} \tag{40}
\end{equation*}
$$

Using the band gap $E_{\mathrm{g}}=2.5 \mathrm{eV}$ and the oscillator strength of $\left(\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NH}_{3}\right)_{2} \mathrm{PbI}_{4}{ }^{7}, B_{\perp}=4 d_{0}^{2} / a^{3}=0.2$ eV . The values of γ and B_{\perp} used in the main text are based on the above estimates.

8 Exciton bandwidths in corrugated 2D HOIPs

In the corrugated 2D structure displayed in Fig. 5 of the main text, the arrangement of PbX_{6} octahedra along the x-axis is the same as in the flat one. Thus the strength of dipole-dipole interaction along the x-axis, for $\boldsymbol{d}=d_{0} \boldsymbol{e}_{+}$, is

$$
\begin{equation*}
t_{x}=\frac{\boldsymbol{d} \cdot \boldsymbol{d}^{*}}{a^{3}}-3 \frac{\left(\boldsymbol{d} \cdot \boldsymbol{e}_{x}\right)\left(\boldsymbol{d}^{*} \cdot \boldsymbol{e}_{x}\right)}{a^{3}}=-\frac{d_{0}^{2}}{2 a^{3}}, \tag{41}
\end{equation*}
$$

where a is the center-to-center distance between adjacent PbX_{6} octahedra. The arrangement of PbX octahedra along the y-axis, however, differs from that in the flat one. In particular, the displacement between adjacent octahedra, $\boldsymbol{R}_{i j}=\frac{a}{\sqrt{2}}\left(\boldsymbol{e}_{y} \pm \boldsymbol{e}_{z}\right)$, have an angle of $\pi / 4$ against the y axis. Consequently, the strength of dipole-dipole interaction along the y-axis becomes

$$
\begin{equation*}
t_{y}=\frac{\boldsymbol{d} \cdot \boldsymbol{d}^{*}}{a^{3}}-3 \frac{\left(\boldsymbol{d} \cdot \boldsymbol{R}_{i j}\right)\left(\boldsymbol{d}^{*} \cdot \boldsymbol{R}_{i j}\right)}{a^{3}}=\frac{d_{0}^{2}}{4 a^{3}}=-\frac{1}{2} t_{x} \tag{42}
\end{equation*}
$$

Thus the bandwidth along the y-axis is only one half of that along the x-axis in the corrugated structure.

In the main text, instead of evaluating the Green's function in Eq. (9) of the main text using different t_{x} and t_{y}, we apply the results obtained for $t_{x}=t_{y}$ to the corrugated structure with an effective B_{\perp}. We consider two cases: One has $B_{\perp}=8 \sqrt{\left|t_{x} t_{y}\right|}$ and the other has $B_{\perp}=8\left|t_{y}\right|$, which should set the upper and lower limits of the STE's energy in the corrugated structure, for the smaller one of t_{x} and t_{y} controls the onset of STE.

9 X-Pb-X stretching in 2D structures

In 2D HOIPs, a $\mathrm{Pb}-\mathrm{X}$ layer can be considered as a perfect quantum well (QW) with its thickness determined by the distance between two apical X atoms in a PbX_{6} octahedron. Vibration of the two X atoms normal to the $\mathrm{Pb}-\mathrm{X}$ layer will alter the QW's thickness and shifts the quantized electron and hole energies in the QW. The normal modes of the X atoms' motion can be analyzed by considering the three-atom chain, $\mathrm{X}-\mathrm{Pb}-\mathrm{X}$, perpendicular to the $\mathrm{Pb}-\mathrm{X}$ layer. The three-atom vibration problem can be readily solved and the results are particularly simple if we include only the nearest-neighbor coupling between X and Pb . If we denote K^{*} as the spring constant of the $\mathrm{Pb}-\mathrm{X}$ bond and $M_{\mathrm{X}(\mathrm{Pb})}$ as the mass of an $\mathrm{X}(\mathrm{Pb})$ atom, the three eign modes of this $\mathrm{X}-\mathrm{Pb}-\mathrm{X}$ chain are: an acoustic mode (Mode 1) in which the three atoms moving to the same direction with $\omega_{1}=0$, an optical mode (Mode 2) in which the central Pb is stationary and the two X atoms move out-of-phase with frequency of $\omega_{2}=\sqrt{K^{*} / M_{\mathrm{X}}}$, and an optical mode (Mode 3) in which the two X atom move in-phase and the central Pb move toward one of X atoms while keeping the center-of-mass of the three atoms fixed, with frequency of $\omega_{3}=\sqrt{K^{*}\left(\frac{1}{M_{\mathrm{X}}}+\frac{2}{M_{\mathrm{Pb}}}\right)}$. The three modes are displayed in Fig. 1.

Optical mode 2, i.e., the $B_{1 g}$ mode, induces no electric field but changes the thickness of the $\mathrm{Pb}-\mathrm{X}$ QW, leading to a strong ODP coupling to excitons in 2D HOIPs. Optical mode 3 generates an electric field and a polar coupling to electron and hole. However, it does not alter the thickness of $\mathrm{Pb}-\mathrm{X} \mathrm{QWs}$, and therefore couples minimally to excitons in 2D HOIPs. Acoustic mode 1 also does not alter the thickness of $\mathrm{Pb}-\mathrm{X}$ QWs.

10 Coupling between excitons and acoustic phonons

Acoustic phonons can also couple to excitons. However, they do not change the QW thickness to affect the quantized electron and hole energies. Their coupling to excitons arise from modulating the

M- . .

Figure 1 Eigen modes of the $\mathrm{X}-\mathrm{Pb}-\mathrm{X}$ chain. Green (black) circles represent $\mathrm{Pb}(\mathrm{X})$ ions. Red arrows indicate atomic motions in each eigen mode.
excitons' dipole-dipole coupling. If we write the exciton Hamiltonian as

$$
\begin{equation*}
H_{\mathrm{ex}}=\sum_{i} E_{0} c_{i}^{\dagger} c_{i}+\sum_{\langle i j\rangle} t_{i j}\left(\boldsymbol{R}_{i j}\right) c_{i}^{\dagger} c_{j}, \tag{43}
\end{equation*}
$$

acoustic motions would modify $\boldsymbol{R}_{i j}$, the distance between adjacent PbX_{6} octahedra, which in turn would alter $t_{i j}$ and give rise to an exciton-phonon coupling. Here we follow Davydov's work to obtain the exciton coupling to acoustic phonons ${ }^{8}$. If we denote the lattice displacement at the i th site as of $\boldsymbol{u}_{i}, \boldsymbol{R}_{i}=\boldsymbol{R}_{i}^{0}+\boldsymbol{u}_{i}$, the exciton-phonon coupling can be written as

$$
\begin{equation*}
H_{\mathrm{ac}}=\sum_{\langle i j\rangle} c_{i}^{\dagger} c_{j} \sum_{v}\left(u_{i}^{v} \frac{\partial}{\partial u_{i}^{v}}+u_{j}^{v} \frac{\partial}{\partial u_{j}^{v}}\right) t_{i j}\left(\boldsymbol{R}_{i j}^{0}\right), \tag{44}
\end{equation*}
$$

where $u_{i}^{v}(v=x, y, z)$ represents the v component of \boldsymbol{u}_{i}. Expressing displacement in terms of phonon operators,

$$
\begin{equation*}
u_{i}^{v}=\sum_{s \boldsymbol{q}}\left(\frac{\hbar}{2 M N \Omega_{s}(\boldsymbol{q})}\right)^{1 / 2} g_{s}^{v}\left(b_{\boldsymbol{q} s}+b_{-\boldsymbol{q} s}^{\dagger}\right) e^{i \boldsymbol{q} \cdot \boldsymbol{R}_{i}^{0}} \tag{45}
\end{equation*}
$$

where \boldsymbol{g}_{s} is the ign vector of the s th mode and $\Omega_{s}(\boldsymbol{q})$ the phonon frequency at wavevector \boldsymbol{q}, and using the fact of $t_{i j}$ depending only on $\boldsymbol{R}_{i j}$, we obtain the interaction between excitons and acoustic phonon,

$$
\begin{equation*}
H_{\mathrm{ac}}=\sum_{s k, \boldsymbol{q}} F_{s}(\boldsymbol{k}, \boldsymbol{q}) c_{\boldsymbol{k}+\boldsymbol{q}}^{\dagger} c_{\boldsymbol{k}}\left(b_{\boldsymbol{q} s}+b_{-\boldsymbol{q} s}^{\dagger}\right), \tag{46}
\end{equation*}
$$

where $c_{\boldsymbol{k}}^{\dagger}\left(c_{k}\right)$ creates (destroys) an exciton with wavevector (\boldsymbol{k}), and

$$
\begin{equation*}
F_{s}(\boldsymbol{k}, \boldsymbol{q})=\sum_{v, j} e_{s}^{v}(\boldsymbol{q})\left(\frac{\hbar}{2 M N \Omega_{s}(\boldsymbol{q})}\right)^{1 / 2}\left(\frac{\partial}{\partial u_{0}^{v}}+e^{i \boldsymbol{q} \cdot \boldsymbol{R}_{0 j}^{0}} \frac{\partial}{\partial u_{j}^{v}}\right) t_{0 j} e^{i \boldsymbol{k} \cdot \boldsymbol{R}_{0 j}^{0}} \tag{47}
\end{equation*}
$$

Since the exciton's dipole-dipole coupling in 2D HIPs has been evaluated in Sec. I,

$$
\begin{equation*}
t_{0 j}^{x}=-\frac{d_{0}^{2}}{2\left|\boldsymbol{R}_{ \pm x}-\boldsymbol{R}_{0}\right|^{3}}, y_{0 j}^{y}=-\frac{d_{0}^{2}}{2\left|\boldsymbol{R}_{ \pm \boldsymbol{y}}-\boldsymbol{R}_{0}\right|^{3}}, t_{0 j}^{z}=\frac{d_{0}^{2}}{2\left|\boldsymbol{R}_{ \pm z}-\boldsymbol{R}_{0}\right|^{3}}, \tag{48}
\end{equation*}
$$

where $\boldsymbol{R}_{ \pm \boldsymbol{q}}$ is the two neighboring sites of \boldsymbol{R}_{0} along the $\pm \boldsymbol{e}_{q}$ ($q=x, y, z$) direction, Eq. (34) can be readily evaluated.

For $\boldsymbol{k}\|\boldsymbol{q}\| \boldsymbol{e}_{x}, \boldsymbol{k}\|\boldsymbol{q}\| \boldsymbol{e}_{y}$, only the longitudinal acoustic phonons contribute to the exciton-phonon coupling,

$$
\begin{align*}
F(\boldsymbol{k}, \boldsymbol{q}) & =-12 i\left(\frac{\hbar}{2 M N \Omega_{s}(\boldsymbol{q})}\right)^{1 / 2} t_{x} \cos \left(k a+\frac{q a}{2}\right) \sin \left(\frac{q a}{2}\right) \\
& =i \frac{3}{4}\left(\frac{\hbar a}{N M v_{\perp}}\right)^{1 / 2} \frac{B_{\perp}}{a} \cos \left[\left(k+\frac{q}{2}\right) a\right] \sqrt{\sin \left(\frac{q a}{2}\right)} \\
& \simeq i \frac{3}{4}\left(\frac{\hbar}{N M v_{\perp} a}\right)^{1 / 2} B_{\perp} \cos \left(\frac{q a}{2}\right) \sqrt{\sin \left(\frac{q a}{2}\right)} \tag{49}
\end{align*}
$$

Here we have assumed $k a \ll 1$ because exciton density is not very high and mostly is localized around $k \sim 0$ and used the acoustic phonon dispersion,

$$
\begin{equation*}
\Omega_{l}(q)=\frac{v_{\perp}}{a} \sin \frac{q a}{2} \tag{50}
\end{equation*}
$$

with v_{\perp} being the intra-layer speed of sound. Similarly for $\boldsymbol{k}\|\boldsymbol{q}\| \boldsymbol{e}_{z}$, the longitudinal acoustic phonon has a dispersion of $\Omega_{l}(q)=\frac{v_{z}}{c} \sin \frac{q c}{2}$ (v_{z} being the inter-layer speed of sound, and contributes to the exciton-phonon coupling,

$$
\begin{equation*}
F(0, \boldsymbol{q}) \simeq-i \frac{3}{2}\left(\frac{\hbar}{N M v_{z} c}\right)^{1 / 2} B_{z} \cos \left(\frac{q c}{2}\right) \sqrt{\sin \left(\frac{q c}{2}\right)} \tag{51}
\end{equation*}
$$

The calculated $V_{\text {ac }}(\boldsymbol{q}) \equiv F(0, \boldsymbol{q})$ is plotted in Fig. 1b. The measured intra-layer and inter-layer Young's moduli of $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}\right)_{2} \mathrm{PbI}_{4}$ are $c_{\text {intra }}=11.2 \pm 1.4 \mathrm{GPa}^{9}$ and $c_{\text {inter }}=3.3 \pm 0.1 \mathrm{GPa}^{10}$. The speed of sound can be obtained from the Young's modulus, $v_{\perp}=\sqrt{c_{\text {intra }} / \rho}$ and $v_{z}=\sqrt{c_{\text {inter }} / \rho}$, where $\rho \equiv N M$ is the material's mass density. For $\rho=2.5 \mathrm{~g} / \mathrm{cm}^{3}$, we have $v_{\perp}=2.1 \times 10^{5} \mathrm{~cm} / \mathrm{s}$ and $v_{z}=1.1 \times 10^{5} \mathrm{~cm} / \mathrm{s}$, which are consistent with the observed speeds of sound along and across $\mathrm{Pb}-\mathrm{X}$ layers ${ }^{11}$. Using these parameters, an upper bound of the exciton bandwidth $B_{\perp}=0.4 \mathrm{eV}$, and $c=2.5 a$, we find that $V_{\mathrm{ac}}(\boldsymbol{q})$ is orders-of-magnitude weaker than the ODP. Thus we can safely neglected the acoustic phonons in studying STEs in 2D HOIPs.

References

[1] Z. G. Yu, Sci. Rep., 2016, 6, 28576.
[2] Z.-G. Yu, J. Phys. Chem. Lett., 2017, 9, 1-7.
[3] Z.-G. Yu, J. Phys. Chem. Lett., 2016, 7, 3078-3083.
[4] Z.-G. Yu, J. Phys. Chem. C, 2017, 121, 3156-3160.
[5] R. S. Knox, Theory of Excitons, Academy Press, 1963.
[6] D. Wang, B. Wen, Y.-N. Zhu, C.-J. Tong, Z.-K. Tang and L.-M. Liu, J. Phys chem. Lett., 2017, 8, 876-883.
[7] T. Ishihara, J. Takahashi and T. Goto, Phys. Rev. B, 1990, 42, 11099-11107.
[8] A. S. Davydov, Theory of Molecular Excitons, Plenum Press, 1971.
[9] Q. Tu, I. Spanopoulos, P. Yasaei, C. Stoumpos, M. G. Kanatzidis, G. S. Shekhawat and V. P. Dravid, arXiv:1806.04835, 2018.
[10] Q. Tu, I. Spanopoulos, S. Hao, C. Wolverton, M. G. Kanatzidis, G. S. Shekhawat and V. P. Dravid, ACS Appl. Mater. Interfaces, 2018, 10, 22167-22173.
[11] P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis and R. D. Schaller, Nat. Commun., 2018, 9, 2019.

