Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Rotational Spectroscopy of Organophosphorous Chemical Agents: Cresyl and Phenyl Saligenin Phosphate

ELECTRONIC SUPPLEMENTARY INFORMATION

Rizalina Tama Saragi,^a Marcos Juanes,^a José Luis Abad,^b Alberto Lesarri,*^a Ruth Pinacho^c and José Emiliano Rubio^c

^aDepartamento de Química Física y Química Inorgánica – IU CINQUIMA , Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain). E-mail: lesarri@qf.uva.es

^bDepartamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 08034 Barcelona (Spain)

^cDepartamento de Electrónica, Escuela Técnica Superior de Ingeniería de Telecomunicación, Universidad de Valladolid, 47011 Valladolid, (Spain)

EXPERIMENTAL AND COMPUTATIONAL METHODS

CBDP (2-(2-cresyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide) and PSP (2-(2phenyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide) were synthesized as enantiomeric mixtures using the procedure previously described by Faria *et al.*¹ at the IQAC-CSIC. In both cases, a two-step procedure was performed in the same way than other phosphate triester preparations. Thus, in the first step, cresyl (phenyl) phosphorodichloridate was obtained by treatment of o-cresol (phenol, 1 equiv) with POCl₃ (1 equiv) in the presence of anhydrous NEt₃ (1 equiv) using dry diethyl ether (Et₂O) as solvent at -78 °C under argon atmosphere. The precipitate was filtered out, and the organic solvent was concentrated to obtain the desired intermediate as an oil. In the second step, the obtained phosphorodichloridates reacted with 1 equiv of 2-hydroxybenzyl alcohol under argon atmosphere using dry CH₂Cl₂ as solvent in presence of anhydrous NEt₃ (3 equiv) at 0 °C and then the mixture was kept at room temperature for 2 h. Formation of the desired compounds were monitored by TLC (UV detection, c. a. $R_f = 0.25$, hexanes; AcOEt 7:3). After this period, the organic phase was washed with water, and the resulting solution was concentrated under reduced pressure to yield a residue containing the desired cyclic phosphate triester. Both compounds were purified by flash SiO₂ column chromatography using a stepwise gradient with hexanes/AcOEt (0–30%, 1% each SiO₂ solvent volume). The overall yield was around 55%.

NMR data:

2-(2-cresyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide (CBDP)

¹H NMR (400 MHz, CDCl ₃) *δ* 7.40–7.25 (m, 2 H), 7.22–7.05 (m, 6 H), 5.55– 5.40 (m, 2 H), 2.21 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃) δ 150.0 (d, J = 7.0 Hz), 148.7 (d, J = 8.0 Hz), 131.52, 129.9 (d, J = 2.0 Hz), 129.1 (d, J = 6.5 Hz), 127.2 (d, J = 1.5 Hz), 125.5 (d, J = 1 Hz), 125.4 (d, J = 1 Hz), 124.6, 120.5 (d, J = 10.0 Hz), 119.7 (d, J = 2.5 Hz), 118.8 (d, J = 9 Hz), 69.2 (d, J = 7.5 Hz), 16.1.

³¹P NMR (162 MHz, CDCl₃) δ –15.8.

2-(2-phenyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide (PSP)

¹H NMR (400 MHz, CDCl ₃) *δ* 7.35 (m, 3 H), 7.19 (m, 3 H), 7.15 (m, 1 H), 7.07 (m, 2 H), 5.55–5.40 (m, 2 H).

¹³C NMR (101 MHz, CDCl₃) δ 150.0 (d, *J* = 7.0 Hz), 149.8 (d, *J* = 7.0 Hz), 129.9, 129.9, 129.9, 125.6 (d, *J* = 1 Hz), 125.3 (d, *J* = 1 Hz), 124.6, 120.3 (d, *J* = 10.0 Hz), 119.9 (d, *J* = 5.0 Hz), 118.7 (d, *J* = 9.1 Hz), 69.2 (d, *J* = 7.5 Hz).

³¹P NMR (162 MHz, CDCl₃) δ –15.8.

The rotational spectrum was investigated with a chirped-pulsed Fourier transform microwave (FT-MW) spectrometer at the UVa (BrightSpec) working in the frequency range 2-8 GHz, which follows Pate's design.² The samples, which were viscous liquids at room temperature, were located in a heating reservoir inside the injection nozzle in separate experiments. A temperature in the range 110-150°C was sufficient to vaporize the compounds. The sample expanded near-adiabatically into the evacuated chamber (ca. 10^{-6} mbar) through a pulsed (solenoid-driven) injection valve. Neon at stagnation pressures of ca. 1.0 bar was used as carrier gas, using a circular nozzle with a diameter of 1.3 mm. The jet was probed with a microwave chirped pulse, recording the resulting transient molecular emission in the time domain. The excitation pulse (4 μ s) was created by an arbitrary waveform generator, amplified to 20 W and radiated through a horn antenna, perpendicular to the propagation of the jet expansion. A molecular transient emission (spanning 40 µs) was then detected through a second collinear horn, recorded with a digital oscilloscope (20 MSamples/s) and Fourier-transformed to produce the frequency domain spectrum. Five excitation cycles were used per gas pulse. Typical linewidths of the rotational transitions (FWHM) reach ca. 100 kHz. All frequency oscillators are locked to a rubidium standard, providing frequency accuracies below 5 kHz.

The analysis of the spectrum used simulation programs by Plusquellic³ (JB95) and Kisiel⁴ (AABS). Spectral fittings used Pickett's CALPGM programs.⁵

The initial conformational search used a fast molecular mechanics method based in the Merck's MMFFs force field algorithm.⁶ A combination of dedicated Montecarlo/low-mode search algorithms⁷ implemented in Macromodel⁸ produced a first set of plausible conformations using a general unrestrained search. Further reoptimization of all structures used either B3LYP⁹ with the Grimme D3(BJ)¹⁰ dispersion correction (Becke-Johnson damping function) or the conventional second-order Moller-Plesset¹¹ (MP2) perturbation method. Two sets of triple- ζ basis sets were tested, including Ahlrichs' balanced functions¹² (def2-TZVP) and a mixed scheme with Dunning's tight daugmented correlation-consistent basis set¹³ (cc-pV(T+d)Z) for the phosphorous atom and cc-pVTZ for all other atoms. All density-functional and ab initio calculations were implemented in Gaussian09.¹⁴

REFERENCES

- ¹ M. Faria, I. Fuertes, E. Prats, J. L. Abad, F. Padrós, C. Gomez-Canela, J. Casas, J. Estévez, E. Vilanova, B. Piña, D. Raldúa, *Sci. Rep.* 2018, **8**, 4844/1-14.
- ² a) S. T. Shipman, B. H. Pate, in *Handbook of High Resolution Spectroscopy*, ed. M. Quack and F. Merkt, Wiley, New York, 2011, pp. 801–828. b) C. Pérez, S. Lobsiger, N. A. Seifert, D. P. Zaleski, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, *Chem. Phys. Lett.* 2013, **571**, 1-15.
- ³ David F. Plusquellic, R D. Suenram, B Mate, J O. Jensen, A C. Samuels, J. Chem. Phys. 2001, **115**, 3057-3067.

⁴ Z. Kisiel, L. Pszczolkowski, I. R. Medvedev, M. Winnewisser, F. C. De Lucia, E. Herbst, J. Mol. Spectrosc. 2005, 233,231-243.

⁵ H. M. Pickett, J. Mol. Spectrosc. 1991, **148**, 371-377.

⁶ T. A. Halgren, J. Comp. Chem. 1999, **20**, 720-729. b) T. A. Halgren, J. Comp. Chem. 1999, **20**, 730-748. ⁷ I. Kolossváry, W. C. Guida, J. Comput. Chem. 1999, **20**, 1671-1684.

⁸ Macromodel, Schrödinger Release 2015-2: MacroModel, Schrödinger, LLC, New York, NY, 2015.

⁹ C. Lee, W. Yang, R. G. Parr, *Phys Rev. B* 1988, **37**, 785. b) A. D. Becke, *Phys. Rev. A* 1988, **38**, 3098. c) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5848.

¹⁰ a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, **132**, 154104. b) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* 2011, **32**, 1456-1465.

¹¹ C. Møller, M. S. Plesset, *Phys. Rev.* 1934, **46**, 618–622.

¹² F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305.

¹³ T. H. Dunning, Jr., K. A. Peterson, A. K. Wilson, J. Chem. Phys. 2001, 114, 9244-9253.

¹⁴ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Revision C.01; Gaussian, Inc., Wallingford, CT, 2009.

Figure S1. A 2 GHz section of the rotational spectrum of cresyl saligenin phosphate (CBDP, lower trace), and a 50 MHz expansion (upper trace) with typical μ_a (blue) and μ_b (red) rotational transitions (labelled with quantum numbers $J'_{K'_a,K'_c} \leftarrow J''_{K''_a,K''_c}$).

Figure S2. A 2 GHz section of the rotational spectrum of phenyl saligenin phosphate (PSP, lower trace), and a 50 MHz expansion (upper trace) with typical μ_a (blue), μ_b (red) and μ_c (green) rotational transitions (labelled with quantum numbers $J'_{K'_a,K'_c} \leftarrow J''_{K''_a,K''_c}$).

Figure S3. Alternative view to Figure 1 of the molecular conformations of cresyl (CBDP, left column) and phenyl (PSP, right column) saligenin phosphates. The lowest lying conformations of CBDP and PSP exhibit a half-chair conformation of the six-memebered 1,3,2-dioxaphosphorinane ring. A second near-boat phosphorinane conformation is predicted for CBDP. For each ring conformation the phenyl/cresyl rings adopt two possible orientations. Conformational energies calculated according to B3LYP-D3(BJ)/cc-pV(T+d)Z (cc-pVTZ for the C, H, O atoms).

Figure S4. Optimized structure of cresyl saligenin phosphate (CBDP) according to B3LYP-D3(BJ)/cc-PV(T+d)Z calculations (cc-PVTZ for the C, H, O atoms). The figure is rotatable in the pdf file.

Figure S5. Optimized structure of phenyl saligenin phosphate (PSP) according to B3LYP-D3(BJ)/cc-PV(T+d)Z calculations (cc-PVTZ for the C, H, O atoms). The figure is rotatable in the pdf file.

Figure S6. The most relevant donor-acceptor hyperconjugative interaction in cresyl (upper figure) and phenyl (lower figure) saligenin phosphate (B3LYP-D3(BJ)/def2-TZVP), according to second order perturbation theory analysis of the Fock matrix in the NBO basis in Tables S15 and S16 In both molecules the lp_{σ} lone pair at the O(1) atom is predicted to donate to the unoccupied $lp_{\sigma}*$ lone pair at the phosphorous atom.

Table S1. Theoretical prediction of the rotational parameters of cresyl saligenin phosphate (CBDP) using the calculation level B3LYP-D3(BJ)/def2TZVP.

	Theory								
	Isomer 1	Isomer 2	Isomer 3	Isomer 4					
A / MHz ^a	560.7 [1.2%] ^c	447.3 [-19.2%]	668.2 [20.6%]	478.3 [-13.6%]					
<i>B</i> / MHz	302.5 [-2.5%]	427.2 [37.8%]	260.9 [-15.9%]	352.8 [13.8%]					
C / MHz	239.6 [-1.7%]	292.4 [20.0%]	218.3 [-10.4%]	264.8 [8.7%]					
D_J / kHz	0.074	0.094	0.048	0.090					
D_{JK} / kHz	-0.37	-0.109	-0.31	-0.080					
D_K / kHz	0.57	0.038	0.63	0.033					
d_1 / kHz	-0.023	0.044	-0.0142	0.0172					
d_2 / kHz	-0.00051	-0.0110	-0.00043	-0.039					
$ \mu_a $ / D	2.3	0.3	1.4	1.7					
$ \mu_b $ / D	4.8	6.0	5.4	5.0					
$ \mu_c $ / D	1.9	0.9	1.3	2.8					
$\Delta E / \text{kJ mol}^{-1 \text{ b}}$	0.0	2.8	3.6	5.1					
ΔG / kJ mol ⁻¹	0.0	3.6	3.2	4.8					

	Theory							
	Isomer 1	Isomer 2	Isomer 3	Isomer 4				
A / MHz ^a	519.3 [-6.2%] ^c	485.2 [-12.4%]	638.7 [15.3%]	458.5 [-17.2%]				
<i>B</i> / MHz	353.4 [14.0%]	447.9 [44.4%]	283.7 [-8.5%]	402.5 [29.8%]				
C / MHz	261.4 [7.3%]	303.3 [24.5%]	229.9 [-5.7%]	287.2 [17.8%]				
D_J / kHz	0.072	0.036	0.032	0.087				
D_{JK} / kHz	-0.077	-0.048	-0.178	-0.078				
D_K / kHz	0.033	0.023	0.33	0.027				
d_1 / kHz	0.0034	-0.0148	-0.0096	0.022				
d_2 / kHz	-0.032	-0.0049	-0.00023	-0.0141				
$ \mu_a $ / D	2.2	4.3	1.3	3.7				
$ \mu_b $ / D	5.2	4.4	5.6	4.0				
$ \mu_c $ / D	1.6	0.0	1.3	3.0				
$\Delta E /\mathrm{kJ}\mathrm{mol}^{-1\mathrm{b}}$	2.1	0.0	6.4	8.0				
ΔG / kJ mol ⁻¹	0.0	0.9	4.7	5.2				

Table S2. Theoretical prediction of the rotational parameters of cresyl saligeninphosphate (CBDP) using the calculation level MP2/def2-TZVP.

Table S3. Theoretical prediction of the rotational parameters of cresyl saligenin phosphate (CBDP) using the calculation level MP2/cc-PV(T+d)Z on the P atom and cc-PVTZ for the C, H, O atoms.

	Isomer 1	Isomer 2	Isomer 3	Isomer 4
A / MHz ^a	521.1 [-5.9%%] ^c	483.7 [-12.7%]	644.3 [16.3%]	457.9 [-17.3%]
B / MHz	351.9 [13.5%]	447.3 [44.2%]	281.8 [-9.1%]	400.5 [29.1%]
C / MHz	260.9 [7.1%]	303.6 [24.6%]	229.0 [-6.0%]	286.4 [17.5 %]
D_J / kHz	0.072	0.038	0.031	0.084
D_{JK} / kHz	-0.077	-0.051	-0.172	-0.076
D_K / kHz	0.033	0.024	0.33	0.029
d_1 / kHz	0.0022	-0.0157	-0.0093	0.024
d_2 / kHz	-0.032	-0.0053	-0.00025	-0.0173
$ \mu_a $ / D	2.2	4.3	1.3	2.6
$ \mu_b $ / D	5.0	4.2	5.4	4.8
$ \mu_c $ / D	1.6	0.1	1.3	2.6
$\Delta E / \text{kJ mol}^{-1 \text{ b}}$	1.0	0.0	5.3	7.7
ΔG / kJ mol ⁻¹	0.0	2.1	5.0	6.4

Table S4. Theoretical prediction of the rotational parameters of phenyl saligenin phosphate (PSP) using the calculation level B3LYP/def2-TZVP.

	Theory					
-	Isomer 1	Isomer 2				
A / MHz ^a	627.8 [-0.1%] ^d	862.7 [37.2%]				
<i>B</i> / MHz	320.1 [-1.7%]	245.0 [-24.8%]				
C / MHz	247.9 [-1.1%]	216.5 [-13.6%]				
D_J / kHz	0.157	0.043				
D_{JK} / kHz	-0.80	-0.49				
D_K / kHz	1.20	1.80				
d_1 / kHz	-0.060	-0.0116				
d_2 / kHz	-0.0022	-0.00030				
$ \mu_a $ / D	2.1	1.4				
$ \mu_b $ / D	4.4	5.0				
$ \mu_c $ / D	2.2	0.7				
$\Delta E / \text{kJ mol}^{-1 \text{ b}}$	0.0	2.0				
$AG/kJ mol^{-1}$	0.0	2.2				

	Theory					
	Isomer 1	Isomer 2				
A / MHz ^a	560.1 [-10.9%] ^d	787.7 [25.3%]				
<i>B</i> / MHz	401.8 [23.4%]	270.9 [-16.8%]				
C / MHz	277.7 [10.8%]	230.6 [-8.0%]				
D_J / kHz	0.21	0.039				
D_{JK} / kHz	-0.29	-0.33				
D_K / kHz	0.135	0.90				
d_1 / kHz	0.048	-0.0117				
d_2 / kHz	-0.093	-0.00040				
$ \mu_a $ / D	1.6	1.2				
$ \mu_b $ / D	5.2	5.3				
$ \mu_c $ / D	1.9	0.8				
$\Delta E / \text{kJ mol}^{-1 \text{ b}}$	0.0	5.0				
$\Delta G / \text{kJ mol}^{-1}$	0.0	5.0				

Table S5. Theoretical prediction of the rotational parameters of phenyl saligeninphosphate (PSP) using the calculation level MP2/def2-TZVP.

Table S6. Theoretical prediction of the rotational parameters of phenyl saligenin phosphate (PSP) using the calculation level MP2/cc-PV(T+d)Z on the P atom and cc-PVTZ for the C, H, O atoms.

	Theory					
	Isomer 1	Isomer 2				
A / MHz ^a	568.0 [-9.7%] ^d	794.5 [26.4%]				
<i>B</i> / MHz	392.1 [20.4%]	269.5 [-17.3%]				
C / MHz	274.7 [9.6%]	230.0 [-8.3%]				
D_J / kHz	0.178	0.036				
D_{JK} / kHz	-0.23	-0.31				
D_K / kHz	0.105	0.88				
d_1 / kHz	0.033	-0.0108				
d_2 / kHz	-0.085	-0.00037				
$ \mu_a $ / D	2.1	1.2				
$ \mu_b $ / D	4.8	5.2				
$ \mu_c $ / D	1.8	0.7				
$\Delta E / \text{kJ mol}^{-1 \text{ b}}$	0.0	4.3				
$\Delta G / \mathrm{kJ} \mathrm{mol}^{-1}$	0.0	4.4				

Table S7. Measured rotational transition frequencies (Freq.) of cresyl saligenin phosphate(CBDP), and residuals (observed-calculated) according to fit of Table 1.

J'	<i>K</i> -1'	<i>K</i> ₊₁ '	J"	<i>K</i> -1"	K_{+1} "	Freq./ MHz	Residual / MHz
8	0	8	7	1	7	4036.7639	-0.0032
8	0	8	7	0	7	4046.1467	-0.0035
8	1	8	7	0	7	4050.4046	-0.0042
7	2	6	6	1	5	4066.3784	0.0007
7	2	5	6	2	4	4090.5224	-0.0052
5	3	2	4	2	2	4096.5797	0.0157
4	4	1	3	3	0	4154.9651	0.0013
4	4	0	3	3	1	4156.3866	-0.0422
8	1	7	7	2	6	4199.0423	0.0297
5	3	3	4	2	3	4218 6733	0.0173
6	2	4	5	1	4	4236 6507	-0.0088
8	2	7	5 7	2	т 6	4290.0507	-0.0000
8	1	7	7	1	6	42773 0260	-0.0115
0	2	6	7	2	5	4450 2027	-0.0175
0	2	0	7	3 1	5	4439.2037	0.0034
0	5	1	7	1	2	4475.1042	0.0204
0	5	4	7	5	2	4400.3477	0.0093
8	5	5	7	5	2	4490.7503	0.0013
8	4	5	/	4	4	4499.6558	-0.0071
9	0	9	8	1	8	4527.7071	0.0022
9	l	9	8	l	8	4529.5804	-0.0066
9	0	9	8	0	8	4531.9652	0.0016
9	1	9	8	0	8	4533.8506	0.0049
8	4	4	7	4	3	4535.1332	0.0120
6	3	3	5	2	3	4605.5857	0.0155
8	2	6	7	2	5	4647.8373	-0.0090
8	3	5	7	3	4	4656.1094	-0.0098
5	4	2	4	3	1	4706.9866	0.0036
5	4	1	4	3	2	4717.3040	0.0027
9	1	8	8	2	7	4747.4650	-0.0153
6	3	4	5	2	4	4833.3524	-0.0157
9	2	8	8	1	7	4901.1071	0.0394
7	3	5	6	2	4	4908.6120	-0.0407
7	2	5	6	1	5	4933.6002	-0.0179
9	3	7	8	3	6	4996.3319	0.0039
10	0	10	9	1	9	5016.6662	-0.0101
10	1	10	9	1	9	5017.4876	-0.0036
10	0	10	9	0	9	5018.5657	0.0073
10	1	10	9	0	9	5019.3731	-0.0003
9	7	3	8	7	2	5032.9178	-0.0110
9	7	2	8	7	1	5032.9178	-0.0176
9	5	5	8	5	4	5060.8141	0.0007
9	4	6	8	4	5	5066.8625	0.0413
9	5	4	8	5	3	5067.7016	-0.0066
7	3	4	6	2	4	5130,9474	0.0016
, 9	4	5	8	- 4	4	5142 6923	-0.0117
9	2	7	8	2	6	5177 1121	-0.0019
י ד	2- 1	6	6	0	6	5207 4384	0.0386
10	2	8	0	3	7	5207.4304	_0 0000
6	2- /	2	5	2	2	5240.0120	-0.0077
0	4	5	<i>S</i> 0	2	2 5	5260 0017	0.0009
9 10	5 1	0	0	3 2	с о	5270 0424	-0.0031
10	1	9	9	2	ð	3270.0434	0.0008

8	3	6	7	2	5	5277.3088	-0.0165
6	4	3	5	3	3	5280.2997	0.0011
6	4	2	5	3	3	5285.7591	0.0003
10	2	9	9	2	8	5297.2413	0.0264
10	2	9	9	1	8	5350.7715	0.0074
11	0	11	10	1	10	5504.7166	-0.0135
11	1	11	10	1	10	5505 0777	0.0003
11	0	11	10	0	10	5505 5254	-0.0197
11	1	11	10	0	10	5505.5254	-0.0014
10	3	8	9	3	10 7	5522 8778	-0.0014
10	8	3	0	8	2	5500 1806	0.0084
10	Q	2	0	8	1	5500 1806	0.0078
10	0 7	2 1	9	8 7	3	5600.0645	0.0078
10	7	4	9	7	2	5600.0045	0.0004
10	6	5	9	6	2 4	5615 2602	-0.0282
10	6	3	9	6	4	5616 4227	0.0077
10	0	4	9	0	3	5010.4327	-0.0011
9	3	7	8	2	0	5625.8007	-0.0002
10	4	1	9	4	6	5628.9783	-0.0092
10	5	6	9	5	5	5635.2230	-0.0099
10	5	5	9	5	4	5653.4044	-0.0011
10	2	8	9	2	1	5677.3124	-0.0030
8	2	6	7	1	6	5689.1029	-0.0168
8	3	5	7	2	5	5696.5365	-0.0008
7	4	4	6	3	3	5753.8977	0.0030
7	4	3	6	3	3	5773.2116	-0.0014
11	1	10	10	2	9	5776.1948	0.0021
11	2	10	10	2	9	5789.4569	0.0058
11	1	10	10	1	9	5803.3802	0.0090
11	2	10	10	1	9	5816.6338	0.0042
6	5	2	5	4	1	5819.9922	-0.0049
7	4	4	6	3	4	5853.1301	-0.0011
11	2	9	10	3	8	5861.0139	-0.0098
10	3	7	9	3	6	5862.4302	-0.0121
7	4	3	6	3	4	5872.4474	-0.0022
10	3	8	9	2	7	5971.5763	0.0012
12	0	12	11	1	11	5992.3598	-0.0104
12	1	12	11	1	11	5992.5096	-0.0065
12	0	12	11	0	11	5992.6971	-0.0203
12	1	12	11	0	11	5992.8507	-0.0127
8	1	7	7	0	7	6018 6933	0.0005
11	3	9	10	3	8	6039 0919	0.0076
12	3	9	11	4	8	6084 2735	0.0157
8	2	7	7	1	7	6109 3589	0.0111
8	3	6	7	2	6	6144 5649	-0.0009
11	2	9	10	2	8	6155 2836	0.0002
11	4	8	10	2 1	7	6183 3375	0.0002
11	т 6	6	10	-	5	6180 7141	0.0075
11	6	5	10	6	1	6102 0072	0.0141
11	5	5 7	10	5	4	6210 1002	-0.0013
0	3	5	10	2	4	6210.1903	-0.0010
0	4	5	10	5	4	6251 7927	0.0030
11	3 1	0	10	5	5 10	0231./82/	-0.0118
12	1	11	11	2	10	0212.9881	0.0095
12	2	11	11	2	10	02/9.2460	-0.0074
12	1	11	11	1	10	6286.2372	-0.0002
12	2	11	11	1	10	6292.5195	0.0078
9	3	6	8	2	6	6317.6899	-0.0079
11	3	9	10	2	8	6333.3534	0.0096
6	6	1	5	5	0	6371.1246	0.0008
6	6	0	5	5	0	6371.1246	0.0000
6	6	1	5	5	1	6371.1246	-0.0097
6	6	0	5	5	1	6371.1246	-0.0105

7	5	3	6	4	2	6373.0258	-0.0035
7	5	2	6	4	2	6373.7371	0.0238
7	5	3	6	4	3	6378.4960	0.0065
7	5	2	6	4	3	6379.1758	0.0023
11	4	7	10	4	6	6400 3187	-0.0140
11	3	8	10	3	7	6420 2308	-0.0111
12	2	10	10	2	0	6445 4802	-0.0111
12	2	10	11	5	9	6402 1947	-0.0237
9	2	/	8	1	/	6493.1847	-0.0035
8	4	4	1	3	5	6495.2196	0.0045
12	3	10	11	3	9	6546.1277	0.0047
9	4	6	8	3	5	6628.8619	0.0145
12	3	10	11	2	9	6724.2125	0.0290
12	8	5	11	8	4	6724.9712	0.0164
12	8	4	11	8	3	6724.9712	-0.0009
12	4	9	11	4	8	6727.6747	0.0068
9	4	5	8	3	5	6759.5242	0.0173
13	1	12	12	2	11	6764 7907	0.0030
12	6	7	11	6	6	6766 9267	0.0058
12	2	10	11	0	11	0700.9207	0.0038
15	2	12	12	2	11	0/0/.0883	0.0021
13	1	12	12	1	11	6771.0802	0.0182
13	2	12	12	1	11	6773.9678	0.0072
12	6	6	11	6	5	6775.7680	-0.0093
12	5	8	11	5	7	6783.2915	0.0022
13	3	10	12	4	9	6824.3532	0.0034
9	3	7	8	2	7	6841.8443	0.0014
12	5	7	11	5	6	6866.9649	-0.0126
8	5	4	7	4	3	6917.2320	0.0078
8	5	3	7	4	3	6920 1363	0.0175
8	5	1	7		1	6936 5500	0.0074
0	5	-	7	4	4	6020 4447	0.0074
0	5	3	/	4	4	0939.4447	0.0074
12	3	9	11	3	8	6964./304	-0.0011
10	4	7	9	3	6	6988.8075	-0.0206
13	2	11	12	3	10	6991.9643	0.0023
10	3	7	9	2	7	7003.0167	-0.0093
12	4	8	11	4	7	7027.1346	0.0013
13	3	11	12	3	10	7045.8315	0.0007
9	4	6	8	3	6	7048.0617	0.0023
13	2	11	12	2	10	7092.5308	-0.0393
13	3	11	12	2	10	7146.4494	0.0105
14	1	13	13	2	12	7254 1016	0.0048
14	2	13	13	2	12	7255 4310	0.0212
14	2	13	13	1	12	7255.4510	0.0212
14	1	15	15	1	12	7250.9890	-0.0037
10	4	0	9	3	0	7257.7106	-0.0090
14	2	13	13	l	12	7258.3112	0.0029
13	4	10	12	4	9	7260.8054	0.0019
13	9	5	12	9	4	7280.8281	-0.0199
13	9	4	12	9	3	7280.8281	-0.0218
11	4	8	10	3	7	7309.6752	-0.0405
13	7	7	12	7	6	7317.8234	0.0041
13	7	6	12	7	5	7319.3539	-0.0007
10	2	8	9	1	8	7322.9935	0.0085
13	-	8	12	6	7	7346 2500	0.0114
13	5	Q	12	5	, 8	7351 6537	0.0299
13	S E	י ד	12	S E	٥ ۲	7267 4107	0.0277
15	0	1	12	0	0	/ 30/.419/	0.0002
9	2	2	8	4	4	7442.9152	-0.0011
9	5	4	8	4	4	7452.7188	0.0128
15	0	15	14	1	14	7454.5488	0.0065
15	1	15	14	1	14	7454.5488	-0.0037
15	0	15	14	0	14	7454.5488	-0.0185
				0			
15	1	15	14	0	14	7454.5488	-0.0287

7	7	0	6	6	0	7478.7584	-0.0005
7	7	1	6	6	0	7478.7576	-0.0011
7	7	1	6	6	1	7478.7576	-0.0020
7	7	0	6	6	1	7478.7576	-0.0020
8	6	3	7	5	2	7484.6805	-0.0055
8	6	2	7	5	3	7485.4342	-0.0109
9	5	5	8	4	5	7497.6906	-0.0024
13	5	8	12	5	7	7499.7996	-0.0139
9	5	4	8	4	5	7507.4785	-0.0040
14	3	11	13	4	10	7507.8364	-0.0003
14	2	12	13	3	11	7512.5676	0.0100
10	3	8	9	2	8	7563.6815	-0.0139
14	2	12	13	2	11	7566.4195	-0.0067
14	3	12	13	2	11	7594.1091	0.0054
13	4	9	12	4	8	7633.7405	-0.0133
15	1	14	14	2	13	7742.2071	-0.0021
15	2	14	14	1	13	7744.1137	0.0062
11	3	8	10	2	8	7754.9582	0.0055
13	4	10	12	3	9	7904.2111	-0.0024
14	5	10	13	5	9	7912.2977	0.0162
10	5	6	9	4	5	7935.4541	0.0088
16	0	16	15	1	15	7941.8622	0.0018
16	1	16	15	1	15	7941.8622	-0.0023
16	0	16	15	0	15	7941.8622	-0.0083
16	1	16	15	0	15	7941.8622	-0.0125
10	4	6	9	3	7	7949.5980	-0.0124

J'	<i>K</i> -1'	<i>K</i> ₊₁ '	J"	<i>K</i> -1"	<i>K</i> +1"	Freq./ MHz	Residual / MHz
11	2	10	10	2	9	6015.3041	-0.0024
11	2	9	10	3	8	6016.4725	0.0002
11	1	10	10	1	9	6037.4015	-0.0001
11	2	10	10	1	9	6060.5249	0.0016
9	3	7	8	2	6	6062.8049	-0.0013
8	2	6	7	1	6	6064.4416	0.0035
12	3	9	11	4	8	6080.1833	0.0029
10	3	7	9	3	6	6128.3889	-0.0044
8	3	5	7	2	5	6145.7336	-0.0013
12	0	12	11	1	11	6184.8345	-0.0010
12	1	12	11	1	11	6185.1287	0.0073
12	0	12	11	0	11	6185.4838	-0.0024
12	1	12	11	0	11	6185.7785	0.0063
7	3	4	6	2	5	6186.3227	0.0022
11	3	9	10	3	8	6296.7284	0.0042
7	4	4	6	3	3	6358.9599	-0.0006
7	4	3	6	3	3	6376.0768	0.0048
14	10	5	14	9	5	6384.1840	0.0076
15	10	6	15	9	6	6367.4420	0.0179
15	10	5	15	9	6	6367.4420	0.0173
15	10	6	15	9	7	6367.4420	-0.0063
15	10	5	15	9	7	6367 4420	-0.0069
14	10	4	14	9	, 5	6384 1840	0.0075
14	10	5	14	9	6	6384 1840	0.0014
14	10	4	14	9	6	6384 1840	0.0013
10	3	8	9	2	7	6393 5612	-0.0006
13	10	3	13	9	4	6397 6394	-0.0009
13	10	4	13	9	4	6397.6394	-0.0009
13	10	3	13	9	5	6397.6394	-0.0023
13	10	4	13	9	5	6397.6394	-0.0023
15	9	7 2	10	9	1	6398 4530	-0.0025
11	9	2	10	9	2	6398 4530	-0.0000
11	8	3	10	8	2	6407 5620	0.0015
11	8	3 4	10	8	3	6407 5620	0.0015
12	10	7 2	12	9	3	6408 3029	-0.0050
12	10	2	12	9	3	6408 3029	-0.0067
12	10	2	12	0	1	6408 3020	-0.0007
12	10	2	12	9	4	6408 3029	-0.0070
12	10	1	12	9	4	6416 6146	-0.0009
11	10	1	11	9	2	6416.6146	-0.0038
11	6	6	10	9	5	6442.0400	-0.0038
11	6	5	10	6	3	6444.5220	-0.0033
11	1	2	10	0 1	+ 7	6116 2176	-0.0013
11	4	0	10	4 2	/ 0	6454 9272	-0.0022
11	ے ۸	У 1	10 6	2	0	0434.0372	-0.0051
/ 0	4	4	0 7	5	4 7	6465 0001	-0.0031
0	1	7	/	5	I E	6466 1102	-0.0078
11	5 1	1	10 6	3 2	0	6472 6051	0.0050
/ 11	+ 5	5	10	5 5	+ 5	6501 0050	-0.0011

Table S8. Measured rotational transition frequencies (Freq.) of phenyl saligeninphosphate (parent), and residuals (observed-calculated) according to fit of Table 2.

14	3	11	13	4	9	6508.5977	-0.0002
12	1	11	11	2	10	6509.0258	0.0010
12	2	11	11	2	10	6520.4795	-0.0040
6	5	2	5	4	1	6527.8850	-0.0092
6	5	1	5	4	1	6528.0129	0.0254
6	5	2	5	4	2	6528.8505	-0.0231
6	5	1	5	4	2	6528.9708	0.0038
12	1	11	11	1	10	6532,1401	-0.0062
12	2	11	11	1	10	6543.6057	0.0005
8	2	7	7	1	7	6602.1052	-0.0032
14	4	10	13	5	9	6613.3416	0.0014
12	2	10	11	3	9	6657 4810	0.0008
11	- 4	7	10	4	6	6659 7274	0.0001
8	3	, 6	7	2	6	6669 5967	-0.0036
13	0	13	12	1	12	6686 3628	-0.0050
13	1	13	12	1	12	6686 4735	-0.0145
13	0	13	12	0	12	6686 6406	-0.0145
13	1	13	12	0	12	6686 7725	0.0000
15	1	0	12	0	12	6722 7226	-0.0014
11	2	0	10	2	0	6725.0025	0.0017
11	2	9	10	2	0	0733.0923	0.0003
9	3	0	8	2	0	6776.0637	-0.0005
12	3	10	11	3	9	0824.7705	0.0033
8	4	5	7	3	4	6845.0261	-0.0004
8	4	4	/	3	4	6894.0187	0.0034
13	3	10	12	4	9	6905.1693	-0.0043
9	2	7	8	1	7	6920.2633	0.0026
12	2	10	11	2	9	6937.7292	-0.0028
12	9	4	11	9	3	6987.1505	-0.0052
12	9	3	11	9	2	6987.1505	-0.0054
12	8	5	11	8	4	6999.0882	0.0037
12	8	4	11	8	3	6999.0882	-0.0071
18	11	8	18	10	9	7009.5176	-0.0139
12	7	6	11	7	5	7016.9122	-0.0071
12	4	9	11	4	8	7017.1149	-0.0021
12	7	5	11	7	4	7017.2746	0.0094
13	1	12	12	2	11	7018.1380	0.0006
13	2	12	12	2	11	7023.6833	0.0054
17	11	7	17	10	7	7031.0539	0.0065
17	11	6	17	10	7	7031.0539	0.0062
17	11	7	17	10	8	7031.0539	-0.0037
17	11	6	17	10	8	7031.0539	-0.0040
13	2	12	12	1	11	7035.1390	0.0024
12	6	7	11	6	6	7043.1336	0.0014
16	11	5	16	10	6	7048.9760	0.0031
16	11	6	16	10	6	7048.9760	0.0032
16	11	5	16	10	7	7048.9760	0.0004
16	11	6	16	10	7	7048.9760	0.0005
12	6	6	11	6	5	7049.8460	0.0024
15	11	4	15	10	5	7063.7572	0.0065
15	11	5	15	10	5	7063.7572	0.0065
15	11	4	15	10	6	7063.7572	0.0058
15	11	5	15	10	6	7063.7572	0.0059
8	4	5	7	3	5	7065.0940	0.0012
12	5	8	11	5	7	7065.2894	0.0020
12	11	3	14	10	, 4	7075 8121	0.0026
14	11	4	14	10	т 4	7075 8121	0.0096
14	11	3	14	10		7075 8121	0.0094
14	11	5 1	14	10	5	7075 8121	0.0024
14	11	4	14	10	J	1013.0121	0.0094

13	11	2	13	10	3	7085.5164	0.0123
13	11	2	13	10	4	7085.5164	0.0122
13	11	3	13	10	3	7085.5164	0.0123
13	11	3	13	10	4	7085.5164	0.0122
8	3	5	7	2	6	7093.0380	0.0018
12	11	1	12	10	2	7093.1737	-0.0195
7	5	3	6	4	2	7103.9327	-0.0044
7	5	2	6	4	2	7104 4901	0.0008
12	3	10	11	2	9	7105.0250	0.0000
7	5	3	6	1	3	7105.0250	-0.0081
7	5	2	6	4	2	7108.7572	-0.0081
/ 0	5	2	0	4	5	7109.2903	-0.0009
8	4	4	/	5	5	7114.0812	-0.0003
12	5	/	11	5	6	/13/.2311	0.0049
14	0	14	13	1	13	/18/./690	0.0198
14	1	14	13	0	13	7187.9035	-0.0234
6	6	1	5	5	0	7205.8623	0.0000
6	6	0	5	5	0	7205.8623	-0.0005
6	6	1	5	5	1	7205.8623	-0.0084
6	6	0	5	5	1	7205.8623	-0.0090
13	2	11	12	3	10	7249.4637	0.0008
9	4	6	8	3	5	7272.2369	-0.0005
12	3	9	11	3	8	7305.0824	0.0057
12	4	8	11	4	7	7323.8518	0.0011
9	1	8	8	0	8	7340.8262	-0.0055
13	3	11	12	3	10	7343.8914	0.0049
9	4	5	8	3	5	7390 8779	0.0019
9	3	5 7	8	2	7	7404 8984	0.0019
13	2	, 11	12	2	10	7416 7566	0.0010
0	2	0 0	0	2 1	0	7410.7500	0.0007
9	2	0 7	0	1	0 7	7410.7102	0.0030
10	3	/	9	2	/	7477.1250	0.0093
13	3	11	12	2	10	/511.1800	0.0005
14	1	13	13	2	12	7523.1468	0.0000
14	2	13	13	2	12	7525.7765	0.0039
14	1	13	13	1	12	7528.6930	0.0058
14	2	13	13	1	12	7531.3154	0.0023
13	4	10	12	4	9	7576.3899	-0.0021
13	9	5	12	9	4	7577.7165	-0.0005
13	9	4	12	9	3	7577.7165	-0.0017
13	7	6	12	7	5	7616.8763	-0.0040
10	4	7	9	3	6	7639.8016	0.0009
13	6	8	12	6	7	7646.9552	0.0073
13	5	9	12	5	8	7660.8479	0.0021
13	6	7	12	6	6	7663.1973	-0.0047
8	5	4	7	4	3	7671.7485	0.0005
8	5	3	7	4	3	7674 1016	0.0083
14	3	11	13	т 1	10	7674.6561	0.0080
0	5	11	15	4	10	7698 8600	-0.0089
0	5	4	7	4	4	7601 2024	0.0000
ð 14	5	3 10	/	4	4	7805 0097	-0.0022
14	2	12	15	5	11	/803.0986	-0.0024
9	4	5	8	3	6	/814.3140	0.0022
10	2	8	9	1	8	/816.2076	0.0031
13	3	10	12	3	9	7842.1082	-0.0022
14	2	12	13	2	11	7899.5206	-0.0039
14	3	12	13	2	11	7950.5495	0.0045
11	4	8	10	3	7	7957.6281	0.0009
	4	0	12	4	0	7072 7271	0.0042

Atom	a / Å	b / Å	c / Å
Р	-0.0011	-1.7575	0.1425
0	-1.1910	-2.1634	-0.8099
0	0.8396	-0.7997	-0.8222
0	0.7004	-2.8507	0.7874
0	-0.6760	-0.7433	1.1885
С	-1.9794	-1.1129	-1.4063
С	-2.9449	2.0997	1.2888
С	-3.6207	1.9677	0.0796
С	-3.3113	0.9158	-0.7685
С	-2.3268	-0.0130	-0.4373
С	-1.6632	0.1404	0.7782
С	-1.9656	1.1844	1.6406
Н	-3.1807	2.9144	1.9587
Н	-4.3870	2.6775	-0.1972
Н	-3.8382	0.8087	-1.7084
Н	-1.4225	1.2606	2.5712
С	3.9795	1.6376	0.3810
С	2.9254	2.1509	-0.3645
С	1.8568	1.3501	-0.7627
С	1.8963	0.0088	-0.3858
С	2.9388	-0.5306	0.3503
С	3.9852	0.2964	0.7393
Н	4.7940	2.2835	0.6778
Н	2.9235	3.1962	-0.6449
Н	2.9154	-1.5771	0.6154
Н	4.8016	-0.1130	1.3175
С	0.7087	1.8994	-1.5600
Н	0.5523	1.3254	-2.4743
Н	-0.2232	1.8605	-0.9945
Н	0.8950	2.9359	-1.8342
Н	-1.4252	-0.7134	-2.2580
Н	-2.8794	-1.5991	-1.7757

Table S9. Atomic coordinates of isomer 1 of cresyl saligenin phosphate (B3LYP-
D3(BJ)/cc-pV(T+d)Z) in the principal inertial axes system.

Atom	a / Å	b/Å	c / Å
Р	-0.5794	1.9241	-0.0328
0	-1.3652	1.3560	1.2290
О	0.9462	1.7873	0.3969
О	-0.9138	3.2553	-0.5008
О	-0.8112	0.7792	-1.1469
С	-2.4943	0.4759	1.0079
С	-1.0564	-2.8639	-1.2500
С	-1.9255	-3.0991	-0.1910
С	-2.4098	-2.0331	0.5580
С	-2.0437	-0.7311	0.2437
С	-1.1726	-0.5213	-0.8204
С	-0.6683	-1.5683	-1.5688
Н	-0.6675	-3.6920	-1.8257
Н	-2.2163	-4.1096	0.0578
Н	-3.0736	-2.2118	1.3940
Н	0.0191	-1.3632	-2.3757
С	2.7967	-1.9099	0.7952
С	3.0005	-1.1391	-0.3427
С	2.3893	0.1033	-0.5000
С	1.5682	0.5393	0.5380
С	1.3629	-0.2024	1.6884
С	1.9800	-1.4403	1.8148
Н	3.2800	-2.8727	0.8865
Н	3.6439	-1.5055	-1.1320
Н	0.7163	0.1885	2.4591
Н	1.8209	-2.0310	2.7059
С	2.5837	0.9379	-1.7323
Н	3.3281	0.4888	-2.3870
Н	1.6513	1.0396	-2.2897
Н	2.9062	1.9473	-1.4771
Н	-2.8668	0.2145	1.9939
Н	-3.2715	1.0295	0.4756

Table S10. Atomic coordinates of isomer 2 of cresyl saligenin phosphate (B3LYP-D3(BJ)/cc-pV(T+d)Z) in the principal inertial axes system.

Atom	a / Å	b / Å	c / Å
Р	-0.0422	1.6047	-0.1166
0	-0.2041	1.1821	1.4026
О	0.7274	0.3826	-0.8045
О	0.4975	2.9362	-0.3133
О	-1.4946	1.3744	-0.7364
С	-0.7809	-0.1075	1.6871
С	-4.2360	-1.0202	-0.7117
С	-3.9599	-1.7595	0.4339
С	-2.8486	-1.4467	1.2015
С	-1.9928	-0.4070	0.8432
С	-2.2872	0.3143	-0.3118
С	-3.3997	0.0198	-1.0857
Н	-5.1031	-1.2517	-1.3141
Н	-4.6107	-2.5694	0.7305
Н	-2.6368	-2.0139	2.0993
Н	-3.5876	0.6121	-1.9693
С	4.3913	-1.1872	0.3460
С	3.3848	-2.0037	-0.1562
С	2.1505	-1.4844	-0.5389
С	1.9682	-0.1082	-0.3995
С	2.9588	0.7293	0.0883
С	4.1774	0.1788	0.4672
Н	5.3394	-1.6173	0.6369
Н	3.5540	-3.0680	-0.2547
Н	2.7753	1.7916	0.1598
Н	4.9558	0.8233	0.8507
С	1.0534	-2.3506	-1.0884
Н	1.3657	-3.3926	-1.1192
Н	0.1452	-2.2816	-0.4873
Н	0.7776	-2.0424	-2.0979
Н	-0.0097	-0.8689	1.5484
Н	-1.0457	-0.0815	2.7417

Table S11. Atomic coordinates of isomer 3 of cresyl saligenin phosphate (B3LYP-D3(BJ)/cc-pV(T+d)Z) in the principal inertial axes system.

Atom	a / Å	b / Å	c / Å
Р	0.1313	1.8375	-0.4421
0	-0.0752	1.5162	1.1025
Ο	1.5145	1.1310	-0.7634
Ο	0.1006	3.2226	-0.8721
Ο	-1.0029	0.9363	-1.1515
С	-1.4216	1.2948	1.5823
С	-3.1055	-1.9892	-0.5915
С	-3.3620	-1.8821	0.7706
С	-2.8168	-0.8296	1.4949
С	-2.0267	0.1258	0.8674
С	-1.7755	-0.0069	-0.4949
С	-2.3040	-1.0528	-1.2316
Н	-3.5234	-2.8086	-1.1593
Н	-3.9780	-2.6179	1.2673
Н	-3.0058	-0.7452	2.5573
Н	-2.0871	-1.1186	-2.2875
С	2.3844	-2.8456	0.0637
С	2.8496	-1.8379	0.8996
С	2.5636	-0.4954	0.6560
С	1.7883	-0.2108	-0.4664
С	1.3306	-1.1954	-1.3250
С	1.6262	-2.5249	-1.0540
Н	2.6216	-3.8776	0.2815
Н	3.4509	-2.0914	1.7629
Н	0.7516	-0.9120	-2.1909
Н	1.2677	-3.3007	-1.7157
С	3.0682	0.6000	1.5492
Н	3.7502	0.2008	2.2974
Н	3.5912	1.3644	0.9740
Н	2.2442	1.0979	2.0606
Н	-1.3331	1.1113	2.6492
Н	-2.0022	2.2086	1.4322

Table S12. Atomic coordinates of isomer 4 of cresyl saligenin phosphate (B3LYP-D3(BJ)/cc-pV(T+d)Z) in the principal inertial axes system.

Atom	а	b	с
Р	-0.0872	1.6275	0.2585
0	1.1044	2.1865	-0.6096
0	-0.8331	2.6036	1.0291
0	-0.8871	0.7869	-0.8439
0	0.5958	0.4971	1.1700
С	-3.9504	-1.8837	0.0313
С	-2.8106	-2.3094	-0.6409
С	-1.7851	-1.4133	-0.9156
С	-1.9210	-0.0940	-0.5154
С	-3.0498	0.3531	0.1543
С	-4.0647	-0.5562	0.4277
Н	-4.7460	-2.5834	0.2455
Н	-2.7146	-3.3411	-0.9498
Н	-0.8863	-1.7222	-1.4295
Н	-3.1151	1.3863	0.4610
Н	-4.9485	-0.2210	0.9523
С	3.6680	-1.9359	-0.2080
С	2.9814	-2.2432	0.9626
С	1.9565	-1.4211	1.4028
С	1.6202	-0.2933	0.6677
С	2.2942	0.0364	-0.5064
С	3.3238	-0.8027	-0.9284
Н	4.4705	-2.5722	-0.5528
Н	3.2450	-3.1217	1.5344
Н	1.4055	-1.6320	2.3076
Н	3.8617	-0.5570	-1.8356
С	1.9242	1.2423	-1.3306
Н	2.8136	1.7953	-1.6236
Н	1.3860	0.9448	-2.2327

Table S13. Atomic coordinates of isomer 1 of phenyl saligenin phosphate (B3LYP-D3(BJ)/cc-pV(T+d)Z) in the principal inertial axes system..

Atom	a / Å	b / Å	c / Å
Р	0.0584	-1.3773	-0.0500
0	-0.1776	-0.7406	-1.4820
0	0.6508	-2.7012	-0.0741
Ο	0.8219	-0.2427	0.7830
Ο	-1.3704	-1.2967	0.6524
С	4.5918	1.3114	-0.0308
С	4.3331	-0.0233	-0.3169
С	3.0842	-0.5773	-0.0592
С	2.0963	0.2337	0.4818
С	2.3364	1.5679	0.7773
С	3.5912	2.1038	0.5203
Н	5.5675	1.7307	-0.2317
Н	5.1082	-0.6471	-0.7400
Н	2.8770	-1.6169	-0.2648
Н	1.5440	2.1630	1.2082
Н	3.7843	3.1423	0.7511
С	-4.1800	1.6570	-0.1502
С	-4.3665	0.7546	0.8917
С	-3.4154	-0.2218	1.1449
С	-2.2773	-0.2863	0.3556
С	-2.0690	0.6036	-0.6957
С	-3.0407	1.5724	-0.9360
Н	-4.9217	2.4159	-0.3537
Н	-5.2542	0.8073	1.5061
Н	-3.5344	-0.9390	1.9437
Н	-2.8978	2.2660	-1.7551
С	-0.8267	0.5465	-1.5443
Н	-1.0693	0.7003	-2.5929
Н	-0.1087	1.3123	-1.2417

Table S14. Atomic coordinates of isomer 2 of phenyl saligenin phosphate (B3LYP-D3(BJ)/cc-pV(T+d)Z) in the principal inertial axes system.

Table S15. Natural bond analysis (NBO) of cresyl saligenin phosphate (B3LYP-D3(BJ)/def2-TZVP). List of most relevant donor-acceptor interactions according to second-order perturbation theory analysis of the Fock matrix in the NBO basis.

Donor NBO (i) ^a	Acceptor NBO (j)	E_2 / kcal mol ⁻¹
73. LP(3) O1	63. LP*(1) P2	338.43
69. LP(2) O7	63. LP*(1) P2	45.72
70. LP(3) O7	63. LP*(1) P2	34.3
71. LP(1) O1	63. LP*(1) P2	26.5
67. LP(2) O8	63. LP*(1) P2	23.18
72. LP(2) O1	654. BD*(2) C5-C6	22.05
12. BD(2) C2´-C1´	654. BD*(2) C5-C6	21.88
28. BD(2) C3 ^{**} -C2 ^{**}	667. BD*(2) C1 ^{~-} C6 [~]	21.5
69. LP(2) O7	636. BD*(1) P2-O8	20.72
70. LP(3) O7	635. BD*(1) P2-O2	20.61

^aThe first digit indicates the NBO number. LP = Lone pair, BD = Bond.

Table S16. Natural bond analysis (NBO) of phenyl saligenin phosphate (B3LYP-D3(BJ)/def2-TZVP). List of most relevant donor-acceptor interactions according to second-order perturbation theory analysis of the Fock matrix in the NBO basis.

^aThe first digit indicates the NBO number. LP = Lone pair, BD = Bond.

	$\begin{bmatrix} 0 & 1 & 2 & 0 \\ 1 & 3 & 3 \\ 6 & 5 & 4 \end{bmatrix}$	
Structural parameters	Equilibrium ^a	Crystal ^b
r(P=O) / Å	1.450	1.448
r(P-O1) / Å	1.605	1.575
r(P-O3) / Å	1.577	1.549
r(P-OPh) / A	1.601	1.572
\angle (O=P-O1) / deg	113.03	112.58
\angle (O=P-O3) / deg	116.27	114.54
\angle (O=P-OPh) / deg	117.54	116.68
\angle (O1-P-O3) / deg	103.94	105.02
\angle (P-O3-C4) / deg	118.19	117.72
\angle (O3-C4-C5) / deg	112.94	111.21
\angle (C4-C5-C6) / deg	122.11	122.70
\angle (C5-C6-O1) / deg	121.82	121.89
\angle (C6-O1-P) / deg	120.65	120.35
\angle (P-OPh-C α) / deg	122.61	124.00
\angle (O1-P-OPh) / deg	103.53	105.28
τ (P-O1-C6-C5) / deg	14.38	11.00
τ (O1-C6-C5-C4) / deg	-2.18	-2.28
τ (C6-C5-C4-O3) / deg	16.48	19.34
τ (C5-C4-O3-P) / deg	-44.04	-46.93
τ (C4-O3-P-O1) / deg	51.50	52.36
τ(O3-P-O1-C6) / deg	-35.72	-33.19
τ (O=P-OPh-C α) / deg	-63.75	-59.76
τ (P-OPh-C α -C β) / deg	-122.53	-117.13
^a B3LYP-D3(BJ)/cc-pV(7	$(\Gamma+d)\overline{Z}$. ^b Ref. 34.	

 Table S17. Comparison of the crystal and equilibrium structures of PSP.