Optical spectra of molecular aggregates and crystals: testing approximation schemes Electronic Supplementary Information

M. Anzola, F. Di Maiolo, A. Painelli

Electrostatic intermolecular interactions are treated in the point dipole approximation, so that

$$J_{i,j} = \frac{1}{4\pi\varepsilon} \left(\frac{\vec{\mu}_i \cdot \vec{\mu}_j - 3(\vec{\mu}_i \cdot \vec{d}_{ij})(\vec{\mu}_j \cdot \vec{d}_{ij})}{d_{ij}^3} \right) \\ = \frac{\mu_0^2}{4\pi\varepsilon d_{ij}^3} \left[\vec{m}_i \cdot \vec{m}_j - 3(\vec{m}_i \cdot \vec{d}_{ij})(\vec{m}_j \cdot \vec{d}_{ij}) \right],$$
(1)

where $\vec{\mu}_i$ is the transition dipole moment on molecule i, $\vec{m}_i = \vec{\mu}_i/\mu_0$ is the unit vector that defines the direction of $\vec{\mu}_i$, \vec{d}_{ij} is the unit vector connecting i and j sites, whereas d_{ij} is the distance between the two dipoles. The term in the squared parenthesis in the right hand side of the second line of the above equation is the D_{ij} quantity in Eq. 2 in the main text.

To relate the total oscillator strength of a system to a ground-state expectation value, we define the velocity dipole operator, \hat{v} :

$$i\hbar\hat{v} = [\hat{\mu}, \hat{H}],\tag{2}$$

where, to simplify the notation, we have suppressed the vector notation on both \hat{v} and $\hat{\mu}$ operators. The oscillator strength associated with the $G \to E$ transition is:

$$f_{EG} = \frac{2}{3} \frac{m_e}{\hbar e^2} \omega_{EG} \langle G | \hat{\mu} | E \rangle \langle E | \hat{\mu} | G \rangle.$$
(3)

To eliminate the transition frequency from the above expression we use:

$$i\langle G|\hat{v}|E\rangle = \omega_{EG}\langle G|\hat{\mu}|E\rangle \tag{4}$$

and its complex conjugate, thus getting:

Ì

$$F = \sum_{E} f_{EG} = \frac{-im_e}{3\hbar e^2} \langle G | [\hat{\mu}, \hat{v}] | G \rangle, \qquad (5)$$

thus proving Eq.12 in the main text. Furthermore, using Eqs. 3 and 9 (main text) and remembering the Paulions algebra (see Eq. 4 in the main text), the commutator $[\hat{\mu}, \hat{v}]$ can be easily calculated. In particular, we have:

$$\begin{aligned} [\hat{\mu}, \hat{v}] &= \frac{1}{i\hbar} \Big[\hat{\mu}, [\hat{\mu}, \hat{H}] \Big], \\ &= \frac{1}{i\hbar} \mu_0^2 \sum_i [\hbar\omega_0 - \lambda (\hat{a}_i^{\dagger} + \hat{a}_i)] (4\hat{n}_i - 2), \end{aligned}$$
(6)

that is Eq. 14 in the main text.

Figure 1: The same results as in Fig. 2, main text, but accounting for long-range electrostatic interactions.

Figure 2: The same results as in Fig. 3, main text, but accounting for long-range electrostatic interactions.

Figure 3: The same results as in Fig. 2, main text, but for different electronvibration coupling strength. a) $J_1 = 0.255$ eV, $\lambda = 0.10$ eV; b) $J_1 = 0.255$ eV, $\lambda = 0.22$ eV; c) $J_1 = -0.255$ eV, $\lambda = 0.10$ eV; d) $J_1 = -0.255$ eV, $\lambda = 0.22$ eV.

Figure 4: The same results as in Fig. 3, main text, but for different electronvibration coupling strength. a) $J_1 = 0.255$ eV, $\lambda = 0.10$ eV; b) $J_1 = 0.255$ eV, $\lambda = 0.22$ eV; c) $J_1 = -0.255$ eV, $\lambda = 0.10$ eV; d) $J_1 = -0.255$ eV, $\lambda = 0.22$ eV. Please notice the different emission intensity scales on the y axis.

Figure 5: The same results as in Fig. 7, main text, but accounting for long-range electrostatic interactions. The number of molecules included in the calculation has been set to 6, the biggest aggregate that can be computed with a 3PA-lr basis.

Figure 6: The same results as in Fig. 8, main text, but accounting for long-range electrostatic interactions. The number of molecules included in the calculation has been set to 6, the biggest aggregate that can be computed with a 3PA-lr basis. For H aggregates the monomer emission intensity is rescaled by a factor of 1/50, 1/100 and 1/1000 in panels (b), (d) and (f), respectively.