Supporting information

Probing Molecular Interactions of PEGylated Chitosan in Aqueous

Solutions Using Surface Forces Apparatus

Li Xiang^{1,‡}, Lu Gong^{1,‡}, Jiawen Zhang¹, Ling Zhang¹, Wenjihao Hu¹, Wenda Wang¹,

Qingye Lu², Hongbo Zeng^{1,*}

¹Department of Chemical and Materials Engineering, University of Alberta,

Edmonton, AB, T6G 1H9, Canada.

²Department of Chemical and Petroleum Engineering, University of Calgary, Calgary,

AB, T2N 1N4, Canada

*Email: <u>Hongbo.Zeng@ualberta.ca</u>; phone: +1-780-492-1044

Fig. S1. The procedures to synthesize PEGylated chitosan and the hydrogen-bonding sites in PEGylated chitosan (red circle).

Fig. S2. ¹H NMR spectra analysis of (a) 10% PEGylated chitosan, (b) 5% PEGylated chitosan and (c) native chitosan.

Fig. S3. Cross-section profiles of chitosan/PEGylated coatings at a) pH 3.5, b) pH 6.5 and c) pH 8.5.