Supplementary Information

Binding and activation of ethylene on tungsten carbide and platinum surfaces

Carlos Jimenez-Orozco,^{a*} Elizabeth Florez,^a Alejandro Montoya,^b and Jose A. Rodriguez^{c*}

^a Universidad de Medellín, Facultad de Ciencias Básicas, Carrera 87 No 30-65, Medellín, Colombia

^b University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia

^c Brookhaven National Laboratory, Chemistry Department, Upton, New York 11973, United States

Constant cut-off energy = 400 eV for screening <u>Conclusions</u>: Cut-off energy = 400 eV, **k**-points mesh = 5x5x1

Fig. S1. Establishment of the cut-off energy and k-points mesh for the adsorption of C_2H_4 on γ -WC(001) surface.

Constant cut-off energy = 400 eV for screening <u>Conclusions</u>: Cut-off energy = 400 eV, **k**-points mesh = 5x5x1

Fig. S2. Establishment of the cut-off energy and k-points mesh for the adsorption of C_2H_4 on α -WC(0001) surface.

Fig. S3. Geometry and electronic properties of the clean surfaces: a) γ -WC(001), b) α -WC-C, c) α -WC-W. Top: top view, middle: side view, bottom: ELF chart. Carbon and tungsten atoms are represented with brown and gray colors, respectively.

Fig. S4. Geometry and electronic aspects of the clean Pt(111) surface. a) top view, b) side view, bottom: ELF.

Fig. S5. Behavior of the binding on α -WC(0001) surface when H atoms are directed towards the surface.

Fig. S6. Difference in adsorption geometries of three structures by using a 4-layers and 6-layers slabs for C_2H_4 binding on the α -WC-W surface. a) Input geometry; b) output, 4-layers; c) output, 6-layers. Top and side view is shown in every case.

Fig. S7. *d*-band PDOS for every layer in Pt(111) surface slab. Black and red lines represent the PDOS before and after ethylene adsorption.

Fig. S8. PDOS for every layer in α-WC-C surface slab. The PDOS are *s*,*p*-bands for 1, 3, 5 layers, while *d*-band for 2, 4, 6 layers. Black and red lines represent the PDOS before and after ethylene adsorption.

Fig. S9. PDOS for every layer in α-WC-W surface slab. The PDOS are *s*,*p*-bands for 1, 3, 5 layers, while *d*-band for 2, 4, 6 layers. Black and red lines represent the PDOS before and after ethylene adsorption.

Fig. S10. *s*,*p*-PDOS for every layer in γ -WC(001) surface slab. Black and red lines represent the PDOS before and after ethylene adsorption.

Fig. S11. *d*-PDOS for every layer in γ -WC(001) surface slab. Black and red lines represent the PDOS before and after ethylene adsorption.

System	DFT and DFT +vdw energies (eV); vdW contributions	Number of layers in slab		
		4	6	8
C ₂ H ₄ adsorption	DFT	-3.12	-2.91	-2.91
on α-WC-C	DFT+vdW	-3.55	-3.35	-3.35
	% vdW	12.1	13.3	13.3
C_2H_4 adsorption	DFT	-1.88	-1.43	-1.42
on α-WC-W	DFT+vdW	-2.42	-1.98	-1.98
	% vdW	22.5	27.8	-1.97
C ₂ H ₄ adsorption	DFT	-0.78	-0.37	-0.36
on γ -WC(001)	DFT+vdW	-1.20	-0.87	-0.86
- , <i>, ,</i>	% vdW	35.3	58.1	58.7
H ₂ dissociative	DFT	-1.10	-1.02	-1.12
chemisorption	DFT+vdW	-1.23	-1.18	-1.20
reaction	% vdW	10.0	13.5	6.3

Table S1. Energetics for ethylene adsorption and H₂ dissociative chemisorption on tungsten carbide surfaces, as a function of the number of layers in slab.

Table S2. Adsorption energies (Eq. 1) for ethylene binding on the γ -WC(001) surface.

Mode	DFT	DFT+vdW	% vdW	C-C ^a	C=C
	(eV)	(eV)		(Å)	activation
di-o-CC	-0.72	-1.19	39.8	1.60	\checkmark
di-σ-CM	-0.37	-0.87	58.1	1.53	\checkmark
π -M ^b	-0.25	-0.81	69.0	1.36	×
H-down1	-0.23	-0.62	62.0	1.33	×
H-down2	-0.23	-0.54	58.4	1.33	×
π -M ^b	-0.22	-0.78	71.2	1.35	×
H-down1	-0.22	-0.61	63.6	1.33	×
H-down2	-0.21	-0.55	61.1	1.33	×
di-σ-MM	-0.20	-0.70	72.1	1.52	\checkmark
π -C ^b	0.03	-0.40		1.52	\checkmark
π -C ^b	0.48	0.01		1.49	\checkmark

^a C=C bond length of free ethylene is 1.33 Å.

^b Most stable structure in every case (π -M and π -C) has the C_{ethylene}-C_{ethylene} bond axis parallel to C_{surface}-C_{surface} bridge, while the other structure has it parallel to a W-W bridge.

Mode	DFT	DFT+vdW	% vdW	C-C ^a	C=C
_	(eV)	(eV)		(Å)	activation
α-WC-C					
di-o-CC	-2.91	-3.35	13.3	1.60	√
H-down2	-0.86	-1.35	36.4	1.33	×
π-С	0.02	-0.24		1.43	\checkmark
α-WC-W					
С-Н, С-Н	-1.68	-2.24	24.9	1.50	✓
C-H2	-1.43	-1.98	27.7	1.50	\checkmark
H-down2	0.06	-0.25		1.33	×
		11 1 00	.1 1	· 1 2 2 8	

Table S3. Ethylene adsorption energies (Eq. 1) on the α -WC(0001) surface

^a C=C bond length of free ethylene is 1.33 Å.

Table S4. Zero Point Energy (ZPE) term for absolute and adsorption energy for C_2H_4 binding on platinum and tungsten carbide surfaces. $E_{Non-ZPE} = Eq. 1$, $E_{ZPE} = Eq. 2$

Surface	Absolute energy	Adsorption energy		
	% ZPE	E _{Non-ZPE} (eV)	E _{ZPE} (eV)	% ZPE
Pt(111)	0.22	-1.78	-1.71	3.79
γ-WC(001)	0.15	-1.19	-0.87	36.77
α-WC-C	0.16	-3.35	-2.98	12.32
α-WC-W	0.13	-2.24	-2.25	0.53