Supporting Information

Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory

Hind Benzidi¹, Marwan Lakhal¹, Mourad Garara¹, Mustapha Abdellaoui¹, Abdelilah

Benyoussef², Abdallah El Kenz¹ and Omar Mounkachi¹

- ¹ Laboratory of Condensed matter and Sciences Interdisciplinary (LaMCScI), B.P. 1014, Faculty of Science, Mohammed V University, Rabat, Morocco;
 - ² 2Materials and Nanomaterials Centre, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR, Rabat, Morocco
 - * Correspondence: hind.benzidi@gmail.com;

1) Polymorph arsenene structural details:

Figure S 1 : Three most common arsenic allotropes are metallic gray, yellow, and black arsenic, with gray being the most common and stable form

 Table S 1: Calculated cohesive energies of arsenene buckling high, angles, As–As bond distances and bandgap obtained from GGA + vdW interaction included calculations.

	Latt. const. (Å)		Bond leng.	Bond ang.	Δ	Ec	Gap
	a	b	(Å)	(deg)	(Å)	(eV)	(eV)
Buckled	3,83	3,83	2,60	94,57	1,43	-2,95	1,99 (Indirect)
Puckred	4,00	4,48	2,62-2,68	97,584	2,62	-2,89	0,91(Indirect)
Planar	5,43	5,43	2,71	90	0	-2,32	0,19

After the energy minimization and geometry optimization, the obtained lattice parameters, band length, Δ and gap are shown in Table S1.

In order to explore the stability of each structure the cohesive energy, E_c , was investigated. As it can be observed, two types of structures, buckled and puckered, are found to be stable.

2) Adsorption of single adatoms on arsenene

Figure S 2: Structure of arsenene nanosheet and the schematics of the possible adatoms absorption sites in top and side views.

Adatama		h(Å)			
Additions					
	Н	Т	V	В	
Li	-2,413	-2,169	-2,554	Move to V	1,37
Na	-1,852	-1,472	-1,913	-1,827	2,169
Mg	-0,735	-0,646	-1,107	-0,717	2,0117

Table S 2: Adsorption energies at different adsorption sites, vertical distance (h) at the V-site

Figure S1 : (a) Top and (b) side views of atomic configuration in LiAs lattice. with bond lengths and thickness

3) Lattice parameters and interatomic distances for Li_xAs, Na_xAs and Mg_xAs

	Lattice parameters		bond lengths (Å)		Lattice parameter
		Å)			change (%)
	a	b	As-As	M-As	
Li _{0,125} As	3,87	3,87	2,65	2,68	1,04
Li _{0,375} As	4,02	3,99	2,73	2,66	4,96
Li _{0,5} As	4,05	3,97	2,83	2,68	5,74
LiAs	4,06	4,06	2,74	2,66	6,01
Li ₂ As	4,11	4,11	2,57	2,59	7,31
Li ₃ As	4,20	4,20	2,62	2,54	9,66
Na _{0,125} As	3,89	3,36	2,60	3,11	1,54
Na _{0,25} As	3,91	3,89	2,63	3,13	2,05
Na _{0,375} As	3,90	3,89	2,61	3,14	1,79
Na _{0,5} As	3,91	3,90	2,63	3,16	2,05
Na _{0,625} As	3,90	3,89	2,63	3,14	1,79
Na _{0,75} As	3,90	3,87	2,63	3,15	1,79
Na _{0,875} As	3,89	3,87	2,73	3,18	1,54
NaAs	3,88	3,86	2,70	3,17	1,29
Na _{1,5} As	3,79	3,27	2,64	3,21	-1,06
Na ₂ As	3,76	3,34	2,62	3,22	-1,86
Na ₃ As	3,81	3,83	3,15	2,87	-0,52

Mg _{0,125} As	3,84	3,84	2,58	3,09	0,26
Mg _{0,25} As	3,71	3,71	2,59	3,29	-3,23
Mg _{0,375} As	3,61	3,61	2,57	3,41	-6,09
Mg _{0,5} As	3,52	3,52	2,57	3,55	-8,81
MgAs	3,40	3,40	2,49	3,58	-12,65
Mg ₂ As	3,83	3,83	2,62	3,76	0,00

Table S 3 : Calculated lattice parameters, interatomic bonds and lattice parameters change

4) Magnetism behavior

Table S 4: The calculated results for the partial and total magnetic moments per unit cell

		Magnetic moment	
M _x As	As (μ_B /atom)	Ad-atoms (μ_B /atom)	Total (μ_B /cell)
Li _{0,125} As	-0,0001	0,0001	0,00
LiAs	0,0011	-0,0018	-0,02
Li _{2,5} As	0,0038	-0,0034	0,00
Li ₃ As	0,0005	0,0058	0,027
Na _{0,125} As	-0,0002	-0,0001	0,00
Na _{0,5} As	-0,0002	-0,0001	0,00
NaAs	-0,0000	0,0000	0,00
Na ₂ As	-0,0001	0,0000	0,00
Mg _{0,125} As	-0,0002	-0,0026	0,00
Mg _{0,5} As	0,0000	0,0000	0,00
MgAs	0,0054	0,0078	0,03
Mg ₂ As	-0,0075	-0,0239	-0,08

Figure S 3: Total density of states (DOS) of Li_xAs, Na_xAs, and Mg_xAs. (The Fermi level is aligned to 0.)