Supporting Information

Mechanistic insight into electroreduction of carbon dioxide on $FeN_x(x = 0 - 4)$

embedded graphene

Tingting Zhao,^a Yu Tian,^a Yuelin Wang, ^a Likai Yan, ^{a*} and Zhongmin Su^b

^a Institute of Functional Materials Chemistry and Local United Engineering Lab for

Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun,

130024, China.

^b School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China

* To whom correspondence should be addressed.

E-mail:yanlk924@nenu.edu.cn (L. K.).

Fig. S1 The band structure of FeN_0 -gra (a), FeN_1 -gra(b), FeN_2 -gra (c), FeN_3 -gra (d), and FeN_4 -gra (e).

	FeN ₀ -gra	FeN ₁ -gra	FeN ₂ -gra	FeN ₃ -gra	FeN ₄ -gra
band gap		0.33	0.02		0.44
spin	2.80	2.85	2.31	2.02	1.94
\mathcal{E}_{d}	-1.49	-1.42	-1.36	-1.14	-1.28

Table S1 The computed band gap (eV), spin magnetic moment (μ_B) and *d* band center (ε_d) of FeN_x-gra (x = 0 - 4).

Fig.S2 Gibbs free energy of adsorbates corresponding to *d* band center ε_d .

Fig. S3 Free energy profiles for CO_2ER on FeN_0 -gra (a), FeN_1 -gra (b), FeN_2 -gra (c), and FeN_4 -gra(d).

Fig. S4 Relative energy diagram for CO₂ reduction to CH₃OH on FeN₃-gra.

Fig. S5 The optimized geometric structures of initial states, transition states, and final states involved in the optimal reaction path for CH₃OH formation.

Fig. S6 Potential energy profiles for CO_2 reduction to CH_4 on FeN_3 -gra.

Fig. S7 The optimized geometric structures of initial states, transition states, and final states involved in the optimal reaction path for CH_4 formation.