SUPPLEMENTARY INFORMATION

S1. Circularly polarized orbital transitions

In the main publication text we focus on only one circularly polarized point group $\left(\mathrm{C}_{3 \mathrm{~h}}\right)$, thus here in Table 1 we present detailed information on which orbital transitions lead to circularly polarized triplet with $\mathrm{m}_{\mathrm{S}}= \pm 1$ for other point groups. For each point group the table includes, circularly polarized irreducible representation, symmetry of the orbital part of the triplet. The two last columns show pairs of orbitals between which transition result in CP triplet with $\mathrm{m}_{\mathrm{S}}=$ ± 1. They are separated into two categories: first one, transitions in which singlet and triplet with $\mathrm{m}_{\mathrm{S}}=0$ are forbidden, the second category consist of transitions in which singlet and triplet with $\mathrm{m}_{\mathrm{S}}=0$ are allowed, thus the triplet of interest can be hard to resolve. In practice, if in a molecule with a given symmetry the HOMO-LUMO pair (or HOMO-LUMO+1, HOMO-1LUMO) is one of listed pairs, there is a great chance that triplet with $\mathrm{m}_{\mathrm{S}}= \pm 1$ associated with this transition is selectively circularly polarized.

	CP irreducible representat ion	Orbital part symmetry of CP spinpolarized triplets	Orbital pairs leading to CP triplet with $\mathrm{ms}= \pm 1$ without other active states nearby	Orbital pairs leading to CP triplet with $\mathrm{ms}= \pm 1$ with other active states near
C_{3}	E	A, E		a-a, a-e, a-e
C_{4}	E	A,B	$\mathrm{a}-\mathrm{b}$	$\mathrm{a}-\mathrm{a}, \mathrm{b}-\mathrm{b}, \mathrm{e}-\mathrm{e}$
C_{5}	E_{1}	A, E_{1}	$\mathrm{a}-\mathrm{e}_{2}$	$a-a, e_{1}-e_{1}, e_{2}-e_{2}, e_{1}-e_{2}$
C_{6}	E_{1}	A, E_{2}	$\mathrm{a}-\mathrm{e}_{2}, \mathrm{~b}-\mathrm{e} 1$	$\mathrm{a}-\mathrm{a}, \mathrm{b}-\mathrm{b}, \mathrm{e}_{1}-\mathrm{e}_{1}, \mathrm{e}_{2}-\mathrm{e}_{2}$
C_{3}	E'	A', E"'	$a^{\prime}-e^{\prime \prime}, a^{\prime \prime}-e^{\prime}$	$a^{\prime}-a^{\prime \prime}, e^{\prime}-e^{\prime \prime}$
$\mathrm{C}_{4 \mathrm{~h}}$	E_{u}	$\mathrm{A}_{\mathrm{u}}, \mathrm{B}_{\mathrm{u}}, \mathrm{E}_{\mathrm{u}}$	$a_{g}-b_{u}, a_{u}-b_{g}$	$\begin{aligned} & a_{\mathrm{g}}-a_{\mathrm{u}}, \mathrm{~b}_{\mathrm{g}}-\mathrm{b}_{\mathrm{u}}, a_{\mathrm{g}}-e_{\mathrm{u}}, \mathrm{~b}_{\mathrm{g}}-e_{\mathrm{u}}, \\ & \mathrm{a}_{\mathrm{u}}-e_{\mathrm{g}}, \mathrm{~b}_{\mathrm{u}}-e_{\mathrm{g}}, \mathrm{e}_{\mathrm{g}}-e_{\mathrm{u}} \end{aligned}$
$\mathrm{C}_{5 \mathrm{~h}}$	$\mathrm{E}_{1}{ }^{\prime}$	A', $\mathrm{E}_{2}{ }^{\prime \prime}$	$a^{\prime}-e_{2}^{\prime \prime}, a^{\prime \prime}-e_{2}^{\prime}, e_{1}^{\prime}-e_{2}{ }^{\prime \prime}$	$\begin{aligned} & \mathrm{a}^{\prime}-\mathrm{a}^{\prime \prime}, \mathrm{e}_{1}{ }^{\prime}-\mathrm{e}_{1}{ }^{\prime \prime}, \mathrm{e}_{2}^{\prime}-\mathrm{e}_{2}{ }^{\prime \prime}, \\ & \mathrm{e}_{1}^{\prime}-\mathrm{e}_{2}{ }^{\prime \prime} \end{aligned}$
C_{6}	$\mathrm{E}_{1 \mathrm{u}}$	$\mathrm{A}_{\mathrm{u}}, \mathrm{E}_{2 \mathrm{u}}$	$\begin{aligned} & a_{\mathrm{g}}-e_{2 \mathrm{u}}, \mathrm{~b}_{\mathrm{g}}-e_{1 \mathrm{u}}, \mathrm{e}_{1 \mathrm{~g}}-\mathrm{a}_{\mathrm{u}}, \\ & \mathrm{~b}_{\mathrm{u}}-e_{2 \mathrm{e}} \\ & \hline \end{aligned}$	$\begin{aligned} & a_{g}-a_{u}, b_{u}-b_{g}, e_{1 g}-e_{1 u} \\ & e_{2 g}-e_{2 u}, e_{1 g}-e_{2 u} \end{aligned}$
S_{4}	E	A, B	$\mathrm{a}-\mathrm{a}, \mathrm{b}-\mathrm{b}$	$\mathrm{e}-\mathrm{e}, \mathrm{a}-\mathrm{b}$
S_{6}	E_{u}	$\mathrm{A}_{\mathrm{u}}, \mathrm{E}_{\mathrm{u}}$		$a_{g}-a_{u}, e_{g}-a_{u}, e_{g}-e_{u}, a_{g}-e_{u}$
S_{8}	E_{1}	B, E_{2}	$a-e_{2}, b-e_{2}, e_{1}-e_{1}, e_{3}-e_{3}$	$\mathrm{a}-\mathrm{b}, \mathrm{e}_{1}-\mathrm{e}_{3}, \mathrm{e}_{2}-\mathrm{e}_{2}$

Table 1 Table presenting point groups supporting circularly polarized (CP) transitions and list of orbital transitions leading to possible spin-injection via CPL.

S2. $\mathbf{C}_{3 \mathrm{~h}}$ Double group character and product tables

Table 2 and Table 3 present character table and cross product table respectively for $\mathrm{C}_{3 \mathrm{~h}}$ double group.

		E	\bar{E}	$\mathrm{~S}_{3}{ }^{2}$	\bar{S}_{3}^{2}	C_{3}	\bar{C}_{3}	σ_{h}	$\bar{\sigma}_{h}$	$\mathrm{C}_{3}{ }^{2}$	\bar{C}_{3}^{2}	$\mathrm{~S}_{3}$	\bar{S}_{3}	
Γ_{1}	$\mathrm{~A}^{\prime}$	1	1	1	1	1	1	1	1	1	1	1	1	$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
Γ_{2}	E^{\prime}	1	1	$-\omega^{2}$	$-\omega^{2}$	ω^{4}	ω^{4}	1	1	$-\omega^{2}$	$-\omega^{2}$	ω^{4}	ω^{4}	$\mathrm{i}(\mathrm{x}-\mathrm{iy})$
Γ_{3}	E^{\prime}	1	1	ω^{4}	ω^{4}	$-\omega^{2}$	$-\omega^{2}$	1	1	ω^{4}	ω^{4}	$-\omega^{2}$	$-\omega^{2}$	$\mathrm{i}(\mathrm{x}+\mathrm{iy})$
Γ_{4}	$\mathrm{~A}^{\prime \prime}$	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	z
Γ_{5}	$\mathrm{E}^{\prime \prime}$	1	1	ω^{2}	ω^{2}	ω^{4}	ω^{4}	-1	-1	$-\omega^{2}$	$-\omega^{2}$	$-\omega^{4}$	$-\omega^{4}$	
Γ_{6}	$\mathrm{E}^{\prime \prime}$	1	1	$-\omega^{4}$	$-\omega^{4}$	$-\omega^{2}$	$-\omega^{2}$	-1	-1	ω^{4}	ω^{4}	ω^{2}	ω^{2}	
Γ_{7}		1	-1	ω	$-\omega$	ω^{2}	ω^{2}	-i	i	$-\omega^{4}$	ω^{4}	$-\omega^{5}$	ω^{5}	$\Psi(1 / 2,1 / 2)=$ 'spin up
Γ_{8}		1	-1	$-\omega^{5}$	ω^{5}	$-\omega^{4}$	ω^{4}	i	-i	ω^{2}	$-\omega^{2}$	ω	$-\omega$	$\Psi(1 / 2)=’$ 'spin down
Γ_{9}		1	-1	$-\omega$	ω	ω^{2}	$-\omega^{2}$	i	-i	$-\omega^{4}$	ω^{4}	ω^{5}	$-\omega^{5}$	
Γ_{10}		1	-1	ω^{5}	$-\omega^{5}$	$-\omega^{4}$	ω^{4}	-i	i	ω^{2}	$-\omega^{2}$	$-\omega$	ω	
Γ_{11}		1	-1	-i	i	-1	1	-i	i	-1	1	i	-i	
Γ_{12}		1	-1	i	-i	-1	1	i	-i	-1	1	-i	i	

Table 2 Double point group $\mathrm{C}_{3 \mathrm{~h}}$ character table. First column shows labelling according to Koster's book [1] and the second one to the point group online base [15]. The last column contains functions which transform as according irreducible representations. ω is defined as $e^{i \pi / 6}$.

Γ_{1}	Γ_{2}	Γ_{3}	Γ_{4}	Γ_{5}	Γ_{6}	Γ_{7}	Γ_{8}	Γ_{9}	Γ_{10}	Γ_{11}	Γ_{12}	
Γ_{1}	Γ_{2}	Γ_{3}	Γ_{4}	Γ_{5}	Γ_{6}	Γ_{7}	Γ_{8}	Γ_{9}	Γ_{10}	Γ_{11}	Γ_{12}	Γ_{1}
${ }^{+}$	Γ_{3}	Γ_{1}	Γ_{5}	Γ_{6}	Γ_{4}	Γ_{11}	Γ_{9}	Γ_{12}	Γ_{7}	Γ_{10}	Γ_{8}	Γ_{2}
		Γ_{2}	Γ_{6}	Γ_{4}	Γ_{5}	Γ_{10}	Γ_{12}	Γ_{8}	Γ_{11}	Γ_{7}	Γ_{9}	Γ_{3}
			Γ_{1}	Γ_{2}	Γ_{3}	Γ_{9}	Γ_{10}	Γ_{7}	Γ_{8}	Γ_{12}	Γ_{11}	Γ_{4}
				Γ_{3}	Γ_{1}	Γ_{12}	Γ_{7}	Γ_{11}	Γ_{9}	Γ_{8}	Γ_{10}	Γ_{5}
					Γ_{2}	Γ_{8}	Γ_{11}	Γ_{10}	Γ_{12}	Γ_{9}	Γ_{7}	Γ_{6}
						Γ_{5}	Γ_{1}	Γ_{2}	Γ_{4}	Γ_{6}	Γ_{3}	Γ_{7}
							Γ_{6}	Γ_{4}	Γ_{3}	Γ_{2}	Γ_{5}	Γ_{8}
								Γ_{5}	Γ_{1}	Γ_{3}	Γ_{6}	Γ_{9}
									Γ_{6}	Γ_{5}	Γ_{2}	Γ_{10}
										Γ_{4}	Γ_{1}	Γ_{11}
											Γ_{4}	Γ_{12}

[^0]
S3.Triethyls optimized geometries

Below, we present optimized geometries of $\mathrm{Bet}_{3}, \mathrm{AlEt}_{3}, \mathrm{GaEt}_{3}$ and InEt_{3}. Structures were optimized using Gaussian with B3LYP functional and aug-cc-pvdz basis set (for $\mathrm{Bet}_{3}, \mathrm{AlEt}_{3}$ and GaEt_{3}) and for InEt_{3} combination of aug-cc-pvdz and lanl2dz.

22
BEt3

B	0.000000	0.000000	0.000000
C	0.000000	1.580374	0.000000
C	1.338653	2.333412	0.000000
H	-0.610230	1.905136	0.864061
H	-0.610230	1.905136	-0.864061
H	1.190902	3.422869	0.000000
H	1.942190	2.084805	0.884800
H	1.942190	2.084805	-0.884800
C	1.368644	-0.790187	0.000000
C	1.351468	-2.326014	0.000000
H	1.955011	-0.424094	0.864061
H	1.955011	-0.424094	-0.864061
H	2.368841	-2.742787	0.000000
H	0.834399	-2.724389	0.884800
H	0.834399	-2.724389	-0.884800
C	-1.368644	-0.790187	0.000000
C	-2.690121	-0.007399	0.000000
H	-1.344782	-1.481043	0.864061
H	-1.344782	-1.481043	-0.864061
H	-3.559743	-0.680083	0.000000
H	-2.776589	0.639583	0.884800
H	-2.776589	0.639583	-0.884800

22

AlEt3

C	0.000000	1.985257	0.000000
C	1.366717	2.697814	0.000000
H	-0.594489	2.321289	0.869741
H	-0.594489	2.321289	-0.869741
H	1.264577	3.794085	0.000000
H	1.965361	2.428940	0.883023
H	1.965361	2.428940	-0.883023
C	1.719283	-0.992629	0.000000
C	1.653017	-2.532518	0.000000
H	2.307540	-0.645802	0.869741
H	2.307540	-0.645802	-0.869741
H	2.653486	-2.992199	0.000000
H	1.120843	-2.916522	0.883023
H	1.120843	-2.916522	-0.883023
C	-1.719283	-0.992629	0.000000
C	-3.019734	-0.165296	0.000000
H	-1.713051	-1.675487	0.869741
H	-1.713051	-1.675487	-0.869741

H	-3.918063	-0.801887	0.000000
H	-3.086204	0.487582	0.883023
H	-3.086204	0.487582	-0.883023
Al	0.000000	0.000000	0.000000

22

GaEt3

Ga	0.000000	0.000000	0.000000
C	0.000000	2.004613	0.000000
C	1.375837	2.689965	0.000000
C	1.736046	-1.002307	0.000000
C	1.641659	-2.536492	0.000000
C	-1.736046	-1.002307	0.000000
C	-3.017496	-0.153472	0.000000
H	-0.589519	2.333175	0.873175
H	-0.589519	2.333175	-0.873175
H	1.289104	3.787810	0.000000
H	1.968735	2.411656	0.883693
H	1.968735	2.411656	-0.883693
H	2.315348	-0.656049	0.873175
H	2.315348	-0.656049	-0.873175
H	2.635788	-3.010302	0.000000
H	1.104188	-2.910802	0.883693
H	1.104188	-2.910802	-0.883693
H	-1.725829	-1.677126	0.873175
H	-1.725829	-1.677126	-0.873175
H	-3.924892	-0.777508	0.000000
H	-3.072923	0.499147	0.883693
H	-3.072923	0.499147	-0.883693

22

InEt3

C	0.000000	2.176194	0.000000
C	1.378191	2.860921	0.000000
H	-0.587777	2.510756	0.872634
H	-0.587777	2.510756	-0.872634
H	1.297091	3.960251	0.000000
H	1.972875	2.582662	0.883099
H	1.972875	2.582662	-0.883099
C	1.884639	-1.088097	0.000000
C	1.788535	-2.624009	0.000000
H	2.468267	-0.746348	0.872634
H	2.468267	-0.746348	-0.872634
H	2.781133	-3.103440	0.000000
H	1.250213	-2.999891	0.883099
H	1.250213	-2.999891	-0.883099
C	-1.884639	-1.088097	0.000000
C	-3.166725	-0.236912	0.000000
H	-1.880490	-1.764408	0.872634
H	-1.880490	-1.764408	-0.872634

H	-4.078224	-0.856812	0.000000
H	-3.223088	0.417229	0.883099
H	-3.223088	0.417229	-0.883099
In	0.000000	0.000000	0.000000

S4.TDDFT calculations for BEt $_{3}$, AlEt $_{3}$, GaEt $_{3}$ and InEt $_{3}$

For each of $\mathrm{BEt}_{3}, \mathrm{AlEt}_{3}, \mathrm{GaEt}_{3}$ and InEt_{3} molecule we calculated excited states using Gaussian and Dirac without and with spin included. We used the same geometry for each molecule to eliminate variations in result obtained using Gaussian and Dirac due to changes in molecular geometry. In Dirac we used 'Exact 2-Component one-electron Hamiltonian' (X2C) and Gaunt interactions added to Hamiltonian, which includes 2-electron spin-same and spin-other-orbit corrections. Additionally for calculations without spin we included keyword '.SPINFREE'.

For InEt_{3}, structure optimization as well as TDDFT in Gaussian were performed using aug-ccpvdz basis sets for C and H atoms and lan2ldz basis set for In atom. In Dirac, TDDFT for InEt_{3} was done using dyall.ae2z basis set for C and H atoms and dyall.v3z for In atom. In all abovementioned calculations we used B3LYP functional.

Below, we present the sets of lowest excited states calculated for $\mathrm{Bet}_{3}, \mathrm{AlEt} 3, \mathrm{GaEt} 3$ and InEt_{3} obtained using three methods described above (Table 4-Table 7).

The symmetries of states calculated in Dirac with spin are given in a $\mathrm{C}_{3 \mathrm{~h}}$ subgroup: C_{s}, because $\mathrm{C}_{3 h}$ point group is not implemented in Dirac. In C_{s} point group A' refers to A^{\prime} and E^{\prime} of $\mathrm{C}_{3 h}$; A" refers to A" and E" of $\mathrm{C}_{3 \mathrm{~h}}$. Thus if there are two states A' or A" (C C_{s} notation) very close in energy to each other we interpret it as doubly degenerate E^{\prime} or $E^{\prime \prime}$ respectively in $\mathrm{C}_{3 \mathrm{~h}}$ notation. Otherwise it is A' or A" (in $\mathrm{C}_{3 \mathrm{~h}}$ point groups).

Table 4 Table with energies of the lowest excited states (T1 and S 1) for BEt_{3} calculated using different TDDFT implementations and levels of theory. All calculations were performed on the same molecular geometry - optimized in Gaussian using B3LYP functional and aug-cc-pvdz basis set. Oscillator strengths for presented excited states calculated in Gaussian and in Dirac without spin included are equal zero. Energies are given in eV . The last row shows the next optically allowed state with its oscillator strength f .

Table 5 Table with energies of the lowest excited states (T1 and S1) for AlEt_{3} calculated using different TDDFT implementations and levels of theory. All calculations were performed on the same molecular geometry - optimized in Gaussian using B3LYP functional and aug-cc-pvdz basis set. Oscillator strengths for presented excited states calculated in Gaussian and in Dirac without spin included are equal zero. Energies are given in eV . The last row shows the next optically allowed state with its oscillator strength f .

GaEt $_{3}$

Gaussian		Dirac X2C Gaunt spin free		Dirac X2C Gaunt			
Singlets	Triplets	Singlets	Triplets	States	Symmetry		Oscillator strength
					Calculated (C_{s} PG)	Interpretati on (in $\mathrm{C}_{3 \mathrm{~h}}$)	
	$\begin{gathered} 4.3738 \\ \left(E^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 4.37623 \\ \left(\mathrm{E}^{\prime \prime}\right) \end{gathered}$	4.35807	$2{ }^{\prime}$	E'	0.00002861
				,	2 A	E	0.00002862
				4.37493	A"	E"	-
				4.37500	A"		-
				4.39484	A'	A'	-
				4.39530	A'	A'	-
$\begin{gathered} 4.6374 \\ \left(\mathrm{E}^{\prime}\right) \\ \hline \end{gathered}$		4.6385		4.63984	A"	E'	-
		(E'')		4.63990	A"		-
						..	
$\begin{gathered} 5.4024 \\ \left(\mathrm{E}^{\prime}\right) \\ \mathrm{f}=0.0576 \end{gathered}$		$\begin{gathered} 5.3663 \\ \left(\mathrm{E}^{\prime}\right) \\ \mathrm{f}=0.056 \\ 8 \end{gathered}$		5.1319	A'	E’	0.0001915

Table 6 Table with energies of the lowest excited states (T1 and S 1) for GaEt_{3} calculated using different TDDFT implementations and levels of theory. All calculations were performed on the same molecular geometry - optimized in Gaussian using B3LYP functional and aug-cc-pvdz basis set. Oscillator strengths for presented excited states calculated in Gaussian and in Dirac without spin included are equal zero. Energies are given in eV . The last row shows the next optically allowed state with its oscillator strength f .

InEt $_{3}$

Table 7 Table with energies of the lowest excited states (T1 and S1) for InEt_{3} calculated using different TDDFT implementations and levels of theory. All calculations were performed on the same molecular geometry - optimized in Gaussian using B3LYP functional and aug-cc-pvdz basis set. Oscillator strengths for presented excited states calculated in Gaussian and in Dirac without spin included are equal zero. Energies are given in eV. The last row shows the next optically allowed state with its oscillator strength f .
[1] H. S. G.F. Koster, J.O. Dimmock, R.G. Wheeler, (1963).

[^0]: Table 3 Product table of double group $\mathrm{C}_{3 \mathrm{~h}}$ from [1].

