Supporting information

Oriented Assembly of CdS nanocrystals via Dynamic Surface

Modifications Tailored Particle Interaction

Xiaogang Xue, ^{*} ^{a,c} Hualin Chi, ^a Xiuyun Zhang, ^a Juan Xu,^a Jian Xiong, ^{*a} Jinsheng Zheng^{*b}

a. School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials,
Guilin University of Electronic Technology, Guilin 541004, People's Republic of China.; E-mail:
liangzixue@163.com
b. College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and
Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou
310018, China; E-mail: jszheng@zstu.edu.cn
c. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of

Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

Surporting Figures and Tables

S1. The temporal UV-vis spectra for TGA capped CdS QDs during growth at pH = 4, 7, 10 and 12 at 95 °C and the method for achieving the average size of the grown CdS QDs.

The UV–vis absorbance data were recorded using a Shimadza UV- 2550 double monochromator UV-vis spectrophotometer at room temperature (298 K).

a-d) Temporal UV-vis spectra of TGA-capped CdS QDs during coarsening at 95 °C at pH = 4, 8 10 and 12.

The average size of the CdS QDs during growth could be calculated from the absorption edge by using the effective mass model:

$$E_{R}^{*} = E_{g} + \frac{h^{2}\pi^{2}}{2r^{2}} \left(\frac{1}{m_{0}m_{e}} + \frac{1}{m_{0}m_{h}}\right) - \frac{1.8e^{2}}{4\pi\varepsilon\varepsilon_{0}r}$$

where E_R^* is the band gap of the nanoparticles ($E_R^* = hc/\lambda$), E_g is the band gap of the corresponding bulk material, r is the particle radius, m_0 is the mass of a free electron, m_e is the effective mass of the electrons, m_h is the effective mass of the holes, ε is the relative permittivity, ε_0 is the permittivity of free space, \hbar is Planck's constant, and e is the charge on the electron. S2. The XRD pattern SAED and HRTEM images of the as-synthesized TGA capped CdS QDs.

a) The XRD pattern of the as-synthesized TGA capped CdS QDs; b) TEM image, inset SAED and HRTEM images of the as-synthesized CdS QDs

S3. The fitting results of the PL decay curves of CdS samples pH = 4, pH = 12, F-T, A-P12.

The decay curves of CdS samples pH = 4, pH = 12, F-T, A-P 12 can be well fitted by the biexponential function with different τ_1 and τ_2 values. The detailed parameters of the biexponential function for the four CdS samples are listed in Table. As table illustrated, the shorter decay lifetime τ_1 equals to 0.4–5 ns and the longer decay lifetime and τ_2 ranges from 72 to 131 ns.

The parameter of the fitting for the time-resolved PL of the four CdS samples by using the biexponential function

Sample	τ ₁ (ns)	τ ₂ (ns)	χ^2
pH = 4	4.61	72.69	1.32
pH = 12	4.34	81.12	1.25
F-T	3.94	131.25	1.17
A-P 12	0.41	3.64	1.22

S4. The size Experimental data (scatter) and fitting results (solid line) of the size of CdS QDs as a function of time for CdS at pH = 8 and 10.

The growth of CdS at pH = 8 and 10 can be well fitted by using typical "1+1" OA model:

$$D = \frac{D_0(\sqrt[3]{2}kt+1)}{kt+1}$$

Where t is time, k is a rate constant of the OA, D and D_0 is the average particle diameter of particles at time of 0 and t.

a-b) The size Experimental data (scatter) and fitting results (solid line) of the size of CdS QDs as a function of time for CdS at pH = 8 and 10.

S5. Estimated values of kinetic parameters for the growth of TGA-capped CdS at pH =

рН	k (1/min)	D ₀ (nm)	
4	0.062	3.00	
7	0.055	3.00	
10	0.046	3.00	

4, 7 and 10 by fitting the experimental data.

S6. Estimated values of kinetic parameters for the two growth of TGA-capped CdS at pH = 12 by fitting the experimental data with the established model in main text (i.e. equation 5 and 6).

Step 1		Step 2		
k ₁ (1/min)	D ₀ (nm)	k ₂ (1/min)	D ₀ (nm)	t _o (min)
0.185	2.85	0.012	2.90	20

S7. Photographs of the 0-2 °C aging TGA-CdS of pH = 12 (the left) for 1 month and the repeated freezing-defreezing processed TGA-CdS of pH = 12 (the right).

Photographs of the 0 - 2 $^{\circ}$ C aging TGA-CdS of pH = 12 (the left) for 1 month and the repeated

freezing-defreezing processed TGA-CdS of pH = 12 (the right)