Relevance of Dzyaloshinskii-Moriya spectral broadenings in promoting spin decoherence: a pulsed-EPR comparative study of two structurally related iron(III) and chromium(III) spintriangle molecular qubits

Jérôme Robert, Nathalie Parizel, Philippe Turek, Athanassios K. Boudalis*

Supporting Information

1. Spin-lattice relaxation

1.1. Saturation recovery studies of Fe₃

Figure S1. Variable-temperature saturation recovery data of **Fe**₃ (colored lines) and fits to monoexponential (top left) and stretched exponential (top right) laws (black lines). The derived T_1 times are plotted as $1/T_1$ vs 1/T (bottom right) and the high-*T* regimes are fitted to Orbach and Raman processes. The pulse sequence is shown at the bottom.

1.2. Saturation recovery studies of Cr₃

Figure S2. Variable-temperature saturation recovery data of Cr_3 (colored lines) and fits to monoexponential (top left) and stretched exponential (top right) laws (black lines). The derived T_1 times are plotted as $1/T_1$ vs 1/T (bottom right) and the high-*T* regimes are fitted to Orbach and Raman processes. The pulse sequence is shown at the bottom.

		Fe ₃		
	Monoexp.	Stretched		
$T(\mathbf{K})$	T_1 (µs)	T_1 (µs)	β	
4.13	348(4)	379(4)	0.657(6)	
4.39	344(4)	375(3)	0.651(6)	
4.99	369(15)	392(11)	0.64(1)	
6.00	51(1)	55(1)	0.73(1)	
6.20	41(1)	42.7(9)	0.72(1)	
6.40	30(1)	30.0(7)	0.69(1)	
6.60	21.7(9)	22.0(6)	0.66(1)	
6.80	12.0(3)	13.2(4)	0.75(2)	
7.00	8.8(3)	9.3(3)	0.74(2)	
7.40	5.1(2)	5.2(2)	0.68(3)	
8.00	1.86(9)	2.0(1)	0.62(3)	

Table S1.	Best-fit	parameters	of var	riable-temper	ature	saturation	recovery	traces	of Fe ₃	and	\mathbf{Cr}_3 to
monoexp	onetial ar	nd stretched	expon	nential laws.							

		Cr ₃	
	Monoexp.	Stre	etched
$T(\mathbf{K})$	T_{1} (µs)	T_1 (µs)	β
4.40	2.57(1)	2.45(1)	0.722(1)
4.58	2.56(1)	2.45(1)	0.721(1)
4.79	2.44(1)	2.33(1)	0.735(1)
4.99	2.35(1)	2.308(9)	0.7340(1)
5.24	2.36(1)	2.316(6)	0.741(1)
5.99	2.36(1)	2.319(6)	0.741(1)
6.49	1.70(1)	1.689(7)	0.745(1)
6.99	1.270(9)	1.206(8)	0.689(3)
7.50	0.873(8)	0.81(1)	0.621(5)

1.3. Inversion recovery studies of Fe₃

Figure S3. Variable-temperature inversion recovery data of \mathbf{Fe}_3 (colored lines) and fits to monoexponential (top left) and stretched exponential (top right) laws (black lines). The derived T_1 times are plotted as $1/T_1$ vs 1/T (bottom right). The pulse sequence is shown at the bottom.

1.4. Inversion recovery studies of Cr₃

Figure S4. Variable-temperature inversion recovery data of Cr_3 (colored lines) and fits to monoexponential (top left) and stretched exponential (top right) laws (black lines). The derived T_1 times are plotted as $1/T_1$ vs 1/T (bottom right). The pulse sequence is shown at the bottom.

2. Calculation of Debye temperature for the solid Fe₃

The Debye temperature for solid Fe_3 was calculated by fitting the previously reported¹ thermal dependence of its unit cell volume (Figure S 5) to the following equation:²

$$V(T) = V(0) + 3Nk_B \Theta'_D \frac{T}{\Theta_D} D\left(\frac{\Theta_D}{T}\right)$$
(S1)

where N is the number of atoms per unit cell, $\Theta'_D = \frac{d\Theta_D}{dp}$ is the Debye temperature change as a

function of pressure, and $D(x) = \frac{3}{x^3} \int_0^x \frac{z^3}{e^z - 1} dz$ is the Debye function. For N = 274 atoms, the bestfit results were $\Theta_D = 199(24)$ K, $V_0 = 2933(1)$ Å³, $k_B \Theta_D = 0.11(1)$ Å³.

Figure S5. Variable-temperature unit-cell volume data and fit according to Equation S1.

The fits were carried out with a custom-made Matlab routine using a polylogarithm approximation of the Debye function:³

```
function y = Dpolylog(x)
y = x.*real((-1/5).*(pi^4)./power(x,4) - 3/4 +...
3.*log(1 - exp(x))./x...
+9.*polylog(2,exp(x))./power(x,2)...
-18.*polylog(3,exp(x))./power(x,3)...
+18.*polylog(4,exp(x))./power(x,4));
end
```

The arithmetical precision of this function was checked against an integral-based Matlab function implementing the Debye function definition:

```
function y = D(x)
fun = @(x) power(x,3)./(exp(x)-1);
y = 3./power(x,3) .* integral(fun,0,x);
end
```

The two were found to differ only after the tenth significant digit.

3. Spin-spin relaxation

Figure S 6. Indicative Hahn echo decay traces (5.5 K) for Fe_3 (red) and Cr_3 (red). The inset shows the Fourier transforms of the decay curves.

Figure S7. Thermal dependence of T_m times of **Fe**₃ (left) and **Cr**₃ (right) derived from fits to variable-temperature Hahn echo decay curves.

$T(\mathbf{K})$	T_m (µs)	f_{ESEEM} (MHZ)
4.11	2.6(1)	2.23(1)
4.93	2.7(1)	2.24(1)
5.99	2.7(1)	2.24(1)
6.40	2.4(1)	2.27(1)
6.80	2.6(1)	2.24(1)
7.00	2.5(1)	2.24(1)
7.20	2.4(1)	2.24(1)
7.50	1.56(5)	2.23(1)
8.50	0.62(2)	2.00(4)

Table S2. Best-fit parameters of variable-temperature Hahn echo decay traces of Fe_3 and Cr_3 to the model described in the main text.

<i>T</i> (K)	T_m (µs)	$f_{\rm ESEEM}$ (MHZ)
4.30	0.51(1)	2.30(1)
4.40	0.51(1)	2.30(1)
4.55	0.54(1)	2.28(1)
4.95	0.53(1)	2.28(1)
5.00	0.52(1)	2.28(1)
5.50	0.48(1)	2.30(1)
6.00	0.41(1)	2.36(2)
6.50	0.322(8)	2.36(3)
7.00	0.271(9)	2.48(5)

4. Nutation experiments

4.1. Fits to time domain experiments

The time-domain nutation traces were fitted to the following model:

$$M_{z}(t_{nut}) = k_{R_{1}}e^{-t_{nut}/\tau_{R_{1}}}\cos(2\pi f_{R_{1}}t_{nut}) + k_{R_{2}}e^{-t_{nut}/\tau_{R_{2}}}\cos(2\pi f_{R_{2}}t_{nut} + \varphi_{R_{2}}) + (S2) + k_{H}e^{-t_{nut}/\tau_{1_{H}}}\cos(2\pi f_{1_{H}}t_{nut} + \varphi_{1_{H}})$$

4.2. Frequency-domain nutation data

Figure S8. Fourier transforms of the full range of nutation data (blue lines) and of a partial data set chosen to start after the full damping of Rabi oscillations (red lines). The persistence of the longer-lived ESEEM peaks and the disappearance of the shorter-lived nutation peaks clearly distinguishes the different damping profiles of the two. The nutation of Cr_3 is longer-lived than that of Fe_3 and the peak suppression is not complete.

5. References

- 1 A. N. Georgopoulou, I. Margiolaki, V. Psycharis and A. K. Boudalis, *Inorg. Chem.*, 2017, 56, 762–772.
- 2 H.-Y. Ko, R. A. DiStasio, B. Santra and R. Car, *Phys. Rev. Mater.*, 2018, **2**, 055603.
- 3 A. E. Dubinov and A. A. Dubinova, Tech. Phys. Lett., 2008, 34, 999–1001.