Supplementary Information

New insights into the origin of unstable sodium graphite intercalation

compounds

Olena Lenchuk^{a,b}, Philipp Adelhelm^c, Doreen Mollenhauer^{a,b}*

^{*a*} Institute of Physical Chemistry, Justus-Liebig University Giessen, 35392 Giessen, Germany

^b Center for Materials Research (LaMa), Justus-Liebig University Giessen, 35392 Giessen,

Germany

^c Institute of Technical Chemistry and Environmental Chemistry, CEEC Jena, Friedrich-Schiller University Jena, 07743 Jena, Germany

*E-Mail: doreen.mollenhauer@phys.chemie.uni-giessen.de

A) Stability of alkali-metal graphite intercalation compounds

Table S1. The calculated formation energies (E_f in eV/f.u.) of AM-GICs (AM = Li, Na and K) for different AM concentrations.

Compound	Number of	$E_{\rm f}$, eV/f.u.			Stage	Low-energy
	atoms in the					stacking
	supercell					
		AB-	AA-	AA-stacking*		
		stacking	stacking			
-	Γ	[Li			Γ
LiC ₆	6 Li, 36 C	-0.054	-0.246	-0.299	I	AA
LiC ₈	2 Li, 16 C	-0.032	-0.218	-0.290	I	AA
LiC ₁₂	3 Li, 36 C	0.081	-0.058	-0.166	II	AA
LiC ₁₆	1 Li, 36 C	0.043	-0.039	-0.182	II	AA
LiC ₃₂	1 Li, 32 C	-0.008	0.005	-0.281	II	AB
LiC ₃₂	1 Li, 32 C	0.000	0.093	-0.193	IV	AB
LiC ₃₆	1 Li, 36C	-0.028	0.001	-0.321	II	AB
LiC ₆₄	1 Li, 64C	-0.053	0.176	-0.397	II	AB
LiC ₇₂	1 Li, 72 C	-0.078	0.239	-0.403	II	AB
LiC ₇₂	1 Li, 72 C	-0.077	0.279	-0.362	IV	AB
			Na			
NaC ₆	6 Na, 36 C	0.193	0.061	0.007	Ι	AA
NaC ₈	2 Na, 16 C	0.210	0.058	-0.014	Ι	AA
NaC ₁₂	3 Na, 36 C	0.357	0.221	0.114	II	AA
NaC ₁₆	1 Na, 36 C	0.252	0.189	0.046	II	AA
NaC ₃₂	1 Na, 32 C	0.303	0.308	0.021	II	AB
NaC ₃₂	1 Na, 32 C	0.213	0.303	0.016	IV	AB
NaC ₃₆	1 Na, 36C	0.304	0.323	0.001	II	AB
NaC ₆₄	1 Na, 64C	0.568	0.676	0.103	II	AB
NaC ₇₂	1 Na, 72 C	0.610	0.746	0.104	II	AB
NaC ₇₂	1 Na, 72 C	0.262	0.615	-0.026	IV	AB
K						
KC ₆	6 K, 36 C	-0.124	-0.197	-0.251	Ι	AA
KC ₈	2 K, 16 C	-0.134	-0.199	-0.271	I	AA
KC ₁₂	3 K, 36 C	0.073	0.032	-0.076	II	AA
KC_{16}	1 K, 36 C	0.028	-0.027	-0.170	II	AA
KC ₃₂	1 K, 32 C	0.055	0.064	-0.222	II	AB
KC ₃₂	1 K, 32 C	0.002	0.095	-0.191	IV	AB
KC ₃₆	1 K, 36C	0.012	0.062	-0.260	II	AB

KC ₆₄	1 K, 64C	0.562	0.689	0.117	II	AB
KC ₇₂	1 K, 72 C	0.738	0.902	0.260	II	AB
KC ₇₂	1 K, 72 C	-0.013	0.367	-0.274	IV	AB
* computed with respect to AA-stacked graphite						

B) Structural deformation and binding energy contributions

Compound	Stacking/Stage	$E_{\rm def}$, eV/f.u.	$E_{\rm bind}$, eV/f.u.	$E_{\rm f}$, eV/f.u.
	1	AM = Li		
LiC ₆	AA / I	0.090	-0.336	-0.246
LiC ₈	AA / I	0.117	-0.335	-0.218
LiC ₁₂	AA / II	0.167	-0.225	-0.058
LiC ₁₆	AA / II	0.193	-0.232	-0.039
LiC ₃₂	AB / II	0.132	-0.140	-0.008
LiC ₃₆	AB / II	0.133	-0.161	-0.028
LiC ₆₄	AB / II	0.131	-0.184	-0.053
LiC ₇₂	AB / II	0.144	-0.222	-0.078
LiC ₃₂	AB / IV	0.098	-0.098	0.0
LiC ₇₂	AB / IV	0.120	-0.197	-0.077
		AM = Na		
NaC ₆	AA / I	0.199	-0.138	0.061
NaC ₈	AA / I	0.249	-0.191	0.058
NaC ₁₂	AA / II	0.293	-0.072	0.221
NaC ₁₆	AA / II	0.343	-0.154	0.189
NaC ₃₂	AB / II	0.475	-0.172	0.303
NaC ₃₆	AB / II	0.521	-0.217	0.304
NaC ₆₄	AB / II	0.681	-0.113	0.568
NaC ₇₂	AB / II	0.672	-0.062	0.610
NaC ₃₂	AB / IV	0.261	-0.048	0.213
NaC ₇₂	AB / IV	0.511	-0.249	0.262
	1	AM = K		1
KC ₆	AA / I	0.278	-0.475	-0.197
KC ₈	AA / I	0.351	-0.550	-0.199
KC ₁₂	AA / II	0.383	-0.351	0.032
KC ₁₆	AA / II	0.464	-0.491	-0.027
KC ₃₂	AB / II	0.719	-0.664	0.055
KC ₃₆	AB / II	0.807	-0.795	0.012
KC ₆₄	AB / II	1.362	-0.800	0.562

Table S2. Contributions to the formation energy of AMC_x (AM = Li, Na and K).

KC ₇₂	AB / II	1.506	-0.768	0.738
KC ₃₂	AB / IV	0.365	-0.363	0.002
KC ₇₂	AB / IV	0.799	-0.812	-0.013

C1) Bond length and interlayer distance of AMC_x

Table S3. Comparison of the in-plane $\begin{pmatrix} d^{in} - plane \\ C - C \end{pmatrix}$ and the interlayer distances between graphene layers in the optimized structures of AMC_x (AM = Li, Na and K) with experimental and theoretical studies. For stage-II structures the interlayer separation is given separately for the layer with (d_{C-C}^{occ}) and without ($d_{C-C}^{non-occ}$) intercalated alkali metal. The results obtained in the present study are underlined. Color code: carbon (brown), alkali metal (green).

	d _{C-C}	d ^{non - occ}	d _{c-c}
	d ^{in – plane} C – C , Å	$d_{C-C, \text{\AA}}^{occ}$	d ^{non − occ} Å
LiC ₆ (AA-I)	<u>1.439,</u> 1.440 [1], 1.492 [2]	$\frac{3.595}{3.64 [3]},$ 3.697 [1], 3.706 \pm 0.01 [4], 3.705 [5] c = 7.40 [6]	_
LiC ₈ (AA-I)	$\frac{1.443}{1.440}$ [7]	<u>3.597</u> -	-
LiC ₁₂ (AA-II)	<u>1.429</u> , 1.429 [5], 1.431 [1], 1.431 [7], 1.429 [2]	$\frac{3.677,}{d_{av} = 3.49 [3],}$ 3.586 [1], $c = 7.065 \pm 0.02 [4],$ c = 7.032 [2], c = 7.04 [6]	<u>3.305,</u> 3.27 [3]

LiC ₁₆ (AA-II)	1.432,	3.678	3.382
	1.429 [7]	$d_{\rm av} = 3.53 [3]$	
NaC ₆ (AA-I)	1.442	4.366	-
NaC ₈ (AA-I)	$\frac{1.442}{1.420}$	<u>4.405</u>	-
	1.439[/]		
$\operatorname{NaC}_{12}(AA-II)$	<u>1.431,</u>	4.417	<u>3.286</u>
	1.432 [7]		
NaC ₁₆ (AA-II)	1.432,	4.449	3.379
	1.431 [7]		
$KC_8(AA-I)$	<u>1.437</u>	5.308,	-
	1.44 [8, 9],	5.53 [8, 9],	
	1.429 [10],	5.514 [10],	
	1.436 [7]	5.35 [11]	
$KC_{12}(AA-II)$	<u>1.431</u> ,	5.297,	3.284
	1.43 [12],	5.32 [12],	
	1.429 [10],	5.353 [10]	
	1.430 [7]		
KC ₁₆ (AA-II)	1.430,	5.360,	3.360,
	1.43 [9],	5.613 [9],	3.474 [9],
	1.427 [10],	5.600 [10]	3.253 [10]
	1.429 [7]		

C2) Contributions to the structural deformation energy for AMC_x

Table S4. Energy contributions to the structural deformation energy (E_{def}) of the AMC_x (AM = Li, Na and K) for different AM-rich binary GICs compounds, possessing the AA-stacking of the graphite layers ($6 \le x \le 16$). The $E_{def}(d_{int})$ and $E_{def}(AB \rightarrow AA)$ contributions are defined using Eq.(5) - Eq.(6).

Energy contributions	Li	Na	K		
	AMC ₆				
E_{def} , meV/f.u:	91	199	278		
$F_{\rm L}$ (AB \rightarrow AA) meV/fu	35	3	-		
$E_{def}(IID)$ /IIIV), the V/III $E_{def}(d_{int})$, meV/f.u	56	196	278		
	AMC ₈				
$E_{\text{def}}, \text{meV/f.u:}$	117	249	351		
$E_{def}(AB \rightarrow AA), meV/f.u$	50	3	-		
$E_{\text{def}}(d_{\text{int}}), \text{meV/f.u}$	67	246	351		
	AMC ₁₂				
E_{def} , meV/f.u:	167	293	383		
F_{1} (AB \rightarrow AA) meV/fu	122	110	109		
$E_{def}(d_{int}), meV/f.u$	45	183	274		
AMC ₁₆					
$E_{\text{def}}, \text{meV/f.u:}$	193	343	464		
$E_1 (AB \rightarrow AA) \text{ meV/fu}$	137	110	103		
$E_{def}(d_{int}), meV/f.u$	56	233	361		

D1) Comparison of the cohesive and ionization energies of alkali metals

Table S5. The calculated cohesive and ionization energies of AMs (E_{ion}), as well as the difference between the ionization energy of AMs and the electron affinity of graphite ($E_A = 4.76 \text{ eV}$), compared with other literature data.

	Li	Na	K
Cohesive energy, eV	<u>1.60,</u>	<u>1.09,</u>	<u>0.87</u> ,
	1.58 [13]	1.13 [13]	0.98 [13]
Ionization energy, eV	<u>5.59,</u>	<u>5.36,</u>	<u>4.46,</u>
	5.39 [14, 15]	5.14 [14,15]	4.34 [14,15]

$E_{\rm ion}(\rm AM)$ –	<u>0.83</u> ,	<u>0.60</u> ,	<u>-0.30</u> ,
$E_{\rm A}({\rm Graphite}), {\rm eV}$	0.59 [15]	0.34 [15]	-0. 46 [15]

D2) van der Waals energy of AM-GICs

Table S6. The van der Waals energy contribution to the binding energy in AMC_6 (AM = Li, Na, K) is estimated by subtracting the dispersion correction part D3 of infinite (20 Å) layer separation from the dispersion correction part D3 of graphite with the interlayer distance as in the AM-GIC.

	Li	Na	K
$E_{\rm vdW}$, meV	-321	-157	-67

D3) Energy contributions to the formation energy of Li-GICs

Table S7. Comparison of the energy contributions to the formation energy of stage-I LiC₆ and stage-II LiC₁₂, obtained by employing different density functionals. The contributions to the structural deformation energy are computed using Eq.(5)-(6). The binding energy contributions, see Eq.(8), are obtained using Eq.(2)-Eq.(4).

Energy contributions	PBE-D3 (BJ)	optB88-vdW	optB86b- vdW	revPBE-vdW		
LiC ₆						
$\underline{E}_{def, eV/f.u:}$	0.090	0.124	0.128	0.085		
$F_{\rm M}$ (AB \rightarrow AA) eV/fu	0.034	0.030	0.033	0.020		
$E_{def}(d_{int})$, eV/f.u	0.056	0.094	0.095	0.065		
E_{bind} , eV/f.u:	-0.336	-0.345	-0.343	-0.157		
	1.606	1.586	1.641	1.541		
$E_{\rm coh}, CV$ $F_{\rm coh}, CV$	5.587	-	5.502	5.695		
$E_{\Lambda}(Graphite) eV$	4.76	4.8 [15]	4.8 [15]	4.8 [15]		
$[E_{ior}(Li) - E_A(Graphite)] eV$	0.83	-	0.702	0.895		
$(E_{vdW} + E_{elstat/cov}), eV$	-2.771	-	-2.685	-2.593		
LiC ₁₂						
$\underline{E}_{def, eV/f.u:}$	0.167	0.235	0.267	0.117		
$E_{\rm r}$ (AB \rightarrow AA) eV/fu	0.122	0.148	0.174	0.071		

$E_{def}(d_{int})$, eV/f.u	0.045	0.087	0.092	0.046
$E_{\text{bind}}, eV/f.u:$	-0.222	-0.512	-0.540	-0.236
E eV	1.606	1.586	1.641	1.541
$E_{\rm coh}, CV$ $F_{\rm coh}, CV$	5.587	-	5.502	5.695
$E_{100}(EI), eV$	4.76	4.8 [15]	4.8 [15]	4.8 [15]
$[E_{ior}(Li) - E_A(Graphite)] eV$	0.83	-	0.702	0.895
$(E_{vdW} + E_{elstat/cov}), eV$	-2.657	-	-2.882	-2.672

REFERENCES

- Thinius, S.; Islam, M. M.; Heitjans, P.; Bredow, T. Theoretical study of Li migration in lithium-graphite intercalation compounds with dispersion-corrected DFT methods. *J. Phys. Chem. C* 2014, *118*, 2273–2280.
- Missyul, A.; Bolshakov, I.; Shpanchenko, R. XRD study of phase transformations in lithiated graphite anodes by Rietveld method. *Powder Diffr.* 2017, 32(S1), S56–S62.
- **3.** Hazrati, E.; de Wijs, G.A.; Brocks, G. Li intercalation in graphite: A van der Waals density functional study. *Phys. Rev. B* **2014**, *90*, 155448.
- Guerard, D.; Herold, A. Intercalation of lithium into graphite and other carbons. *Carbon* 1975, *13*, 337–356.
- Billaud, D.; Henry, F.X.; Willmann, P. Dependence of the morphology of graphitic electrodes on the electrochemical intercalation of lithium ions. *J. Power Sources* 1995, *54*, 383–388.
- Schweidler, S.; Biasi, L.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Volume changes of graphite anodes revisited: A combined *operando* x-ray diffraction and *in situ* pressure analysis study. *J. Phys. Chem. C* 2018, *122*, 8829–8835.
- 7. Wan, W.; Wang, H. Study on the first-principles calculations of graphite intercalated by alkali metal (Li, Na, K). *Int. J. Electrochem. Sci.* **2015**, *10*, 3177–3184.
- Ziambaras, E.; Kleis, J.; Schröder, E.; Hyldgaard, P. Potassium intercalation in graphite: A van der Waals density-functional study. *Phys. Rev. B* 2007, *76*, 155425.
- Luo, W.; Wan, J.; Ozdemir, B.; Bao, W.; Chen, Y.; Dai, J.; Lin, H.; Xu, Y.; Gu, F.; Barone, V.; Hu, L. Potassium ion batteries with graphitic materials. *Nano Lett.* 2015, *15*, 7671–7677.

- 10. Xu, Z.; Lv, X.; Chen, J.; Jiang, L.; Lai, Y.; Li, J. Dispersion-corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials. *Carbon* 2016, 107, 885–894.
- Dresselhaus, M.S.; Dresselhaus, G. Intercalation compounds of graphite. *Adv. Phys.* 1981, 30, 139–326.
- **12.** Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-principles study of alkali metal-graphite intercalation compounds, *J. Power Sources* **2013**, *243*, 585–587.
- 13. Brooks, H. Cohesive energy of alkali metals. Phys. Rev. 1953, 91, 1027-1028.
- Lide, D.R. (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press: Boca Raton, Florida, 2003.
- Setton, R.; Bernier, P.; Lefrant, S. Carbon Molecules and Materials. CRC Press: Boca Raton, Florida, 2002.
- **16.** Wang, Z.; Selbach, S.M.; Grande, T. Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. *RSC Adv.* **2014**, *4*, 4069–4079.