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A. Validation of our modified SPC/E forcefield parameters for water:

structural properties of bulk water at MM level
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FIG. S1. Reproduction of structural features with the parameterized force constants Kb and Kθ for

(a) OH bond distance and (b) HOH angle, respectively. Corresponding gOO(r) and plane average

density distribution in z direction are shown in panels (c) and (d), respectively.

As mentioned in the main paper, we have modified the SPC/E forcefield.In our modified

forcefield we use Kb = 1600 kcal mol−1 Å−2 and Kθ = 110 kcal mol−1 rad−2. With our

new parameters we obtain an equilibrium bond length of 1.01 Å for the OH bond and an

equilibrium H-O-H angle of ∼ 105.5◦ as shown in fig: S1(a) and (b), respectively. In an ideal

SPC/E model the OH bond length is constrained to 1 Å and H-O-H angle is fixed at 109.47◦1.

The experimental value of H-O-H bond angle for bulk water is close to the average value

of the angle that our forcefield parameters provide2. Thus, our parameterized forcefields

reproduce the intramolecular features correctly. Direct implication of the OH distance is

the first solvation peaks in the g(r). As shown in fig: S1(c), the first peak in gOO(r) is at a

distance of 2.73 Å. The experimental value of gOO(r) is 2.88 Å3 and corresponding value in

case of SPC/E model is at 2.75 Å4. Similarly, the first intermolecular peak in gOH(r) and

gHH(r) are at 1.74 Å and 2.36 Å, respectively. In addition, the presence of second and third
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solvation shell in gOO(r) matches well with literature and hence proves the validity of our

forcefield parameter for water molecules.

B. Computation of layer resolved radial distribution function

The radial distribution function (RDF, g(r)) for a homogeneous fluid, which in our case

is water, is given by:

g(r) = 〈n(r)

v(r)

1

ρ
〉, (S1)

where n(r) is the number of unique atom pairs at a distance of r and r + δr (δr is the

bin size of the histogram). As a consequence of periodic boundary condition(PBC), the

maximum distance of r (rmax) is restricted to half of the shortest box length. v(r) is the

volume of the spherical shell at r of width δr and ρ is the particle density of the fluid.

However, in our case, the system does not have a spherical symmetry because along the z

direction we do not have periodic boundary conditions. There are two surfaces, one each

at the Pt-water interface and at the water/vaccuum interface. Hence special care needs

to be taken for computing the RDF for the water molecules at the edges. Also, from our

simulations, we find that at the Pt/water interface, the water molecules form distinct layers

(at least two distinct layers can be identified as shown in Figure 2(b) of the manuscript).

Hence, it would also be interesting to compute the RDF at different layers and compare

them with bulk water. Here also we will encounter similar problems if one assumes spherical

symmetry while computing the g(r). Hence we need to compute the RDF taking special

attention to the fact that spherical symmetry is lacking in our system.

To address these issues we have computed the RDFs for all the water molecules and

the layer resolved ones with the method proposed by Kaya et al.5 Depending on the value

of r + δr, the thickness of the water slab (h) and the distance of the reference atom (for

which the g(r) is being computed) from the edge of the slab (z), three distinct situations can

arise as shown schematically in Figure S2: (i) the water molecule is completely surrounded

by other molecules, thereby maintaining the spherical symmetry (Figure S2(a)), i.e. the

spherical shell lies completely within the slab, (ii) the water molecule is close to the top or

the bottom of the slab where part of the sphere (either from the top or bottom hemisphere)

is cutoff because of absence of water molecules (Figure S2(b) and (c)) and (iii) part of the
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sphere, from both the top and bottom hemisphere is cut off (Figure S2(d)). Hence for cases

(ii) and (iii), we need correct for v(r) by either removing the volume of the missing spherical

caps from the volume of the spherical shell (for ii) or by considering volume of the spherical

segment instead of that of a complete sphere (for (iii)).

The definition of volume for the different regions used in our calculations are given below:

1. Case (i) (Figure S2(a)): Here (r + δr ≤ z) and (r + δr ≤ h− z). The volume is given

by:

v(r) =
4

3
π[(r + δr)3 − r3] (S2)

2. Case (ii) (Figure S2(b) and (c)): Here (r+ δr ≤ z) and (r+ δr ≥ h− z). To compute

the volume, we need to subtract out the volume of the missing spherical cap from the

volume of the sphere. If p1 (= (r + δr) − z) and p2 (= r − z) are the height of the

spherical cap for spheres with radius r + δr and r respectively, the the volume of the

spherical caps are given by:

Vscap1 =
1

3
πp21[3(r + δr)− p1]; Vscap2 =

1

3
πp22(3r − p2), (S3)

where Vscap1 and Vscap2 are the volume of the spherical caps corresponding to p1 and

p2. The volume v(r) in this case is:

v(r) = Vshell − (Vscap1 − Vscap2), (S4)

where Vshell = 4
3
π[(r + δr)3 − r3] the volume of the spherical shell. In a similar way

v(r) can also be evaluated for Figure S2(c).

3. Case (iii) (Figure S2(d)): Here (r + δr ≥ z) and (r + δr ≥ h − z). For this case the

shell is approximated by a cylindrical volume. v(r) is given by:

v(r) = πh[(r + δr)2 − r2] (S5)

The number density (ρ) in Equation S1 is given by:
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TABLE I. The thickness of the slab for the different layers and the full water slab.

System h (Å)

Layer 1 2.5

Layer 2 4

Layer 3 5

Liquid layer 20

ρ =
LxLyh

Npairs

(S6)

where, Lx and Ly are the box lengths along x and y axes, h is the thickness of each layer for

the layer resolved g(r) or the thickness of the complete water slab for the total g(r). Pair

selection, when g(r) is to be computed for pairs having two different elements, for example

gO−H(r) will be given by:

Npairs = NsetANsetB (S7)

where, NsetA and NsetB is the number of atoms of element A and B respectively. When the

elements are same, for example for gO−O(r) and gH−H(r) the pair selection is given by:

Npairs = 0.5NsetA(NsetA − 1) (S8)

Incorporating all these, the g(r) can be written as:

g(r) =
LxLyh

NpairsNframes

frames∑
k=1

∑
iεsetA

∑
jεsetB

δ(r − rijk)
v(r)

, (S9)

where, Nframes is the number of snapshots in the molecular dynamics simulation. Moreover,

the δ function can be replaced by binning the pair distances(rijk) into a histogram of width

δr as mentioned earlier. For this purpose, we have used a bin size of 0.2 Å. The different

values of h used in our calculation is given in Table I.

C. Comparison between MM and QMMM simulations

Since we have performed MD simulations using both classical MD and QMMM MD, it is

imperative to compare the results obtained from both the simulations. We note that while
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FIG. S2. Schematic for the four cases of spherical volume evaluation as a function of atomic

coordinate in the direction of layer resolution. (a) The position of the reference atom is such that

the whole sphere lies within the orthorhombic box. (b) The reference atom is towards the upper

(lower in (c)) half of the box such that a spherical cap is cut off and (d) the reference atom is such

that both the upper and the lower part of the sphere lies outside the box.

the MM simulations were performed for 9 ns, the QMMM simulations were performed for

10 ps. As a result the plots obtained from MM simulations are more smoother than those

plotted with QMMM results.

While most of the properties, like layer resolved density (Figure S3), the g(r) (Figure S4)

and the population of zero, single and double H-bond donors at different layers (Figure

S7), computed from the classical MD and QMMM MD are in qualitative agreement, the

probability distribution (PDF) of the -OH bond length and the orientation of the water

molecules at different layers obtained from the two simulations differ.

The -OH bond length PDF computed from QMMM MD trajectory (Figure S5(a)) shows

that for the water layers near the Pt layers, there is slight shortening of the -OH bond length.

In contrast, the layer resolved PDF obtained from the classical simulations (Figure S5(b))

shows same distribution for all the layers. The reason for this difference can be attributed

to the choice of the classical potential chosen for our simulations. As described in Section

2.1 of the main manuscript and Section 1 of the Supporting Information, the force constants

for the classical potential that is used to describe the O-H interactions in the MM region

such that they mimic the results of the SPC/E water with constraints. Hence in the MM

description of water, the -OH bonds are more rigid compared to that in the QM region.

The difference in the PDF of the orientation of the water molecules (Figure S6) is due to
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the difference in the amount of statistics. While for the QMMM simulations we have used

only 8 ps of trajectory, for the classical MD we have used about 9 ns of trajectory.
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FIG. S3. Density of water in g/cc for water layers over the Pt surface for Model-B QMMM(red)

and MM(blue).
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FIG. S4. (a)QMMM and (d) MM gOO(r). (b)QMMM and (e) MM gOH(r). (c)QMMM and (f)

MM gHH(r).
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FIG. S5. Comparison of layer dependent probability distribution of -OH bond lengths between (a)

QMMM and (b) MM.
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FIG. S6. Comparison of the probability distribution function of the angle between the geometric

dipole vector of the water molecules in the water layer at the interface (1st layer, a and e), those

above it (2nd layer, b and f, and 3rd layer, g and c) and in the bulk liquid-like region (LL, h and

d) with the surface normal for QMMM(top panel) and MM(bottom panel).
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FIG. S7. Comparison between QMMM and MM results for layer resolved zero, single and double

donors. For definition of the layers, the readers are referred to Fig. 2 in the main manuscript.
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FIG. S8. Convergence of the charge transfer plot as a function of the number of snapshots used

for computing the time average.

11


