Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information

Quasiperiodic Behavior in the Electrodeposition of Cu/Sn Multilayers: Extraction of Activation Energies and Wavelet Analysis

Laura Menezes¹, Eduardo Parma¹, Eduardo G. Machado^{1,2}, Raphael Nagao^{1,2,*}

¹Institute of Chemistry, University of Campinas, CEP 13083-970 Campinas, SP, Brazil ²Center for Innovation on New Energies, University of Campinas, CEP 13083-841 Campinas, SP, Brazil

*corresponding author: <u>nagao@unicamp.br</u>

Figure S1. calculated apparent activation energy using the cyclic voltammetry data presented in Figure 1. The black curve refers to $E_a = 19 \text{ kJ.mol}^{-1}$ and the red one to $E_a = 49 \text{ kJ.mol}^{-1}$.

Figure S2. complete time-series obtained at -0.46 V and 15 °C depicting the intrinsic drift from period-one to quasiperiodic behavior.

Figure S3. simulated time-series, made by the repetition of a Gaussian function, and its wavelet transform using the same procedure as the one employed for the experimental time-series. The shaded area in the lower part of the item (b) represents the cone of influence.

Figure S4. Nyquist plot from high (50 kHz) to low (1 Hz) frequencies of sine potential perturbation of ± 10 mV at -0.40 V to determine the uncompensated resistance of the system (1.2 Ω cm²).

	- 0				
		15 °C	20 °C	25 °C	E _{a,osc} (kJ.mol ⁻¹)
P1	1 st	0.030	0.057	0.126	95 ± 5
	2^{nd}	0.033	0.057	0.113	
QP1	1 st	0.057	0.060	0.106	48 ± 10
	2 nd	0.057	0.067	0.117	
QP2	1 st	0.004	0.005	0.006	26 ± 6
	2^{nd}	0.005	0.005	0.007	

Table S1. The replicates of the oscillation frequencies (Hz) depicted in Figure 4 and the apparent activation energies ($E_{a,osc}$) calculated in Table 1.

Figure S5. Arrhenius plots for the determination of the apparent activation energy under oscillatory regime ($E_{a,osc}$) following Table S1. Each curve refers to a different temporal pattern, namely period-one (P1, black), higher (QP1, red) and lower frequency (QP2, blue) of the quasiperiodic oscillations.