Electronic supplementary information: Generation and structural characterization of Ge carbides GeC_n (n = 4, 5, 6) by laser ablation, broadband rotational spectroscopy, and quantum chemistry[†]

K. L. K. Lee,^{*,†} S. Thorwirth,[‡] M.-A. Martin-Drumel,[¶] and M. C. McCarthy[†]

[†]Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, United States

‡I. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany ¶Institut des Sciences Moléculaires d'Orsay, CNRS, Univ paris Sud, Université Paris-Saclay, Orsay, France

E-mail: kinlee@cfa.harvard.edu

Table S1: Measured Fourier-transform microwave cavity frequencies for the singlet species GeC_4 ($X^{-1}\Sigma$). Frequencies are given in MHz, and the difference between observed frequencies and those calculated with a linear molecule Hamiltonian (o - c) are given in kHz. Frequencies have a nominal 2 kHz uncertainty.

J'	$J^{\prime\prime}$	Frequency	Obs - Calc.
		$^{70}\mathrm{GeC}_4$	
3	2	6218.4278	-0.7
4	3	8291.2352	0.5
5	4	10364.0375	-0.3
6	5	12436.8373	0.0
7	6	14509.6333	0.8
8	7	16582.4223	0.2
9	8	18655.2065	-0.1
		$^{72}\mathrm{GeC}_4$	
3	2	6162.2583	0.7
4	3	8216.3395	0.3
5	4	10270.4195	0.3
6	5	12324.4944	0.3
7	6	14378.5653	-0.4
8	7	16432.6315	0.0
9	8	18486.6913	0.1
		$^{74}\mathrm{GeC}_4$	
3	2	6108.8505	0.1
4	3	8145.1298	0.6
5	4	10181.4075	0.0
6	5	12217.6816	0.4
7	6	14253.9503	0.0
8	7	16290.2148	0.3
9	8	18326.4726	-0.2
		$^{76}\mathrm{GeC}_4$	
4	3	8077.3476	0.2
5	4	10096.6792	0.3
6	5	12116.0062	-0.7
7	6	14135.3308	0.0
8	7	16154.6498	0.1

Table S2: Measured Fourier-transform microwave cavity frequencies for the singlet species GeC_6 $(X^{-1}\Sigma)$. Frequencies are given in MHz, and the difference between observed frequencies and those calculated with a linear molecule Hamiltonian (o - c) are given in kHz. Frequencies have a nominal 2 kHz uncertainty.

J'	$J^{\prime\prime}$	Frequency	Obs - Calc.
		$^{70}\mathrm{GeC}_6$	
10	9	8258.1270	0.7
11	10	9083.9352	-1
12	11	9909.7456	0.1
13	12	10735.5541	0.1
14	13	11561.3613	-0.1
15	14	12387.1682	0.1
		$^{72}\mathrm{GeC}_6$	
9	8	7356.7530	7
10	9	8174.1673	4
11	10	8991.5818	-8
12	11	9808.9960	-3
13	12	10626.4071	15
14	13	11443.7570	-6
		$^{74}\mathrm{GeC}_6$	
9	8	7284.6732	4
10	9	8094.0792	-0.6
11	10	8903.4854	-3
12	11	9712.8895	-5
13	12	10522.2945	0.3
14	13	11331.6956	9
15	14	12141.0626	-5
		$^{76}\mathrm{GeC}_6$	
9	8	7215.8472	-0.1
10	9	8017.6043	-2
11	10	8819.3650	0.7
12	11	9621.1239	2
13	12	10422.8783	0
14	13	11224.6324	-2
15	14	12026.3895	0.4

Table S3: Measured Fourier-transform microwave cavity frequencies for the triplet species GeC_5 ($X^{3}\Sigma$). Since the spin-spin interaction term is undetermined in our analysis, the quantum numbers presented below are those of a singlet linear molecule Hamiltonian (See Discussion). Frequencies are given in MHz, and the difference between observed frequencies and those calculated with a linear molecule Hamiltonian (o - c) are given in kHz.

J'	$J^{\prime\prime}$	Frequency	Obs - Calc.
		$^{70}\mathrm{GeC}_5$	
5	4	6174.8361	0
6	5	7409.8005	-0.5
7	6	8644.7656	0.7
8	7	9879.7259	-1
9	8	11114.6894	1
11	10	13584.6027	-1
12	11	14819.5603	1
13	12	16054.5107	-0.5
		$^{72}\mathrm{GeC}_5$	
5	4	6114.7508	2
6	5	7337.6962	-0.6
7	6	8560.6432	-0.2
8	7	9783.5876	-1
9	8	11006.5338	1
10	9	12229.4745	-0.4
11	10	13452.4150	-0.3
12	11	14675.3542	0.4
		$^{74}\mathrm{GeC}_6$	
5	4	6057.5281	1
6	5	7269.0304	0.1
7	6	8480.5338	0.1
8	7	9692.0333	-0.1
9	8	10903.5323	-0.6
11	10	13326.5268	0
12	11	14538.0183	-3
13	12	15749.5143	2
16	15	19383.9715	-0.1
17	16	20595.4548	0.7
18	17	21806.9326	0.4
		$^{76}\mathrm{GeC}_6$	
6	5	7203.5661	1
7	6	8404.1562	0
8	7	9604.7490	2
9	8	10805.3352	-0.9
11	10	13206.5087	-2

Table S4: Equilibrium structures of GeC_4 (in Å).. r_e^{emp} refers to semiexperimental bond lengths.

Method	$r_{\rm Ge-C}$	$r_{ m C-C}$	$r_{ m C-C}$	$r_{\rm C-C}$
fc-CCSD(T)/cc-pVDZ fc-CCSD(T)/cc-pVTZ ae-CCSD(T)/cc-pwCVTZ ae-CCSD(T)/cc-pwCVQZ	$ 1.8076 \\ 1.7977 \\ 1.7770 \\ 1.7757 $	$ 1.2961 \\ 1.2775 \\ 1.2735 \\ 1.2712 $	$ \begin{array}{r} 1.3225 \\ 1.3069 \\ 1.3030 \\ 1.3015 \\ \end{array} $	$ 1.3078 \\ 1.2873 \\ 1.2827 \\ 1.2799 $
$\overline{r_e^{emp}}$, fc-CCSD(T)/cc-pVTZ ^a r_e^{emp} , fc-CCSD(T)/cc-pVDZ ^c	$\frac{1.7757}{1.7742}$	1.2712^b 1.2712^b	1.3015^b 1.3015^b	1.2799^b 1.2799^b

 a Zero-point vibrational corrections for structural derivation calculated at the fc-CCSD(T)/cc-pVTZ level.

 b Kept fixed at a e-CCSD(T)/cc-pwCVQZ value.

 c Zero-point vibrational corrections for structural derivation calculated at the fc-CCSD(T)/cc-pVDZ level.

Table S5: Equilibrium structures of GeC_5 (in Å).. r_e^{emp} refers to semiexperimental bond lengths.

Method	$r_{\rm Ge-C}$	$r_{\rm C-C}$	$r_{\rm C-C}$	$r_{\rm C-C}$	$r_{\rm C-C}$
fc-UHF-CCSD(T)/cc-pVDZ	1.8432	1.2986	1.3079	1.3092	1.3201
fc-UHF-CCSD(T)/cc-pVTZ	1.8318	1.2818	1.2910	1.2928	1.3007
ae-UHF-CCSD (T) /cc-pwCVTZ	1.8095	1.2783	1.2871	1.2895	1.2959
ae-UHF-CCSD (T) /cc-pwCVQZ	1.8075	1.2765	1.2848	1.2879	1.2932
$\overline{r_e^{emp}}$, fc-CCSD(T)/cc-pVDZ ^a	1.8104	1.2765^{b}	1.2848^{b}	1.2879^{b}	1.2932^{b}

^{*a*} Zero-point vibrational corrections for structural derivation calculated at the fc-CCSD(T)/cc-pVDZ level.

 b Kept fixed at a e-CCSD(T)/cc-pwCVQZ value.

Method $r_{\rm Ge-C}$ $r_{\rm C-C}$ $r_{\rm C-C}$ $r_{\rm C-C}$ $r_{\rm C-C}$ $r_{\rm C-C}$ fc-CCSD(T)/cc-pVDZ1.81451.2972 1.3139 1.28631.3207 1.3093 fc-CCSD(T)/cc-pVTZ1.80431.27891.29851.26791.3048 1.2892ae-CCSD(T)/cc-pwCVTZ1.3012 1.2844 1.78321.27511.29461.2645ae-CCSD(T)/cc-pwCVQZ1.78181.27281.29291.26201.29971.2816 $r_e^{emp},\, {\rm fc\text{-}CCSD(T)/cc\text{-}pVDZ}$ 1.7820 1.2728^{b} 1.2929^{b} 1.2620^{b} 1.2997^{b} 1.2816^{b}

Table S6: Equilibrium structures of GeC_6 (in Å).

 a Zero-point vibrational corrections for structural derivation calculated at the fc-CCSD(T)/cc-pVDZ level.

^b Kept fixed at ae-CCSD(T)/cc-pwCVQZ value.

Table S7: Rotational and centrifugal distortion parameters and zero-point vibrational corrections ΔB_0 of GeC₄, GeC₅, and GeC₆ (in Å). In the case of GeC₄, the two determinations of $B_{0,theo}$ are given based on different *ab initio* force fields.

Species	$B^a_{0,meas}$	$B^b_{0,theo}$	$B^c_{e,theo}$	$D_0 \times 10^{-6}$	ΔB_0^d
$^{70}\mathrm{GeC}_4$	1036.4053(2)	1036.406	1033.862	30.50(133)	-2.544^{e}
$^{72}\text{GeC}_4$	1027.0435(2)	1027.047	1024.524	31.44(133)	-2.523^{e}
$^{74}\text{GeC}_4$	1018.1423(1)	1018.148	1015.645	30.16(133)	-2.503^{e}
$^{76}\text{GeC}_4$	1009.6690(2)	1009.678	1007.194	29.30(223)	-2.484^{e}
$^{70}\mathrm{GeC}_4$	1036.4053(2)	1035.718	1033.862	30.50(133)	-1.856
$^{72}\mathrm{GeC}_4$	1027.0435(2)	1026.365	1024.524	31.44(133)	-1.841
$^{74}\text{GeC}_4$	1018.1423(1)	1017.473	1015.645	30.16(133)	-1.828
$\rm ^{76}GeC_4$	1009.6690(2)	1009.009	1007.194	29.30(223)	-1.815
$^{70}\mathrm{GeC}_5$	619.02366(4)	619.630	619.330	8.332(101)	-0.300
$^{72}\text{GeC}_5$	612.98821(4)	613.596	613.298	7.691(135)	-0.298
$^{74}\text{GeC}_5$	607.23788(6)	607.850	607.553	7.64(33)	-0.297
$^{76}\mathrm{GeC}_5$	600.46651(4)	602.372	602.077	6.65^{f}	-0.295
$^{70}\mathrm{GeC}_6$	412.90688(3)	412.926	412.320	2.83(38)	-0.606
$^{72}\text{GeC}_6$	408.70900(1)	408.730	408.129	3.04(33)	-0.601
$^{74}\text{GeC}_6$	404.70546(1)	404.727	404.132	6.39(33)	-0.595
$^{76}\text{GeC}_{6}^{\circ}$	400.88084(1)	400.904	400.314	2.68(33)	-0.590

^aUncertainties in parentheses are 1σ in the units of the last significant digit. The complete set of spectroscopic constants, derived from the measurements in Tables SXX-YY, is given

in Tables S2 and S4.

^bCalculated as $B_0 = B_e - \Delta B_0$. ^cCalculated at the ae-CCSD(T)/cc-pwCVQZ level of theory.

^dCalculated at the fc-CCSD(T)/cc-pVDZ level of theory, unless noted otherwise.

eCalculated at the fc-CCSD(T)/cc-pVTZ level of theory.

 f Remained fixed in the fits.

Outputs from Least-Squares Fits to Frequency Data

${\rm GeC}_4$

Table S8: Truncated fit output for $\rm ^{70}GeC_4$

						EXP	.FREQ.	- 0	CALC.FR	EQ. ·	 DIFF 	·	- EXP.E	RR	- EST.ER	RAVG	3. C	CALC.	FREQ	 DIFF.	- WT.
1:	3	2					621	8.427	780 (3218	.42857	-0.	.00077	(0.00200	0.00	0081	L			
2:	4	3					829	1.235	520 8	3291	.23468	0.	00052	(0.00200	0.00	0095	5			
3:	5	4					1036	4.037	750 10	0364	.03786	-0.	.00036	(0.00200	0.00	0099	Э			
4:	6	5					1243	6.837	730 11	2436	.83738	-0.	80000	(0.00200	0.00	0093	3			
5:	7	6					1450	9.633	330 14	4509	.63250	0.	08000	(0.00200	0.00	0086	3			
6:	8	7					1658	2.422	230 10	3582	.42251	-0.	.00021	(0.00200	0.00	0104	1			
7:	9	8					1865	5.206	550 18	3655	.20666	-0.	.00016	(0.00200	0.00	0166	3			
NORMALI	ZED	DIAGONAI	.:																		
1	1.0	0000E+00) 2	3.79	034E-0	1															
MARQUAR	DT P	ARAMETER	ε = Ο,	TRUST	EXPANS	ION =	1.00														
					NEW P.	ARAMET	ER (EST	. ERF	ROR)	CHAI	NGE THIS	ITE	ERATION	ſ							
1		100		В	10	36.405	310(158)	0	.0000	000										
2		200		D		-0.03	050(133)E-03	3 -(0. CO	000E-03										
MICROW	AVE	AVG =	-	0.00003	6 MHz,	IR AV	'G =	C	0.00000												
MICROW	AVE	RMS =		0.00049	3 MHz,	IR RM	IS =	C	0.00000												
END OF	ITE	RATION	2 OLD	, NEW R	MS ERR	DR=	0.	24641	L	0	.24641										

Table S9: Truncated fit output for $^{72}{\rm GeC}_4$

		EXP.	FREQ CALC.	FREQ DIFF	- EXP.ER	R EST.ERR	AVG. CALC.FREQ	DIFF WT.
1:	3 2		6162.25830	6162.25754	0.00076	0.00200	0.00081	
2:	4 3		8216.33950	8216.33986	-0.00036	0.00200	0.00095	
3:	54		10270.41950	10270.41917	0.00033	0.00200	0.00099	
4:	6 5		12324.49440	12324.49470	-0.00030	0.00200	0.00093	
5:	76		14378.56530	14378.56571	-0.00041	0.00200	0.00086	
6:	8 7		16432.63150	16432.63143	0.00007	0.00200	0.00104	
7:	98		18486.69130	18486.69112	0.00018	0.00200	0.00166	
NORMAL	IZED DIAGONA	L:						
1	1.00000E+0	0 2 3.79034E-01						
MARQUA	RDT PARAMETE	R = 0, TRUST EXPANSION = 1	.00					
		NEW PARAMETE	R (EST. ERROR)	CHANGE THIS	ITERATION			
1	100	B 1027.0434	89(158)	-0.000000				
2	200	D -0.031	44(133)E-03	0.0000E-03				
MICRO	WAVE AVG =	0.000039 MHz, IR AVG	= 0.000	000				
MICRO	WAVE RMS =	0.000399 MHz, IR RMS	= 0.000	000				
END O	F ITERATION	2 OLD, NEW RMS ERROR=	0.19974	0.19974				

Table S10: Truncated fit output for $^{74}\text{GeC}_4$

EXP.FREQ. - CALC.FREQ. -DIFF. - EXP.ERR.- EST.ERR.-AVG. CALC.FREQ. - DIFF. - WT. 6108.85034 6108.85050 0.00016 0.00200 0.00081 0.00200 0.00095 1: 2: 32 43 8145.12980 -0.00061 8145.13041 3: 54 10181.40750 10181.40759 -0.00009 0.00200 0.00099 65 76 12217.68160 14253.95030 4: 12217.68114 0.00046 0.00200 0.00093 -0.00006 0.00200 0.00086 5: 14253.95036 6: 8 7 16290.21480 16290.21450 0.00030 0.00200 0.00104 7: 9 8 18326.47260 18326.47286 -0.00026 0.00200 0.00166 NORMALIZED DIAGONAL: 1 1.00000E+00 2 3.79034E-01 MARQUARDT PARAMETER = 0, TRUST EXPANSION = 1.00 NEW PARAMETER (EST. ERROR) -- CHANGE THIS ITERATION
 I
 100
 B
 1018.142267(158)

 2
 200
 D
 -0.03016(133)E-03

 MICROWAVE AVG
 -0.000015
 MHz, IR AVG
 = 0.

 MICROWAVE RMS
 0.000333
 MHz, IR RMS
 = 0.

 END OF ITERATION
 2
 0LD, NEW RMS ERROR=
 0.16636
 0.000000 -0.00000E-03 0.00000 0.00000 0.16636

Table S11: Truncated fit output for $\rm ^{76}GeC_4$

EXP.FREQ. - CALC.FREQ. - DIFF. - EXP.ERR.- EST.ERR.-AVG. CALC.FREQ. - DIFF. - WT. 1: 4 3 8077.34760 8077.34732 0.00028 0.00200 0.00121 2: 54 10096.67920 10096.67888 0.00032 0.00200 0.00117 3: 6 5 4: 7 6 5: 8 7 12116.00620 12116.00692 -0.00072 0.00200 0.00101 14135.33080 14135.33074 0.00006 0.00200 0.00104 16154.64980 16154.64965 0.00015 0.00200 0.00175 NORMALIZED DIAGONAL: 1 1.00000E+00 2 3.35360E-01 1 1.00000E+00 2 3.35360E-01 MARQUARDT PARAMETER = 0, TRUST EXPANSION = 1.00 NEW PARAMETER (EST. ERROR) -- CHANGE THIS ITERATION 1 100 B 1009.669353(216) -0.000000 2 200 D -0.02930(223)E-03 0.00000E-03 MICROWAVE AVG = 0.000017 MHz, IR AVG = 0.00000 MICROWAVE RMS = 0.000017 MHz, IR RMS = 0.00000 END OF ITERATION 2 0LD, NEW RMS ERROR= 0.19065 0.19065

${\rm GeC}_5$

Table S12: Truncated fit output for $\rm ^{70}GeC_5$

I	EXP.FREQ CALC.FREQ	DIFF EXP.ERF	A EST.ERR.	-AVG. CALC.FREQ	DIFF WT.
1: 5 4	6174.83610 61	0.00009	0.00050	0.00021	
2: 6 5	7409.80050 74	409.80102 -0.00052	0.00050	0.00022	
3: 7 6	8644.76560 86	644.76482 0.00078	0.00050	0.00023	
4: 8 7	9879.72590 98	379.72723 -0.00133	0.00050	0.00022	
5: 9 8	11114.68940 111	14.68803 0.00137	0.00050	0.00021	
6: 11 10	13584.60270 135	584.60404 -0.00134	0.00050	0.00021	
7: 12 11	14819.56030 148	319.55885 0.00145	0.00050	0.00027	
8: 13 12	16054.51070 160	054.51125 -0.00055	0.00050	0.00038	
NORMALIZED DIAGONAL:					
1 1.00000E+00 2 3.79287E-01					
MARQUARDT PARAMETER = 0, TRUST EXPANSION	= 1.00				
NEW PARA	METER (EST. ERROR) (CHANGE THIS ITERATION			
1 100 B 617.48	340181(251) -0.00	000000			
2 200 -D -	-8.332(101)E-06	0.000E-06			
MICROWAVE AVG = -0.000006 MHz, IR	AVG = 0.00000				
MICROWAVE RMS = 0.001045 MHz, IR	RMS = 0.00000				
END OF ITERATION 2 OLD, NEW RMS ERROR=	2.08936	2.08936			

Table S13: Truncated fit output for ${\rm ^{72}GeC_5}$

		EXP.FI	REQ CALC.F	REQ DIFF	- EXP.ERR	- EST.ERR.	-AVG. CALC.FREQ	DIFF WT.
1:	54		6114.75080	6114.74902	0.00178	0.00050	0.00022	
2:	6 5		7337.69620	7337.69680	-0.00060	0.00050	0.00023	
3:	76		8560.64320	8560.64347	-0.00027	0.00050	0.00023	
4:	8 7		9783.58760	9783.58884	-0.00124	0.00050	0.00022	
5:	98		11006.53380	11006.53274	0.00106	0.00050	0.00020	
6:	10 9		12229.47450	12229.47497	-0.00047	0.00050	0.00020	
7:	11 10		13452.41500	13452.41537	-0.00037	0.00050	0.00026	
8:	12 11		14675.35420	14675.35373	0.00047	0.00050	0.00039	
NORMALIZ	ED DIAGONA	L:						
1	1.00000E+0	0 2 3.56507E-01						
MARQUARD	T PARAMETE	R = 0, TRUST EXPANSION = 1.0	00					
		NEW PARAMETER	(EST. ERROR) -	- CHANGE THIS	ITERATION			
1	100	B 611.4752870	0(282) 0	.0000000				
2	200	-D -7.693	1(135)E-06	-0.000E-06				
MICROWA	VE AVG =	0.000046 MHz, IR AVG =	= 0.0000	0				
MICROWA	VE RMS =	0.000924 MHz, IR RMS =	= 0.0000	0				
END OF	ITERATION	2 OLD, NEW RMS ERROR=	1.84817	1.84817				

Table S14: Truncated fit output for $^{74}{\rm GeC}_5$

			EXP.FREQ CALC.	.FREQ DIFF	EXP.ER	R EST.ERR	AVG. CALC.FREQ.	. – D	DIFF WT.
1:	54		6057.52810	6057.52686	0.00124	0.00500	0.00140		
2:	6 5		7269.03040	7269.03021	0.00019	0.00500	0.00160		
3:	76		8480.53380	8480.53247	0.00133	0.00500	0.00176		
4:	8 7		9692.03330	9692.03343	-0.00013	0.00500	0.00188		
5:	98		10903.53230	10903.53293	-0.00063	0.00500	0.00195		
6:	11 10		13326.52680	13326.52680	0.00000	0.00500	0.00194		
7:	12 11		14538.01830	14538.02080	-0.00250	0.00500	0.00188		
8:	13 12		15749.51430	15749.51259	0.00171	0.00500	0.00182		
9:	16 15		19383.97150	19383.97293	-0.00143	0.00500	0.00222		
10:	17 16		20595.45480	20595.45409	0.00071	0.00500	0.00274		
11:	18 17		21806.93260	21806.93212	0.00048	0.00500	0.00347		
NORMALI	ZED DIAGONA	L:							
1	1.00000E+0	0 2 4.09462E-01							
MARQUAR	DT PARAMETE	R = 0, TRUST EXPANSIO	N = 1.00						
		NEW PAR	AMETER (EST. ERROR)	CHANGE THIS	ITERATION				
1	100	B 605	.753068(155)	-0.000000					
2	200	-D	-7.64(33)E-06	0.00E-06					
MICROW	AVE AVG =	0.000088 MHz, I	R AVG = 0.000	000					
MICROW	AVE RMS =	0.001195 MHz, I	R RMS = 0.000	000					
END OF	ITERATION	2 OLD, NEW RMS ERROR	= 0.23907	0.23907					

Table S15: Truncated fit output for $\rm ^{76}GeC_5$

	EXP.FR	EQ CALC.FI	REQ DIFF	 – EXP.ERR 	EST.ERR	AVG. CALC.FREQ.	- DIFF WT.
1: 6 5		7203.56610	7203.56461	0.00149	0.00050	0.00016	
2: 7 6		8404.15620	8404.15629	-0.00009	0.00050	0.00019	
3: 8 7		9604.74900	9604.74685	0.00215	0.00050	0.00021	
4: 9 8		10805.33520	10805.33614	-0.00094	0.00050	0.00024	
5: 11 10		13206.50870	13206.51025	-0.00155	0.00050	0.00029	
NORMALIZED DIAGONA	L:						
1 1.00000E+0	0 2 1.00000E+00						
MARQUARDT PARAMETE	R = 0, TRUST EXPANSION = 1.0	D					
	NEW PARAMETER	(EST. ERROR) -	- CHANGE THIS	ITERATION			
1 100	B 600.2975296	(133) -0	.0000000				
2 200	-D -6.65000000	(0)E-06 -0.0	00000000E-06				
MICROWAVE AVG =	0.000212 MHz, IR AVG =	0.0000	D				
MICROWAVE RMS =	0.001422 MHz, IR RMS =	0.0000	C				
END OF ITERATION	2 OLD, NEW RMS ERROR=	2.84412	2,84412				

${\rm GeC}_6$

Table S16: Truncated fit output for $\rm ^{70}GeC_6$

				EXP.FREQ	CALC.FREQ	DIFF EX	P.ERR ES	T.ERRAVG.	CALC.FREQ	DIFF WT.
1:	10 9			8258.12700	8258.12622	0.00078	0.00200	0.00126		
2:	11 10			9083.93520	9083.93622	-0.00102	0.00200	0.00110		
3:	12 11			9909.74560	9909.74548	0.00012	0.00200	0.00092		
4:	13 12			10735.55410	10735.55392	0.00018	0.00200	0.00084		
5:	14 13			11561.36130	11561.36147	-0.00017	0.00200	0.00106		
6:	15 14			12387.16820	12387.16808	0.00012	0.00200	0.00159		
NORMALI	ZED DIAGONAL	.:								
1	1.00000E+00	2 2	.39384E-01							
MARQUAR	DT PARAMETER	= 0, TRU	ST EXPANSION	V = 1.00						
			NEW PARA	AMETER (EST. ERROR) CHANGE THI	S ITERATION				
1	100		B 412.	.906877(135)	0.000000					
2	200	1	D	-2.83(38)E-06	-0.00E-06					
MICROW	AVE AVG =	0.00	0005 MHz, IH	R AVG = 0.0	0000					
MICROW	AVE RMS =	0.00	0540 MHz, IH	R RMS = 0.0	0000					
END OF	ITERATION	2 OLD, NE	W RMS ERROR=	0.26996	0.26996					

Table S17: Truncated fit output for $^{72}{\rm GeC}_6$

		EXP.FF	EQ CALC.H	FREQ DIFF	- EXP.ERR	EST.ERR	-AVG. CALC.FREQ.	- DIFF WT.	
1:	98		7356.75300	7356.75316	-0.00016	0.00200	0.00113		
2:	10 9		8174.16730	8174.16787	-0.00057	0.00200	0.00105		
3:	11 10		8991.58180	8991.58185	-0.00005	0.00200	0.00092		
4:	12 11		9808.99600	9808.99503	0.00097	0.00200	0.00081		
5:	13 12		10626.40710	10626.40734	-0.00024	0.00200	0.00081		
6:	14 13		11443.81920	11443.81869	0.00051	0.00200	0.00106		
7:	15 14		12261.22850	12261.22903	-0.00053	0.00200	0.00153		
NORMALI	ZED DIAGONA	L:							
1	1.00000E+0	0 2 2.76178E-01							
MARQUARDT PARAMETER = 0, TRUST EXPANSION = 1.00									
		NEW PARAMETER	(EST. ERROR) -	CHANGE THIS	ITERATION				
1	100	B 408.709001	(112)	0.000000					
2	200	D -3.04	(33)E-06	-0.00E-06					
MICROW	AVE AVG =	-0.000010 MHz, IR AVG =	0.000	00					
MICROW	AVE RMS =	0.000519 MHz, IR RMS =	0.000	00					
END OF	ITERATION	2 OLD, NEW RMS ERROR=	0.25956	0.25956					

Table S18: Truncated fit output for $^{74}\mathrm{GeC}_6$

EXP.FREQ. - CALC.FREQ. - DIFF. - EXP.ERR.- EST.ERR.-AVG. CALC.FREQ. - DIFF. - WT. 7284.67320 7284.67956 -0.00636 0.00200 0.00113 8094.07920 8094.08354 -0.00434 0.00200 0.00105 1: 9 8 2: 10 9 3: 11 10 4: 12 11 5: 13 12 6: 14 13 7: 15 14 8903.48540 9712.88950 8903.48600 9712.88676 -0.00060 0.00274 0.00200 0.00092 10522.29450 10522.28568 0.00882 0.00200 0.00081 11331.69560 12141.06260 11331.68262 12141.07740 0.01298 0.00200 0.00106 -0.01480 0.00200 NORMALIZED DIAGONAL:

 NORMALIZED DIAGONAL:

 1
 1.00000E+00
 2.76178E-01

 MARQUARDT PARAMETER
 0, TRUST EXPANSION = 1.00

 NEW PARAMETER (EST. ERROR) -- CHANGE THIS ITERATION

 1
 100
 B
 404.705455(112)
 -0.000000

 2
 200
 D
 -6.39(33)E-06
 0.000E-06

 MICROWAVE AVG =
 -0.000223 MHz, IR AVG =
 0.00000

 MICROWAVE RMS =
 0.008722 MHz, IR RMS =
 0.00000

 END OF ITERATION 2 OLD, NEW RMS ERROR=
 4.36109
 4.36109

Table S19: Truncated fit output for ${}^{76}\text{GeC}_6$

	EXP.F	REQ CALC.H	FREQ DIFF	EXP.ERR	EST.ERR	AVG. CALC.FREQ	DIFF WT.			
1: 9 8		7215.84720	7215.84732	-0.00012	0.00200	0.00113				
2: 10 9		8017.60430	8017.60609	-0.00179	0.00200	0.00105				
3: 11 10		8819.36500	8819.36422	0.00078	0.00200	0.00092				
4: 12 11		9621.12390	9621.12164	0.00226	0.00200	0.00081				
5: 13 12		10422.87830	10422.87829	0.00001	0.00200	0.00081				
6: 14 13		11224.63240	11224.63411	-0.00171	0.00200	0.00106				
7: 15 14		12026.38950	12026.38902	0.00048	0.00200	0.00153				
NORMALIZED DIAGONA	NORMALIZED DIAGONAL:									
1 1.00000E+0	00 2 2.76178E-01									
MARQUARDT PARAMETER = 0, TRUST EXPANSION = 1.00										
	NEW PARAMETER	(EST. ERROR) -	CHANGE THIS	ITERATION						
1 200	D -2.6	3(33)E-06	-0.00E-06							
2 100	B 400.88084	1(112)	0.000000							
MICROWAVE AVG =	-0.000014 MHz, IR AVG :	= 0.0000	00							
MICROWAVE RMS =	0.001313 MHz, IR RMS :	= 0.0000	00							
END OF ITERATION	2 OLD, NEW RMS ERROR=	0.65634	0.65634							

Table S20: Internal coordinates of CH_3GeH_3 , optimized at the ae-CCSD(T)/cc-pwCVQZ level of theory, in Å and degrees.

Η C 1 r1 GE 2 r2 1 a1 H 3 r3 2 a2 1 d180 H 2 r1 3 a1 1 d120 H 2 r1 3 a1 5 d120 H 3 r3 2 a2 4 d120 H 3 r3 2 a2 7 d120 r1 1.0879 = r2 1.9454 = a1 = 110.3295 r3 1.5271 = a2 = 110.3410 d180 = 180.0000 d120 = 120.0000

Figure S1: Molecular structure of methyl germane, CH_3GeH_3 .