SUPPLEMENTARY INFORMATION

Sandwich-type Na₆B₇⁻ and Na₈B₇⁺ clusters: Charge-transfer complexes, four-fold π/σ aromaticity, and dynamic fluxionality⁺

Ying-Jin Wang,^{‡a,b} Lin-Yan Feng,^{‡b} and Hua-Jin Zhai^{*b}

^aDepartment of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China

^bNanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

*E-mail: hj.zhai@sxu.edu.cn

Supplementary Information – Part I

- **Table S1.**Cartesian coordinates for the global-minimum (GM) structures of $Na_6B_7^-$ (1, D_{3d} , $^1A_{1g}$) and $Na_8B_7^+$ (5, D_{3d} , $^1A_{1g}$) clusters at the PBE0/6-311+G* level.
- Figure S1. Alternative low-lying structures of $Na_6B_7^-$ cluster. Relative energies at the PBE0/6-311+G* level are shown in square brackets, with corrections for zero-point energies (ZPEs). Also shown are energies for top low-lying isomers at the single-point CCSD(T)/6-311G*//PBE0/6-311+G* level. All energies are in eV.
- Figure S2. Alternative low-lying structures of Na₈B₇⁺ cluster. Relative energies at the PBE0/6-311+G* level are shown in square brackets, with corrections for ZPEs. Also shown are energies for top low-lying isomers at the single-point CCSD(T)/6-311G*//PBE0/6-311+G* level. All energies are in eV.
- **Figure S3.** Structural evolution of $Na_8B_7^+$ cluster during the dynamic rotations. Two pathways are available via transition states **6** and **7**, which are denoted as TS₁ and

 TS_2 , respectively. Each pathway is associated to a soft vibrational mode of $Na_8B_7^+$ cluster. The lower pathway is related to free rotation of B_7 wheel against two Na_4 subunits, while the upper one is due to twisting between two Na_4 subunits.

- Figure S4. Calculated bond distances (in Å; black color), Wiberg bond indices (WBIs; blue color), and natural atomic charges (in |e|; red color) for (a) Na₆B₇⁻ (2, TS₁), (b) Na₆B₇⁻ (3, TS₂), and (c) Na₆B₇⁻ (4, LM). Here TS and LM represent transition state and local minimum, respectively. WBIs and natural atomic charges are obtained from natural bond orbital (NBO) analyses at the PBE0/6-311G* level.
- Figure S5. Calculated bond distances (in Å; black color), WBIs (blue color), and natural atomic charges (in |e|; red color) for (a) Na₈B₇⁺ (6, TS₁), (b) Na₈B₇⁺ (7, TS₂), and (c) Na₈B₇⁺ (8, LM). WBIs and natural atomic charges are obtained from the NBO analyses at the PBE0/6-311G* level.
- **Figure S6.** Canonical molecular orbitals (CMOs) of D_{3d} (**5**, ${}^{1}A_{1g}$) GM structure of Na₈B₇⁺ cluster. (a) Six σ CMOs for peripheral two-center two-electron (2c-2e) B–B σ bonds in the B₇ wheel. (b) Three delocalized σ CMOs. (c) Three delocalized π CMOs. (d) Two delocalized σ CMOs over two Na₄ tetrahedra. Subsystems (b) through (d) collectively render four-fold ($2\sigma/6\pi/6\sigma/2\sigma$) aromaticity for Na₈B₇⁺ cluster.
- **Figure S7.** Occupied CMOs of the D_{3d} (2, ${}^{1}A_{1g}$) TS₁ structure for Na₆B₇⁻ cluster. The CMOs are similar to those in Figs. 4 and S6, except for a slight spatial shift of the electron clouds, which does not alter the essence of chemical bonding.
- **Figure S8.** Bonding pattern of the D_{3d} (2, ${}^{1}A_{1g}$) TS₁ structure for Na₆B₇⁻ cluster on the basis of adaptive natural density partitioning (AdNDP) analysis. Occupation numbers (ONs) are indicated.
- **Figure S9.** Occupied CMOs of the D_{3h} (4, ${}^{1}A_{1}$) LM structure for Na₆B₇⁻ cluster. The CMOs are similar to those in Figs. 4, S6, and S7, except for a slight spatial shift of the electron clouds, which does not alter the essence of chemical bonding.

- **Figure S10.** AdNDP bonding pattern of the D_{3h} (**4**, ${}^{1}A_{1}$) LM structure for Na₆B₇⁻ cluster. ONs are indicated.
- **Figure S11.** Simulated photoelectron spectrum of $Na_6B_7^-$ cluster at the time-dependent PBE0/6-311+G* (TD-PBE0) level. The simulation was conducted using the D_{3d} (1, ${}^{1}A_{1g}$) GM structure by fitting the calculated vertical detachment energies (VDEs) with unit-area Gaussian functions of 0.02 eV half-width.

Supplementary Information – Part II

A short movie extracted from the BOMD simulation for Na₆B₇⁻ cluster. The simulation was performed at 300 K for 50 ps. The movie roughly covers a time span of 8 ps. Similar BOMD properties have been probed for Na₈B₇⁺ cluster at 300 K (not shown).

Figure S1. Alternative low-lying structures of Na₆B₇⁻ cluster. Relative energies at the PBE0/6-311+G* level are shown in square brackets, with corrections for zero-point energies (ZPEs). Also shown are energies for top low-lying isomers at the single-point CCSD(T)/6-311G*//PBE0/6-311+G* level. All energies are in eV.

(... continued)

Figure S2. Alternative low-lying structures of Na₈B₇⁺ cluster. Relative energies at the PBE0/6-311+G* level are shown in square brackets, with corrections for ZPEs. Also shown are energies for top low-lying isomers at the single-point CCSD(T)/6-311G*//PBE0/6-311+G* level. All energies are in eV.

(... continued)

Figure S3. Structural evolution of Na₈B₇⁺ cluster during the dynamic rotations. Two pathways are available via transition states 6 and 7, which are denoted as TS₁ and TS₂, respectively. Each pathway is associated to a soft vibrational mode of Na₈B₇⁺ cluster. The lower pathway is related to free rotation of B₇ wheel against two Na₄ subunits, while the upper one is due to twisting between two Na₄ subunits.

Figure S4. Calculated bond distances (in Å; black color), Wiberg bond indices (WBIs; blue color), and natural atomic charges (in |e|; red color) for (a) Na₆B₇⁻ (2, TS₁), (b) Na₆B₇⁻ (3, TS₂), and (c) Na₆B₇⁻ (4, LM). Here TS and LM represent transition state and local minimum, respectively. WBIs and natural atomic charges are obtained from natural bond orbital (NBO) analyses at the PBE0/6-311G* level.

Figure S5. Calculated bond distances (in Å; black color), WBIs (blue color), and natural atomic charges (in |e|; red color) for (a) Na₈B₇⁺ (6, TS₁), (b) Na₈B₇⁺ (7, TS₂), and (c) Na₈B₇⁺ (8, LM). WBIs and natural atomic charges are obtained from the NBO analyses at the PBE0/6-311G* level.

Figure S6. Canonical molecular orbitals (CMOs) of D_{3d} (**5**, ${}^{1}A_{1g}$) GM structure of Na₈B₇⁺ cluster. (a) Six σ CMOs for peripheral two-center two-electron (2c-2e) B–B σ bonds in the B₇ wheel. (b) Three delocalized σ CMOs. (c) Three delocalized π CMOs. (d) Two delocalized σ CMOs over two Na₄ tetrahedra. Subsystems (b) through (d) collectively render four-fold ($2\sigma/6\pi/6\sigma/2\sigma$) aromaticity for Na₈B₇⁺ cluster.

Figure S7. Occupied CMOs of the D_{3d} (2, ${}^{1}A_{1g}$) TS₁ structure for Na₆B₇⁻ cluster. The CMOs are similar to those in Figs. 4 and S6, except for a slight spatial shift of the electron clouds, which does not alter the essence of chemical bonding.

Figure S8. Bonding pattern of the D_{3d} (2, ${}^{1}A_{1g}$) TS₁ structure for Na₆B₇⁻ cluster on the basis of adaptive natural density partitioning (AdNDP) analysis. Occupation numbers (ONs) are indicated.

3×7c-2e π bonds ON = 2.00-1.86 |e| **Figure S9.** Occupied CMOs of the D_{3h} (4, ${}^{1}A_{1}$) LM structure for Na₆B₇⁻ cluster. The CMOs are similar to those in Figs. 4, S6, and S7, except for a slight spatial shift of the electron clouds, which does not alter the essence of chemical bonding.

Figure S10. AdNDP bonding pattern of the D_{3h} (4, ${}^{1}A_{1}$) LM structure for Na₆B₇⁻ cluster. ONs are indicated.

Figure S11. Simulated photoelectron spectrum of $Na_6B_7^-$ cluster at the time-dependent PBE0/6-311+G* (TD-PBE0) level. The simulation was conducted using the D_{3d} (1, ${}^{1}A_{1g}$) GM structure by fitting the calculated vertical detachment energies (VDEs) with unit-area Gaussian functions of 0.02 eV half-width.

Table S1. Cartesian coordinates for the global-minimum (GM) structures of $Na_6B_7^-$ (1, D_{3d} , $^1A_{1g}$) and $Na_8B_7^+$ (5, D_{3d} , $^1A_{1g}$) clusters at the PBE0/6-311+G* level.

(a) GM, Na₆B₇⁻ (**1**, D_{3d} , ¹A_{1g})

В	0.81156285	1.40566809	0.00000000
В	-0.81156285	1.40566809	0.00000000
В	0.81156285	-1.40566809	0.00000000
В	-0.81156285	-1.40566809	0.00000000
В	-1.62312570	-0.00000000	0.00000000
В	1.62312570	0.00000000	0.00000000
В	0.00000000	0.00000000	0.00000000
Na	1.64088312	0.94736431	2.59772681
Na	-0.00000000	1.89472862	-2.59772681
Na	-1.64088312	0.94736431	2.59772681
Na	-1.64088312	-0.94736431	-2.59772681
Na	0.00000000	-1.89472862	2.59772681
Na	1.64088312	-0.94736431	-2.59772681

(b) GM, Na₈B₇⁺ ($\mathbf{5}$, D_{3d} , ¹A_{1g})

В	0.81035200	1.40357100	0.00000000
В	-0.81035200	1.40357100	0.00000000
В	0.81035200	-1.40357100	0.00000000
В	-0.81035200	-1.40357100	0.00000000
В	-1.62070400	0.00000000	0.00000000
В	1.62070400	0.00000000	0.00000000
В	0.00000000	0.00000000	0.00000000
Na	1.76725100	1.02032300	2.48933400

Na	0.00000000	2.04064600	-2.48933400
Na	-1.76725100	1.02032300	2.48933400
Na	-1.76725100	-1.02032300	-2.48933400
Na	0.00000000	-2.04064600	2.48933400
Na	1.76725100	-1.02032300	-2.48933400
Na	0.00000000	0.00000000	5.46523900
Na	0.00000000	0.00000000	-5.46523900