Computational and Experimental Approach to Understanding the Structural Interplay of Self-assembled End-terminated Alkanethiolates on Gold Surfaces

Juganta K. Roy¹, Erick S. Vasquez², Henry P. Pinto^{1,3}, Swati Kumari⁴, Keisha B. Walters^{5*} and Jerzy Leszczynski^{1*}

¹Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39207, USA

²Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469-0256, USA

³School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119 Urcuqui, Ecuador

⁴Swalm School of Chemical Engineering, Mississippi State University, MS State, Mississippi 39762, USA

⁵School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA

*Corresponding author Prof. Keisha Walters, Phone: +1 405 325 0465; fax: +1 405 325 5813; E-mail: <u>keisha.walters@ou.edu</u>

Prof. Jerzy Leszczynski, Phone: +1 601 979 3723; fax: +1 601 979 7823; E-mail: jerzy@icnanotox.org

Figure S1: Free energy obtained from the AIMD simulation of model M8/C11TH along with four different configurations by including vdW dispersion correction optB86b functional in VASP.

Figure S2: DFT optimized without simulated annealing different atomistic models of Au/ C11TH interface by using vdW density functional. Top row: top view *xy* plane and bottom row: side view *xz* and *yz* plane. Blue lines indicate the simulation cell of Au/C11TH.

Figure S3: Tilt angle variation of the C11TH with different vectors with the use of optB86b functional in AIMD simulation. Schematic diagram to calculate tilt angle using different vectors.

Figure S4: Snapshots obtained from AIMD simulation of M8/C11TH interface with the use of vdW density functional. Side view of different configurations with respect to *yz* plane Purple lines indicate the simulation cell of Au/C11TH. Color code: Orange (Au), Green (Au adatom), Yellow (Sulphur), Gray (Carbon), Red (Oxygen), White (Hydrogen). For the clarity hydrogens are not included except -OH.

Table S1: Structural attributes of the studied Au(111)/C11TH with two different functionals in VASP. Δz and $\Delta \theta$ indicates the thickness of C11TH in Å and tilt angle formed by C11TH in °, respectively.

Model	With/Without Annealing	Δz (Å)		Δθ (°)	
		PBE	optB86b	PBE	optB86b
M1	No Annealing	15.17	15.08	6.80	7.10
	Annealing	13.91	13.48	25.3	46.5
	Difference	1.26	1.60	18.5	39.4
M7	No Annealing	14.90	14.73	9.30	9.30
	Annealing	14.73	13.29	15.3	21.4
	Difference	0.17	1.44	6.0	12.9
M8	No Annealing	15.03	14.99	7.90	7.90
	Annealing	14.30	12.64	20.5	23.9
	Difference	0.73	2.35	12.6	16
M9	No Annealing	15.14	15.00	6.90	6.9
	Annealing	14.78		13.5	
	Difference	0.36		6.6	