Supporting Information:

How to Understand Very Weak Cr-Cr Double Bond and Negative Spin Population in Trinuclear Cr Complexes : Theoretical Insight

Masayuki Nakagaki,^a Naoki Nakatani^b and Shigeyoshi Sakaki*^a

 ^a Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan. E-mail: sakaki.shigeyoshi.47e@st.kyoto-u.ac.jp
 ^b Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa Hachioji-shi, Tokyo 192-0397, Japan

Corresponding author: E-mail: sakaki.shigeyoshi.47e@st.kyoto-u.ac.jp

functional	$R(Cr^1-Cr^2) / R(Cr^2-Cr^3) [Å]$				
Tunctional	$[Cr_3(dpa)_4]Cl_2 1$	$[Cr_3(dpa)_4](N_3)_2 2$			
B3PW91	2.464 / 2.464	2.461 / 2.461			
BLYP	2.429 / 2.429	2.426 / 2.426			
B3LYP	2.479 / 2.479	2.475 / 2.475			
M06	2.449 / 2.449	2.444 / 2.444			
M06L	2.394 / 2.394	2.384 / 2.384			
PBE0	2.468 / 2.468	2.463 / 2.463			
exp.	2.3647 / 2.3647 ^{S1}	2.131 / 2.534 ⁸²			

Table S1. DFT-optimized Cr-Cr bond distances (Å) of $[Cr_3(dpa)_4]Cl_2$ 1 and $[Cr_3(dpa)_4](N_3)_2$ 2 with various functional

Table S2. DFT-optimized bond distance (Å) between metal and ligand of $[Cr_3(dpa)_4Cl_2]$ 1 at experimental Cr-Cr bond distance with various functional.

functional	r(Cr ² -N)	r(Cr ¹ -N)	r(Cr ¹ -Cl)	RMSE
B3PW91	2.048	2.141	2.525	0.022
BLYP	2.070	2.156	2.561	0.038
B3LYP	2.067	2.159	2.546	0.038
M06	2.035	2.137	2.492	0.027
M06L	2.035	2.141	2.459	0.041
PBE0	2.043	2.138	2.513	0.023
exp. ^{S1}	2.023	2.124	2.551	

Figure S1. CASSCF natural orbitals of $Cr_2(dpa)_4$ with their occupation number.

Effective Bond Order (EBO) of trinuclear Cr complex [Cr₃(dpa)₄Cl₂] with symmetrical structure 2sym

In this complex, the occupation numbers of natural orbitals are 1.48, 1.19, 1.19, and 1.04 for σ -type φ_1 , one π -type φ_2 , the other π -type φ_3 , and δ -type φ_4 , respectively, and 0.96, 0.81, 0.81, and 0.52 for δ *-type φ_9 , π *-type φ_{10} , the other π *-type φ_{11} , and δ *-type φ_{12} , respectively, as shown in Figure 3, where the superscript * represents anti-bonding MO. Because non-bonding d orbital does not participate in Cr-Cr bonding and anti-bonding interactions at all (Figure 3), they are not counted in evaluation of EBO. The difference between the occupation numbers of bonding and antibonding MOs is 0.96, 0.38, 0.38, and 0.05 for σ -type, π -type, the other π -type, and δ -type interactions, respectively. The one-half of the sum of them is 0.89, which corresponds to the sum of EBOs of two Cr-Cr bonds. Hence, the EBO of one Cr-Cr bond is 0.44.

This value is much smaller than one, indicating that the Cr-Cr bonding interaction is even weaker than Cr-Cr single bond despite of the fact that this complex has two Cr-Cr double bonds.

This evaluation is the same as that employed for EBO of dinuclear Cr complex but this method cannot be employed for evaluation of EBO of trinuclear Cr complex with nonsymmetrical structure because one Cr-Cr bond is not equivalent to the other Cr-Cr bond.

				(CASSC	F with	natural	orbita	ls			
					Config	uratior	1					Coefficien
					conne	urution	•					t
ϕ_1	ϕ_2	φ ₃	ϕ_4	φ ₅	ϕ_6	ϕ_7	ϕ_8	φ9	ϕ_{10}	ϕ_{11}	ϕ_{12}	_
σ	π	π	δ	ΝΒδ	$NB\pi$	$NB\pi$	$\text{NB}\sigma$	δ*	π^*	π^*	σ*	
2	2	2	2	α	α	α	α	0	0	0	0	0.159
2	2	2	α	α	α	α	α	β	0	0	0	0.151
2	2	2	0	α	α	α	α	2	0	0	0	0.145
2	β	2	α	α	α	α	α	β	0	α	0	-0.122
2	2	β	α	α	α	α	α	β	α	0	0	0.122
2	β	2	2	α	α	α	α	0	α	0	0	-0.116
2	2	β	0	α	α	α	α	0	0	α	0	0.116
				(CAS-C	with l	ocalized	l orbit	als			
					Config	uratior	1					Coefficien
												t
	С	r^1			C	$2r^2$		Cr ³				
σ	π	π	δ	σ	π	π	δ	σ	π	π	δ	
α	α	α	α	β	β	β	β	α	α	α	α	0.696
α	α	α	α	α	β	β	β	β	α	α	α	0.140
β	α	α	α	α	β	β	β	α	α	α	α	0.140
α	α	α	α	2	β	β	β	0	α	α	α	-0.121
0	α	α	α	2	β	β	β	α	α	α	α	0.121
α	α	α	α	0	β	β	β	2	α	α	α	-0.107
2	α	α	α	0	β	β	β	α	α	α	α	0.107

Table S3. Main configurations of CASSCF and CASCI wavefunctions of (a) $[Cr_3(dpa)_4Cl_2]$ **1sym** and (b) $[Cr_3(dpa)_4(N_3)_2]$ **2asym**. (a) $[Cr_3(dpa)_4Cl_2]$ **1sym**

(b) $[Cr_3(dpa)_4(N_3)_2]$ **2asym**.

CASSCF with natural orbitals												
	Configuration									Coefficien		
	Configuration							_ t				
ϕ_1	ϕ_2	φ ₃	ϕ_4	φ ₅	φ ₆	ϕ_7	ϕ_8	φ9	ϕ_{10}	ϕ_{11}	ϕ_{12}	_
σ	π	π	δ	ΝΒδ	$NB\pi$	$NB\pi$	$NB\sigma$	δ*	π^*	π^*	σ*	
2	2	2	2	α	α	α	α	0	0	0	0	0.166

	2	2	2	0	α	α	α	α	2	0	0	0	0.150
	2	β	2	2	α	α	α	α	0	α	0	0	0.107
	2	2	β	2	α	α	α	α	0	0	α	0	-0.106
	2	2	2	α	α	α	α	α	β	0	0	0	0.103
	2	0	2	2	α	α	α	α	0	2	0	0	-0.101
_	2	2	0	2	α	α	α	α	0	0	2	0	-0.101
					С	AS-CI	with lo	calized	l orbita	ls			
						Config	uration	l					Coefficien
													t
		С	r ¹			С	2r ²			C	r ³		-
	1	C 2	r ¹ 3	4	1	2 2	2 3	4	1	C 2	r ³ 3	4	-
-	 α	C 2 α	$\frac{1}{\alpha}$	4 α	 β	C 2 β	$\frac{2r^2}{\beta}$	4 β	1 α	C 2 α	$\frac{1}{\alpha}$	4 α	0.663
-	1 α β	C 2 α α	$\frac{1}{\alpha}$	4 α α	1 β β	C 2 β β	$\frac{3}{\beta}$	4 β β	1 α α	C 2 α α	$\frac{1}{\alpha}$	4 α α	0.663 0.122
-	1 α β α	C 2 α β	$\frac{ \mathbf{r}^{1} }{3}$	4 α α α	1 β β β	C 2 β β α	$\frac{\beta r^2}{\beta}$	4 β β β	1 α α α	C 2 α α α	$\frac{1}{\alpha}$	4 α α α	0.663 0.122 -0.122
-	1 α β α α	2 α α β α	$\frac{1}{\alpha}$	4 α α α α	1 β β β α	2 β β α β	$\frac{3}{\beta}$ $\frac{\beta}{\beta}$ β	4 β β β	1 α α α α	C 2 α α α α	$\frac{1}{\alpha}$	4 α α α α	0.663 0.122 -0.122 -0.115
-	1 α β α β	2 α α β α α	$\frac{1}{\alpha}$ $\frac{\alpha}{\alpha}$ $\frac{\alpha}{\beta}$ α	4 α α α α α	1 β β α α	2 β β β β β	$\frac{3}{\beta}$ $\frac{\beta}{\beta}$ β β	4 β β β β	1 α α α α α	2 α α α α α	$\frac{1}{\alpha}$	4 α α α α α	0.663 0.122 -0.122 -0.115 -0.112
-	1 α β α β α β α	C 2 α α β α β	$\frac{1}{\alpha}$	4 α α α α α α	1 β β α α β	C 2 β β α β β β	$\frac{3}{\beta}$ $\frac{\beta}{\beta}$ $\frac{\beta}{\beta}$ β β	4 β β β β β	1 α α α α α α	2 α α α α α α	$\frac{1}{2}r^{3}}{\begin{array}{c} \alpha\\ $	4 α α α α α α α	0.663 0.122 -0.122 -0.115 -0.112 0.109

Explanation of Spin Polarization based on CASSCF orbitals:

Spin polarization mechanism cannot be clearly understood on the basis of simple scheme. We wish to present its qualitative explanation based on CASSCF orbitals (Table S3 (a)), using ϕ_4 , ϕ_5 , and ϕ_9 because these MOs consist of d_{yz} orbitals of Cr¹, Cr², and Cr³.

$\phi_4 = a_1 \chi_1 + a_2 \chi_2 + a_3 \chi_3$, where $a_1 = a_3$	(S1)
$\phi_5 = b_1 \chi_1 - b_3 \chi_3$, where $b_1 = b_3$	(S2)

$$\phi_9 = -c_1 \chi_1 + c_2 \chi_2 + -c_3 \chi_3, \text{ where } c_1 = c_3 \tag{S3}$$

In the above representations, a_i, b_i, c_i are LCAO coefficient (we defined they are positive; see Figure 3). The total wave function is represented approximately by eq. S4:

$$\psi = \Phi_1 + \lambda \, \Phi_2 + \cdots$$
 (S4)

where λ is positive, as shown in Table S3. The main configuration Φ_1 and the second leading term Φ_2 are represented by eqs. (S5) and (S6), where the other terms are omitted for brevity:

$$\Phi_1 = |\phi_4 \ \overline{\phi_4} \ \phi_5| \tag{S5}$$

$$\Phi_2 = |\phi_4 \ \overline{\phi_9} \ \phi_5| \tag{S6}$$

In the main configuration, the α -spin is found on Cr¹ and Cr³, where their spin densities (ρ_s) are approximately b_1^2 and b_3^2 (= b_1^2), respectively.

$$\rho_{s} (Cr^{1}) = \rho_{s} (Cr^{3}) = b_{1}^{2}$$
(S7)

In the second leading term, the spin density is approximately represented, as follows:

$$\rho_{s} (Cr^{1}) = (1+\lambda)^{2} a_{1}^{2} - (a_{1} - \lambda c_{1})^{2} + \lambda^{2} b_{1}^{2}$$

= 2\lambda (a_{1}^{2} + a_{1}c_{1}) + \lambda^{2} (a_{1}^{2} - c_{1}^{2} + b_{1}^{2}) (S8a)

The LCAO coefficient b^1 is larger than a^1 and c^1 because ϕ_4 and ϕ_9 are three-center MOs and ϕ_5 is two-center MO. The LCAO coefficient c^1 is similar to a^1 but slightly larger than a^1 , because a re-normalization factor is smaller in the anti-bonding MO than in the bonding MO; $a^1 \leq c^1$. Thus, eq. S8b is obtained, indicating that the α spin density increases on the Cr¹ and Cr³, because λ is positive.

$$\label{eq:rho} \begin{split} \rho_s\left(Cr^1\right) \sim 2\lambda\left(a_1{}^2+a_1c_1\right)+\lambda^2b_1{}^2>0.0 \end{split} \tag{S8b}$$
 The same calculation was performed on the Cr^2 :

$$\rho_{s} (Cr^{2}) = (1+\lambda)^{2} a_{2}^{2} - (a_{2} + \lambda c_{2})^{2}$$

= $2\lambda (a_{2}^{2} - a_{2}c_{2}) + \lambda^{2} (a_{2}^{2} - c_{2}^{2}) < 0.0.$ (S9)

Thus, the negative spin density appears on the Cr^2 by the second leading term.

			CASS	SCF with natu	ral orbita	als		
	(a) allene 1	nolecule			(b) a	llyl radica	al
Configuration			Coefficien t	Co	onfigurat	ion	coefficient	
ϕ_1	ϕ_2	φ ₃	ϕ_4		ϕ_1	ϕ_2	φ ₃	
2	2	0	0	0.917	2	α	0	0.735
0	2	2	0	-0.265	α	α	β	0.552
2	0	0	2	-0.265	β	α	α	0.282
0	0	2	2	0.080	α	β	α	0.269
					0	α	2	-0.053
			CASC	CI with localiz	ed orbita	als		
	(a)	allene n	nolecule			(b) a	llyl radic	al
	Config	guration		Coefficien t	Co	onfigurat	ion	Coefficien t
Lmo1	Lmo2	Lmo3	Lmo1	_	Lmol	Lmo2	Lmo3	-
α	β	β	α	0.401	α	β	α	0.708
β	α	α	β	0.401	β	α	α	-0.354
β	α	β	α	0.362	α	α	β	0.354
α	β	α	β	0.362				

Table S4. Main configurations of CASSCF and CASCI wavefunction of (a) allene molecule and (b) allyl radical.

Formal shortness ratio (FSR) and orbital shortness ratio (OSR)

The FSR for an A-B bond is defined by eq. S11

$$FSR_{AB} = R_{A-B} / (R_A + R_B)$$
(S11)

where R_{A-B} is the A-B bond length in a molecule and R_A and R_B are the atomic radii of A and B, respectively. For example, FSR_{N-N} of dinitrogen molecule is evaluated to be 0.783 using $R_N = 0.70$. FSR_{Cr-Cr} for several Cr quadruple bonds was evaluated previously to be 0.74 to 0.78, which is similar to that of dinitrogen molecule. Using $R_{Cr} = 1.186$ which was employed in the previous theoretical study of Cr dinuclear complex,^{S3} the FSR is evaluated to be 1.012 for **1sym** and 0.957 and 1.059 for shorter and longer Cr-Cr bonds, respectively, for **2asym**.

Because the bond distance depends on the orbital expansion, the bond distance must be discussed on the basis of orbital overlap. For this reason, OSR was proposed by Kurokawa *et al.*^{S3}

$$OSR = R_{M-M} / R^{\sigma}_{Smax}$$
(S12)

where distance R^{σ}_{Smax} is providing the maximum overlap integral for σ - σ bond because the σ -bonding interaction is always more important than the π -bonding interaction. The OSR of dinitrogen molecule is 0.752, which is similar to the FSR value. R^{σ}_{Smax} was evaluated to be 1.520 Å for σ - σ interaction of Cr 3d orbitals.

Figure S2. Relationships of EBO with FSR and OSR.

 $Cr^{1}-Cl^{1} = 2.530$ Å, $Cr^{3}-Cl^{3} = 2.510$ Å

Figure S3. Optimized structure of (a) $[Cr_3(dpa)_4Cl_2]$ **1asym** with non-symmetrical structure. Two Cr-Cr bond distances are fixed to those of $[Cr_3(dpa)_4(N_3)_2]$ **2asym** with asymmetrical structures. The Cr¹-Cl¹ distance was 0.015 Å elongated but the Cr³-Cl³ one was shortened only 0.005 Å from symmetrical structure to asymmetrical one.

Complete reference 75

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT,

References.

S1. F. A. Cotton, L.M. Daniels, C.A. Murillo, I. Pascual, J. Am. Chem. Soc. 1997, 119, 10223.

S2. Y. Turov, J. F. Berry, Dalton Trans., 2012, 41, 8153.

S3. Y. I. Kurokawa, Y. Nakao, and S. Sakaki, J. Phys. Chem. A, 2009, 113, 3202.

Cartesian coordinate of optimized structures # DMRG-CASPT2 results

#1

Cr	0.000000000	0.000000000	0.000187001
Cr	0.000000000	0.000000000	2.405187173
Cr	0.000000000	0.000000000	-2.404813172
Ν	0.000000000	-2.045487145	-0.000010001
Ν	0.000000000	2.045487145	-0.000010001
Ν	-0.757710054	-1.994112142	2.186973155
Ν	0.757710054	1.994112142	2.186973155
Ν	0.757481057	-1.994219141	-2.187083155
Ν	-0.757481057	1.994219141	-2.187083155
Ν	-2.045487145	0.000000000	-0.000010001
N	2.045487145	0.000000000	-0.000010001
N	-1.994112142	0.757710054	2.186973155
Ν	1.994112142	-0.757710054	2.186973155
Ν	-1.994219141	-0.757481057	-2.187083155
N	1.994219141	0.757481057	-2.187083155
С	-1.426496103	-2.542309185	3.222379231
С	1.426496103	2.542309185	3.222379231
С	-2.003587145	-3.800116271	3.179941232
С	2.003587145	3.800116271	3.179941232
С	-1.907355135	-4.521589325	1.984060145
С	1.907355135	4.521589325	1.984060145
С	-1.231909087	-3.974907284	0.909167065
С	1.231909087	3.974907284	0.909167065
С	-0.634128047	-2.695569193	1.022782076
С	0.634128047	2.695569193	1.022782076
С	0.633969045	-2.695645193	-1.022860072
С	-0.633969045	2.695645193	-1.022860072
С	1.231702089	-3.975010288	-0.909259067
С	-1.231702089	3.975010288	-0.909259067
С	1.907086138	-4.521730324	-1.984177140
С	-1.907086138	4.521730324	-1.984177140
С	2.003245143	-3.800287274	-3.180078231
С	-2.003245143	3.800287274	-3.180078231

С	1.426146100	-2.542474183	-3.222530232
С	-1.426146100	2.542474183	-3.222530232
С	-2.542309185	1.426496103	3.222379231
С	2.542309185	-1.426496103	3.222379231
С	-3.800116271	2.003587145	3.179941232
С	3.800116271	-2.003587145	3.179941232
С	-4.521589325	1.907355135	1.984060145
С	4.521589325	-1.907355135	1.984060145
С	-3.974907284	1.231909087	0.909167065
С	3.974907284	-1.231909087	0.909167065
С	-2.695569193	0.634128047	1.022782076
С	2.695569193	-0.634128047	1.022782076
С	-2.695645193	-0.633969045	-1.022860072
С	2.695645193	0.633969045	-1.022860072
С	-3.975010288	-1.231702089	-0.909259067
С	3.975010288	1.231702089	-0.909259067
С	-4.521730324	-1.907086138	-1.984177140
С	4.521730324	1.907086138	-1.984177140
С	-3.800287274	-2.003245143	-3.180078231
С	3.800287274	2.003245143	-3.180078231
С	-2.542474183	-1.426146100	-3.222530232
С	2.542474183	1.426146100	-3.222530232
Н	-1.462511107	-1.921055137	4.120763298
Н	1.462511107	1.921055137	4.120763298
Н	-2.521458183	-4.193872304	4.054377292
Н	2.521458183	4.193872304	4.054377292
Н	-2.377274174	-5.503594399	1.886630136
Н	2.377274174	5.503594399	1.886630136
Н	-1.186935086	-4.500289326	-0.044163001
Н	1.186935086	4.500289326	-0.044163001
Н	1.186772083	-4.500356326	0.044095001
Н	-1.186772083	4.500356326	0.044095001
Н	2.377014173	-5.503731397	-1.886748137
Н	-2.377014173	5.503731397	-1.886748137
Н	2.521020183	-4.194085303	-4.054553291
Н	-2.521020183	4.194085303	-4.054553291

Н	1.462098106	-1.921241138	-4.120929295
Н	-1.462098106	1.921241138	-4.120929295
Н	-1.921055137	1.462511107	4.120763298
Н	1.921055137	-1.462511107	4.120763298
Н	-4.193872304	2.521458183	4.054377292
Н	4.193872304	-2.521458183	4.054377292
Н	-5.503594399	2.377274174	1.886630136
Н	5.503594399	-2.377274174	1.886630136
Н	-4.500289326	1.186935086	-0.044163001
Н	4.500289326	-1.186935086	-0.044163001
Н	-4.500356326	-1.186772083	0.044095001
Н	4.500356326	1.186772083	0.044095001
Н	-5.503731397	-2.377014173	-1.886748137
Н	5.503731397	2.377014173	-1.886748137
Н	-4.194085303	-2.521020183	-4.054553291
Н	4.194085303	2.521020183	-4.054553291
Н	-1.921241138	-1.462098106	-4.120929295
Н	1.921241138	1.462098106	-4.120929295
Cl	0.000000000	0.000000000	4.920432355
Cl	0.000000000	0.000000000	-4.920093353
#			
# 2			
Cr	0.000000000	0.000000000	2.271000163
Cr	0.000000000	0.000000000	0.000000000
Cr	0.000000000	0.000000000	-2.514000181
Ν	0.773522055	1.985442144	2.100082151
Ν	0.030335001	2.049213146	-0.083276005
Ν	-0.728059051	1.992087144	-2.273566165
Ν	1.988432144	-0.771970057	2.100142149
Ν	2.047921149	-0.030993001	-0.083684005
Ν	1.997981142	0.735390056	-2.272105164
Ν	-0.791329060	-1.981140145	2.102889150
N	-0.014953999	-2.048166148	-0.068151007
N	0.718877053	-2.005322142	-2.268194164
N	-1.976035140	0.782278055	2.104949152
N	-2.049310149	0.016415999	-0.069143003

Ν	-2.001690145	-0.720689051	-2.268366162
С	1.431593101	2.517455180	3.149269230
С	2.018670146	3.771363271	3.123222226
С	1.942866141	4.501865322	1.930833137
С	1.274757093	3.971049285	0.842854059
С	0.664645048	2.696522194	0.941243069
С	-0.589804044	2.699596195	-1.113990082
С	-1.163930084	3.991535287	-1.014079074
С	-1.828359132	4.542279329	-2.093525152
С	-1.944289140	3.811392276	-3.282327235
С	-1.392932099	2.542547183	-3.309490236
С	2.525254183	-1.425701104	3.149214227
С	3.776744274	-2.017576147	3.119491225
С	4.501208322	-1.949393140	1.922999139
С	3.967537284	-1.282171094	0.835895061
С	2.695681193	-0.667299046	0.938938069
С	2.700730195	0.593722041	-1.110047082
С	3.992207289	1.166914082	-0.999082074
С	4.550252327	1.835833131	-2.071548151
С	3.825828273	1.955490140	-3.263578236
С	2.556999183	1.404098099	-3.301718236
С	-1.474756105	-2.515713181	3.134971225
С	-2.044470146	-3.776897269	3.105441225
С	-1.925346140	-4.517600323	1.922964139
С	-1.240055089	-3.984081286	0.848138063
С	-0.651986048	-2.698867195	0.950112070
С	0.610400046	-2.697920195	-1.098103081
С	1.210576085	-3.976191285	-0.984678070
С	1.863625134	-4.534603328	-2.067670150
С	1.934395140	-3.826007273	-3.272994236
С	1.360870096	-2.566475186	-3.312757238
С	-2.503443180	1.459216106	3.144112228
С	-3.765121271	2.027624148	3.126277224
С	-4.511372325	1.913953139	1.946463138
С	-3.984007286	1.235544091	0.863768065
С	-2.698150197	0.647233047	0.954260068

С	-2.698185197	-0.607853042	-1.100637077	
С	-3.978623288	-1.204113084	-0.991551072	
С	-4.533507328	-1.859181135	-2.075186150	
С	-3.818813272	-1.937740138	-3.276445239	
С	-2.557414185	-1.367897099	-3.313009237	
Н	1.449860104	1.881793133	4.038511288	
Н	2.530065182	4.155859301	4.005585287	
Н	2.422686176	5.480290396	1.846993135	
Н	1.245342088	4.505477322	-0.106022006	
Н	-1.110855082	4.525096325	-0.065764005	
Н	-2.277441166	5.534668401	-2.004966144	
Н	-2.457032176	4.205596300	-4.159283300	
Н	-1.468757103	1.910181137	-4.196094304	
Н	1.896504139	-1.432402102	4.042813293	
Н	4.164225297	-2.525586184	4.002481287	
Н	5.477363395	-2.433265175	1.835845133	
Н	4.497568323	-1.255915092	-0.115572010	
Н	4.519092328	1.108917083	-0.047314002	
Н	5.541660398	2.285433166	-1.974855143	
Н	4.222155304	2.473549179	-4.136405296	
Н	1.946599142	1.492241105	-4.201375302	
Н	-1.561205114	-1.893161135	4.026054292	
Н	-2.576020184	-4.155824301	3.977871285	
Н	-2.388040174	-5.503875397	1.835781134	
Н	-1.180741087	-4.524168328	-0.096061006	
Н	1.184051086	-4.492827324	-0.025821003	
Н	2.334585170	-5.516046399	-1.970099142	
Н	2.431079175	-4.230533302	-4.154800301	
Н	1.374669097	-1.950019141	-4.215075304	
Н	-1.860838132	1.530897112	4.022978290	
Η	-4.142997299	2.550987184	4.004093288	
Н	-5.498989398	2.375277170	1.867823134	
Н	-4.530163324	1.182268086	-0.077295005	
Н	-4.499752323	-1.174327083	-0.035258001	
Н	-5.516769398	-2.326920170	-1.980631145	
Н	-4.219989302	-2.438687178	-4.157393301	

Н	-1.934149141	-1.392830100	-4.211120302
Ν	0.139226010	0.034835003	4.425304318
Ν	-0.578739043	-0.214682013	5.357648388
Ν	-1.265378093	-0.454698033	6.261136448
Ν	-0.046031002	-0.140022009	-4.651500334
Ν	0.264425019	0.551303039	-5.586505402
Ν	0.562018042	1.209361088	-6.493312469
# DFT	(B3PW91) results		
#1			
Cr	0.000000000	0.000000000	2.464161000
Cr	0.000000000	0.000000000	0.000000000
Cr	0.000000000	0.000000000	-2.464161000
Ν	0.736795000	2.003540000	2.201233000
Ν	0.000000000	2.043123000	0.000000000
Ν	-0.736795000	2.003540000	-2.201233000
Ν	2.003540000	-0.736795000	2.201233000
Ν	2.043123000	0.000000000	0.000000000
Ν	2.003540000	0.736795000	-2.201233000
Ν	-0.736795000	-2.003540000	2.201233000
Ν	0.000000000	-2.043123000	0.000000000
Ν	0.736795000	-2.003540000	-2.201233000
Ν	-2.003540000	0.736795000	2.201233000
Ν	-2.043123000	0.000000000	0.000000000
Ν	-2.003540000	-0.736795000	-2.201233000
С	1.396289000	2.562966000	3.237276000
С	1.974747000	3.819717000	3.189531000
С	1.892190000	4.529312000	1.985606000
С	1.227098000	3.972094000	0.910005000
С	0.624930000	2.694861000	1.028523000
С	-0.624930000	2.694861000	-1.028523000
С	-1.227098000	3.972094000	-0.910005000
С	-1.892190000	4.529312000	-1.985606000
С	-1.974747000	3.819717000	-3.189531000
С	-1.396289000	2.562966000	-3.237276000
С	2.562966000	-1.396289000	3.237276000
С	3.819717000	-1.974747000	3.189531000

С	4.529312000	-1.892190000	1.985606000
С	3.972094000	-1.227098000	0.910005000
С	2.694861000	-0.624930000	1.028523000
С	2.694861000	0.624930000	-1.028523000
С	3.972094000	1.227098000	-0.910005000
С	4.529312000	1.892190000	-1.985606000
С	3.819717000	1.974747000	-3.189531000
С	2.562966000	1.396289000	-3.237276000
С	-1.396289000	-2.562966000	3.237276000
С	-1.974747000	-3.819717000	3.189531000
С	-1.892190000	-4.529312000	1.985606000
С	-1.227098000	-3.972094000	0.910005000
С	-0.624930000	-2.694861000	1.028523000
С	0.624930000	-2.694861000	-1.028523000
С	1.227098000	-3.972094000	-0.910005000
С	1.892190000	-4.529312000	-1.985606000
С	1.974747000	-3.819717000	-3.189531000
С	1.396289000	-2.562966000	-3.237276000
С	-2.562966000	1.396289000	3.237276000
С	-3.819717000	1.974747000	3.189531000
С	-4.529312000	1.892190000	1.985606000
С	-3.972094000	1.227098000	0.910005000
С	-2.694861000	0.624930000	1.028523000
С	-2.694861000	-0.624930000	-1.028523000
С	-3.972094000	-1.227098000	-0.910005000
С	-4.529312000	-1.892190000	-1.985606000
С	-3.819717000	-1.974747000	-3.189531000
С	-2.562966000	-1.396289000	-3.237276000
Н	1.425579000	1.950701000	4.142233000
Н	2.483949000	4.220964000	4.065651000
Н	2.364686000	5.509513000	1.882744000
Н	1.192638000	4.487863000	-0.049045000
Н	-1.192638000	4.487863000	0.049045000
Н	-2.364686000	5.509513000	-1.882744000
Н	-2.483949000	4.220964000	-4.065651000
Н	-1.425579000	1.950701000	-4.142233000

Н	1.950701000	-1.425579000	4.142233000
Н	4.220964000	-2.483949000	4.065651000
Н	5.509513000	-2.364686000	1.882744000
Н	4.487863000	-1.192638000	-0.049045000
Н	4.487863000	1.192638000	0.049045000
Н	5.509513000	2.364686000	-1.882744000
Н	4.220964000	2.483949000	-4.065651000
Н	1.950701000	1.425579000	-4.142233000
Н	-1.425579000	-1.950701000	4.142233000
Н	-2.483949000	-4.220964000	4.065651000
Н	-2.364686000	-5.509513000	1.882744000
Н	-1.192638000	-4.487863000	-0.049045000
Н	1.192638000	-4.487863000	0.049045000
Н	2.364686000	-5.509513000	-1.882744000
Н	2.483949000	-4.220964000	-4.065651000
Н	1.425579000	-1.950701000	-4.142233000
Н	-1.950701000	1.425579000	4.142233000
Н	-4.220964000	2.483949000	4.065651000
Н	-5.509513000	2.364686000	1.882744000
Н	-4.487863000	1.192638000	-0.049045000
Н	-4.487863000	-1.192638000	0.049045000
Н	-5.509513000	-2.364686000	-1.882744000
Н	-4.220964000	-2.483949000	-4.065651000
Н	-1.950701000	-1.425579000	-4.142233000
Cl	0.000000000	0.000000000	4.965980000
Cl	0.000000000	0.000000000	-4.965980000
#			
# 2			
Cr	0.000000000	-2.461436000	-0.012535000
Cr	0.000000000	0.000000000	-0.021801000
Cr	0.000000000	2.461436000	-0.012535000
N	1.926416000	-2.204474000	0.894368000
N	1.452275000	0.005144000	1.423829000
N	0.896334000	2.204082000	1.910408000
N	0.913794000	-2.204305000	-1.942135000
N	1.441647000	0.005875000	-1.471428000

Ν	1.934993000	2.202512000	-0.910641000
Ν	-1.934993000	-2.202512000	-0.910641000
Ν	-1.441647000	-0.005875000	-1.471428000
Ν	-0.913794000	2.204305000	-1.942135000
Ν	-0.896334000	-2.204082000	1.910408000
Ν	-1.452275000	-0.005144000	1.423829000
Ν	-1.926416000	2.204474000	0.894368000
С	2.772865000	-3.253527000	0.839443000
С	4.071161000	-3.215841000	1.318553000
С	4.530362000	-2.008201000	1.858041000
С	3.679580000	-0.920648000	1.920674000
С	2.348128000	-1.030091000	1.448643000
С	1.476919000	1.037057000	2.320585000
С	1.968510000	0.933370000	3.646221000
С	1.891984000	2.014338000	4.503372000
С	1.314883000	3.210967000	4.060102000
С	0.821239000	3.242355000	2.768095000
С	0.864859000	-3.254702000	-2.786809000
С	1.341869000	-3.217952000	-4.085867000
С	1.875436000	-2.008944000	-4.548089000
С	1.935549000	-0.920270000	-3.698564000
С	1.465662000	-1.029817000	-2.366384000
С	2.341548000	1.035037000	-1.493300000
С	3.666035000	0.923871000	-1.986284000
С	4.529565000	1.999397000	-1.909929000
С	4.091593000	3.197008000	-1.331748000
С	2.799776000	3.235674000	-0.837278000
С	-2.799776000	-3.235674000	-0.837278000
С	-4.091593000	-3.197008000	-1.331748000
С	-4.529565000	-1.999397000	-1.909929000
С	-3.666035000	-0.923871000	-1.986284000
С	-2.341548000	-1.035037000	-1.493300000
С	-1.465662000	1.029817000	-2.366384000
С	-1.935549000	0.920270000	-3.698564000
С	-1.875436000	2.008944000	-4.548089000
С	-1.341869000	3.217952000	-4.085867000

С	-0.864859000	3.254702000	-2.786809000
С	-0.821239000	-3.242355000	2.768095000
С	-1.314883000	-3.210967000	4.060102000
С	-1.891984000	-2.014338000	4.503372000
С	-1.968510000	-0.933370000	3.646221000
С	-1.476919000	-1.037057000	2.320585000
С	-2.348128000	1.030091000	1.448643000
С	-3.679580000	0.920648000	1.920674000
С	-4.530362000	2.008201000	1.858041000
С	-4.071161000	3.215841000	1.318553000
С	-2.772865000	3.253527000	0.839443000
Н	2.344115000	-4.156457000	0.396015000
Н	4.704744000	-4.100479000	1.255853000
Н	5.559564000	-1.912496000	2.213110000
Н	4.032757000	0.039262000	2.296157000
Н	2.368488000	-0.019639000	3.990785000
Н	2.262946000	1.921746000	5.527164000
Н	1.235832000	4.089991000	4.699175000
Н	0.335780000	4.134943000	2.368849000
Н	0.431540000	-4.159760000	-2.353595000
Н	1.283099000	-4.104641000	-4.716926000
Н	2.228795000	-1.913486000	-5.577916000
Н	2.308305000	0.040376000	-4.052634000
Н	4.004053000	-0.031138000	-2.386995000
Н	5.552909000	1.901510000	-2.280788000
Н	4.734082000	4.073154000	-1.249030000
Н	2.423382000	4.139565000	-0.356673000
Н	-2.423382000	-4.139565000	-0.356673000
Н	-4.734082000	-4.073154000	-1.249030000
Н	-5.552909000	-1.901510000	-2.280788000
Н	-4.004053000	0.031138000	-2.386995000
Н	-2.308305000	-0.040376000	-4.052634000
Н	-2.228795000	1.913486000	-5.577916000
Н	-1.283099000	4.104641000	-4.716926000
Н	-0.431540000	4.159760000	-2.353595000
Н	-0.335780000	-4.134943000	2.368849000

Н -1.	235832000	-4.089991000	4.699175000	
Н -2.	262946000	-1.921746000	5.527164000	
Н -2.	368488000	0.019639000	3.990785000	
Н -4.	032757000	-0.039262000	2.296157000	
Н -5.	559564000	1.912496000	2.213110000	
Н -4.	704744000	4.100479000	1.255853000	
Н -2.	344115000	4.156457000	0.396015000	
N 0.	.126826000	-4.594533000	-0.079066000	
N -0.	578519000	-5.535602000	0.177253000	
N -1.	250457000	-6.448417000	0.419274000	
N -0.	126826000	4.594533000	-0.079066000	
N 0.	.578519000	5.535602000	0.177253000	
N 1.	.250457000	6.448417000	0.419274000	
# DFT (M06	L) results			
# 1				
Cr	0.000000000	0.000000000	-0.000004000	
Cr	0.000000000	0.000000000	2.364586000	
Cr	0.000000000	0.000000000	-2.364594000	
Ν	0.000000000	2.034925000	-0.000004000	
Ν	2.034925000	0.000000000	-0.000004000	
Ν	0.000000000	-2.034925000	-0.000004000	
Ν	-2.034925000	0.000000000	-0.000004000	
Ν	0.869604000	1.943131000	2.134100000	
Ν	1.943131000	-0.869604000	2.134100000	
Ν	-0.869604000	-1.943131000	2.134100000	
Ν	-1.943131000	0.869604000	2.134100000	
Ν	-0.869607000	1.943129000	-2.134103000	
Ν	1.943129000	0.869607000	-2.134103000	
Ν	0.869607000	-1.943129000	-2.134103000	
Ν	-1.943129000	-0.869607000	-2.134103000	
С	1.656563000	2.441928000	3.110209000	
С	0.689958000	2.673006000	0.989607000	
С	2.284787000	3.673249000	3.028405000	
С	1.305873000	3.936541000	0.848764000	
С	2.100940000	4.429810000	1.865155000	
С	-1.656562000	2.441928000	-3.110213000	

С	-0.689958000	2.673004000	-0.989611000
С	-2.284803000	3.673240000	-3.028394000
С	-1.305889000	3.936531000	-0.848765000
С	-2.100962000	4.429794000	-1.865139000
С	2.441928000	-1.656563000	3.110209000
С	2.673006000	-0.689958000	0.989607000
С	3.673249000	-2.284787000	3.028405000
С	3.936541000	-1.305873000	0.848764000
С	4.429810000	-2.100940000	1.865155000
С	2.441928000	1.656562000	-3.110213000
С	2.673004000	0.689958000	-0.989611000
С	3.673240000	2.284803000	-3.028394000
С	3.936531000	1.305889000	-0.848765000
С	4.429794000	2.100962000	-1.865139000
С	-1.656563000	-2.441928000	3.110209000
С	-0.689958000	-2.673006000	0.989607000
С	-2.284787000	-3.673249000	3.028405000
С	-1.305873000	-3.936541000	0.848764000
С	-2.100940000	-4.429810000	1.865155000
С	1.656562000	-2.441928000	-3.110213000
С	0.689958000	-2.673004000	-0.989611000
С	2.284803000	-3.673240000	-3.028394000
С	1.305889000	-3.936531000	-0.848765000
С	2.100962000	-4.429794000	-1.865139000
С	-2.441928000	1.656563000	3.110209000
С	-2.673006000	0.689958000	0.989607000
С	-3.673249000	2.284787000	3.028405000
С	-3.936541000	1.305873000	0.848764000
С	-4.429810000	2.100940000	1.865155000
С	-2.441928000	-1.656562000	-3.110213000
С	-2.673004000	-0.689958000	-0.989611000
С	-3.673240000	-2.284803000	-3.028394000
С	-3.936531000	-1.305889000	-0.848765000
С	-4.429794000	-2.100962000	-1.865139000
Н	1.748502000	1.802782000	3.992468000
Н	2.905139000	4.024656000	3.851905000

Н	2.598871000	5.394798000	1.745978000
Н	1.192936000	4.478675000	-0.090967000
Н	-1.748493000	1.802789000	-3.992477000
Н	-2.905161000	4.024648000	-3.851888000
Н	-2.598903000	5.394775000	-1.745951000
Н	-1.192954000	4.478660000	0.090967000
Н	1.802782000	-1.748502000	3.992468000
Н	4.024656000	-2.905139000	3.851905000
Н	5.394798000	-2.598871000	1.745978000
Н	4.478675000	-1.192936000	-0.090967000
Н	1.802789000	1.748493000	-3.992477000
Н	4.024648000	2.905161000	-3.851888000
Н	5.394775000	2.598903000	-1.745951000
Н	4.478660000	1.192954000	0.090967000
Н	-1.748502000	-1.802782000	3.992468000
Н	-2.905139000	-4.024656000	3.851905000
Н	-2.598871000	-5.394798000	1.745978000
Н	-1.192936000	-4.478675000	-0.090967000
Н	1.748493000	-1.802789000	-3.992477000
Н	2.905161000	-4.024648000	-3.851888000
Н	2.598903000	-5.394775000	-1.745951000
Н	1.192954000	-4.478660000	0.090967000
Н	-1.802782000	1.748502000	3.992468000
Н	-4.024656000	2.905139000	3.851905000
Н	-5.394798000	2.598871000	1.745978000
Н	-4.478675000	1.192936000	-0.090967000
Н	-1.802789000	-1.748493000	-3.992477000
Н	-4.024648000	-2.905161000	-3.851888000
Н	-5.394775000	-2.598903000	-1.745951000
Н	-4.478660000	-1.192954000	0.090967000
Cl	0.000000000	0.000000000	4.823698000
Cl	0.000000000	0.000000000	-4.823703000
#			
# 2			
Cr	0.000000000	-2.383710000	-0.024672000
Cr	0.000000000	0.000000000	-0.017913000

-0.024672000
000 0.747062000
000 1.407533000
000 1.943449000
-1.998819000
-1.471506000
-0.795892000
-0.795892000
00 -1.471506000
-1.998819000
00 1.943449000
00 1.407533000
000 0.747062000
0.550075000
0.942337000
1.557394000
1.766612000
1.356439000
2.324398000
3.630872000
4.525584000
4.131859000
2.841739000
-2.891069000
-4.207702000
-4.633248000
-3.738286000
-2.402702000
-1.449643000
-1.932363000
-1.738429000
-1.061387000
-0.606081000
-0.606081000
-1.061387000

С	-3.687668000	-0.869653000	-1.932363000
С	-2.365845000	-0.999341000	-1.449643000
С	-1.399647000	0.994812000	-2.402702000
С	-1.841066000	0.861053000	-3.738286000
С	-1.650250000	1.896368000	-4.633248000
С	-1.022305000	3.073099000	-4.207702000
С	-0.600706000	3.143482000	-2.891069000
С	-0.616477000	-3.147423000	2.841739000
С	-1.114339000	-3.106115000	4.131859000
С	-1.816068000	-1.960744000	4.525584000
С	-1.987789000	-0.922029000	3.630872000
С	-1.459489000	-1.022873000	2.324398000
С	-2.390586000	0.982642000	1.356439000
С	-3.735499000	0.841896000	1.766612000
С	-4.630681000	1.873542000	1.557394000
С	-4.196324000	3.053768000	0.942337000
С	-2.871007000	3.130615000	0.550075000
Η	2.461587000	-4.019133000	0.061082000
Η	4.870490000	-3.889920000	0.761178000
Η	5.675526000	-1.754233000	1.853010000
Η	4.062821000	0.107734000	2.191619000
Η	2.480825000	-0.003056000	3.931680000
Η	2.206819000	1.872385000	5.541723000
Η	0.953103000	3.945063000	4.807003000
Η	0.048687000	4.008390000	2.481374000
Η	0.104083000	-4.030041000	-2.486951000
Η	0.854709000	-3.911906000	-4.882090000
Η	1.970243000	-1.782895000	-5.671563000
Η	2.275555000	0.086656000	-4.058926000
Η	3.988317000	-0.068848000	-2.399991000
Η	5.623171000	1.782250000	-2.090149000
Η	4.880516000	3.879001000	-0.879771000
Η	2.540734000	3.998773000	-0.058070000
Η	-2.540734000	-3.998773000	-0.058070000
Η	-4.880516000	-3.879001000	-0.879771000
Η	-5.623171000	-1.782250000	-2.090149000

Η	-3.988317000	0.068848000	-2.399991000
Н	-2.275555000	-0.086656000	-4.058926000
Η	-1.970243000	1.782895000	-5.671563000
Η	-0.854709000	3.911906000	-4.882090000
Н	-0.104083000	4.030041000	-2.486951000
Н	-0.048687000	-4.008390000	2.481374000
Η	-0.953103000	-3.945063000	4.807003000
Н	-2.206819000	-1.872385000	5.541723000
Н	-2.480825000	0.003056000	3.931680000
Н	-4.062821000	-0.107734000	2.191619000
Н	-5.675526000	1.754233000	1.853010000
Η	-4.870490000	3.889920000	0.761178000
Η	-2.461587000	4.019133000	0.061082000
Ν	0.090929000	-4.497796000	-0.086477000
Ν	-0.632621000	-5.309278000	0.438299000
Ν	-1.333288000	-6.093286000	0.945999000
Ν	-0.090929000	4.497796000	-0.086477000
Ν	0.632621000	5.309278000	0.438299000
Ν	1.333288000	6.093286000	0.945999000