Assessing the accuracy of simplified Coupled Cluster methods for electronic excited states in f0 actinide compounds

Artur Nowak, Paweł Tecmer,* and Katharina Boguslawski[†]

Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland E-mail: *ptecmer@fizyka.umk.pl; [†]k.boguslawski@fizyka.umk.pl

Supplementary Information

For ThO and ThS, we have used the all-electron atomic natural orbital relativistic correlation consistent (ANO-RCC) basis sets¹ available in the OpenMolcas program package version 17.0,² optimized specifically for the 2-nd order Douglas–Kroll–Hess (DKH2) Hamiltonian.^{3–5} For all remaining molecules, we have employed the double- ζ correlation consistent basis sets of Peterson⁶ for all heavy elements (cc-pVDZ-DK3), optimized specifically for the DKH3 Hamiltonian,^{5,7,8} and Dunning's aug-cc-pVDZ basis set for all light elements.⁹ Scalar relativistic effects were accounted for by the DKH2 Hamiltonian (ThO and ThS) and the DKH3 Hamiltonian (UO₂²⁺ and its isoelectronic series), respectively.

$S1 \quad UO_2^{2+}$

Figure S1: Potential energy surfaces of the lowest-lying excited states of UO_2^{2+} determined for various EOM-CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Table S1: Total electronic energies $[E_h]$ of UO_2^{2+} for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Distance[Å]	pCCD	pCCD-CCS	pCCD-LCCSD	CCSD	
			$X^{1}\Sigma^{+}$		
1.600	-28148.76552	-28148.76555			
1.625	-28148.77497	-28148.77500	-28149.37791		
1.650	-28148.77995	-28148.77999	-28149.38782	-28149.35231	
1.675	-28148.78106	-28148.78111	-28149.39399	-28149.35606	
1.700	-28148.77882	-28148.77888	-28149.39709	-28149.35641	
1.725	-28148.76611	-28148.76621	-28149.39755	-28149.33379	
1.775	-28148.75639	-28148.75651	-28149.39175	-28149.34112	
1.800	-28148.74484	-28148.74499	-28149.38624	-28149.33170	
1.825	-28148.73173	-28148.73193	-28149.37930	-28149.32060	
1.850	-28148.71729	-28148.71754	-28149.37126	-28149.30804	
1.875	-28148.70172	-28148.70203	-28149.36231	-28149.29424	
1.900		-28148.68560	-28149.35333	-28149.27942	
- D1 - 111	FOM CODIO	FOM COD COS	FOM COD LOCOD	FOM COOP	
Distance[A]	EOM-pCCD+5	EOM-PCCD-CCS	EOM-PCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(1)
1.000	00140 55000	00140 55045	$1^{-}\Phi_{g}$		
1.600	-28148.57269	-28148.57347	28140 21162		
1.620	-28148.59607	-28148 59611	-28149.21103	-28149 19797	-28149 19402
1.675	-28148.60147	-28148.60152	-28149.24107	-28149.20950	-28149.20492
1.700	-28148.60342	-28148.60492	-28149.25060	-28149.21760	-28149.21238
1.725	-28148.60237	-28148.60244	-28149.25726	-28149.22266	-28149.21680
1.750	-28148.59871	-28148.60082	-28149.26130	-28149.22503	-28149.21855
1.775	-28148.59280	-28148.59531	-28149.26311	-28149.22501	-28149.21791
1.800	-28148.58495	-28148.58792	-28149.26299	-28149.22288	-28149.21519
1.825	-28148.57541	-28148.57893	-28149.26114	-28149.21886	-28149.21061
1.850	-28148.00438	-28148.30833	-28149.25790	-28149.21318	-28149.20442
1.900	-28148.33037	-28148.33083	-28149.23340	-28149.20003	-28149.19082
2.000			110-		
1.600	-28148 55511	-28148 55592	- → g		
1.625	-28148.56837	-28148.56934	-28149.19965		
1.650	-28148.57718	-28148.57722	-28149.21568	-28149.18534	-28149.18099
1.675	-28148.58212	-28148.58217	-28149.22791	-28149.19639	-28149.19131
1.700	-28148.58371	-28148.58535	-28149.23694	-28149.20409	-28149.19825
1.725	-28148.58239	-28148.58246	-28149.24317	-28149.20883	-28149.20224
1.750	-28148.57853	-28148.58086	-28149.24682	-28149.21095	-28149.20360
1.775	-28148.57249	-28148.57526	-28149.24828	-28149.21077	-28149.20264
1.800	-28148.56457	-28148.56786	-28149.24785	-28149.20855	-28149.19962
1.825	-28148.55504	-28148.55893	-28149.24571	-28149.20457	-28149.19479
1.875	-28148.53192	-28148.53730	-28149.23748	-28149.19219	-28149.18050
1.900	20110.00102	20110.00100	-28149.23204	-28149.18424	-28149.17147
			$1^{1}\Gamma_{a}$		
1.600	-28148.39107	-28148.39344	1 1 9		
1.625	-28148.41170	-28148.41444	-28149.13551		
1.650	-28148.42780	-28148.42784	-28149.15510	-28149.13276	-28149.11986
1.675	-28148.43992	-28148.43997	-28149.17101	-28149.15023	-28149.13666
1.700	-28148.44856	-28148.45273	-28149.18560	-28149.16393	-28149.14970
1.725	-28148.45413	-28148.45420	-28149.19692	-28149.17426	-28149.15940
1.750	-28148.45697	-28148.46247	-28149.20515	-28149.18158	-28149.16609
1.775	-28148.45739	-28148.46372	-28149.21066	-28149.18617	-28149.17010
1.800	-28148.45509 -28148.45209	-28148.46293	-28149.21367	-28149.18833	-28149.17109
1.850	-28148.44683	-28148.45630	-28149.21285	-28149.18628	-28149.16862
1.875	-28148.44009	-28148.45088	-28149.20933	-28149.18252	-28149.16439
1.900			-28149.20532	-28149.17722	-28149.15863
			$2^1\Delta_q$		
1.600	-28148.37532	-28148.37767	3		
1.625	-28148.39748	-28148.40017	-28149.11951		
1.650	-28148.41511	-28148.41515	-28149.14239	-28149.12248	-28149.10936
1.675	-28148.43007	-28148.42885	-28149.16098	-28149.14030	-28149.12658
1.700	-28148.43911	-28148.44298	-28149.17586	-28149.15429	-28149.13998
1.750	-28148 45134	-28148 45616	-28149 19581	-20149.10403	-28149.15689
1.775	-28148.44322	-28148.44908	-28149.20143	-28149.17692	-28149.16109
1.800	-28148.44291	-28148.44970	-28149.20451	-28149.17904	-28149.16282
1.825	-28148.44049	-28148.44831	-28149.20524	-28149.17886	-28149.16234
1.850	-28148.43624	-28148.44519	-28149.20394	-28149.17660	-28149.15989
1.875	-28148.43040	-28148.44058	-28149.20145	-28149.17245	-28149.15569
1.900			-28149.19791	-28149.16661	-28149.14995
	201.10	00110	$2^{-}\Phi_{g}$		
1.600	-28148.42012	-28148.42237	22140 15201		
1.625	-28148.43889	-28148.44150	-28149.15261	-28140 14656	-28140 12400
1.000	-20140.40310 -28148 46240	-20146.4032U -28148 46254	-20149.17019 -28140 18276	-20149.14000 -28140 16000	-20149.13402
1.700	-28148 47037	-28148 47438	-28149 19664	-28149 17423	-20149.14090
1.725	-28148.47423	-28148.47431	-28149.20633	-28149.18294	-28149.16834
1.750	-28148.47540	-28148.48071	-28149.21302	-28149.18873	-28149.17349
1.775	-28148.47420	-28148.48031	-28149.21706	-28149.19188	-28149.17604
1.800	-28148.47091	-28148.47793	-28149.21870	-28149.19269	-28149.17628
1.825	-28148.46580	-28148.47385	-28149.21806	-28149.19138	-28149.17443
1.850	-28148.45907	-28148.46828	-28149.21538	-28149.18818	-28149.17074
1.875	-28148.45094	-28148.46144	-28149.21073	-28149.18331	-28149.16539
1.900			-20149.20030	-20149.17090	-20149.10800
1 600	99149 41991	99140 41545	1 · 11g		
1.600	-28148.41321	-28148.41547	-28140 14676		
1.020	-20140.43202 -28148 44632	-20140.43404 -28148 44636	-20149.14070	-28149 14364	-28149 13191
1.675	-28148.45668	-28148.45672	-28149.18044	-28149.15927	-28149,14615
1.700	-28148.46358	-28148.46760	-28149.19423	-28149.17123	-28149.15742
1.725	-28148.46745	-28148.46752	-28149.20277	-28149.17990	-28149.16544
1.750	-28148.46862	-28148.47396	-28149.20933	-28149.18564	-28149.17055
1.775	-28148.46743	-28148.47357	-28149.21321	-28149.18876	-28149.17306
1.800	-28148.46415	-28148.47121	-28149.21468	-28149.18952	-28149.17326
1.825	-28148.45904	-28148.46713	-28149.21384	-28149.18817	-28149.17138
1.850	-28148.45232	-28148.46158	-28149.21094	-28149.18494	-28149.16765
1,900	-20140.44420	-20140.40470	-28149.20004	-28149.17369	-28149,15548
2.000					

Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
			$1^{1}\Phi_{g}$		
1.600	5.25	5.23			
1.625	5.12	5.10	4.52		
1.650	5.00	5.00	4.34	4.20	4.31
1.675	4.89	4.89	4.16	3.99	4.11
1.700	4.77	4.73	3.99	3.78	3.92
1.720	4.00	4.00	3.82	3.57	3.73
1.775	4.50	4.30	3.50	3.16	3.34
1.800	4 35	4.33	3 35	2.96	3.17
1.825	4.35	4.16	3.22	2.30	2.99
1.850	4.16	4.05	3.08	2.58	2.82
1.875	3.95	3.95	2.96	2.40	2.65
1.900			2.86	2.23	2.49
			$1^1\Delta_q$		
1.600	5.73	5.70			
1.625	5.62	5.60	4.85		
1.650	5.52	5.52	4.68	4.54	4.66
1.675	5.41	5.41	4.52	4.34	4.48
1.700	5.31	5.27	4.36	4.14	4.30
1.725	5.21	5.21	4.20	3.94	4.12
1.750	5.10	5.04	4.05	3.75	3.95
1.775	3.00	4.93	3.90	2.25	3.77
1.800	4.91	4.82	3.11	2.16	3.59
1.850	4.01	4.71	3.51	2.07	3.44
1.875	4.62	4.05	3 40	2.78	3.09
1,900	1.02	1.10	3.30	2.59	2.94
			$1^{1}\Gamma_{a}$		
1.600	10.19	10.13	9		
1.625	9.89	9.81	6.60		
1.650	9.58	9.58	6.33	5.97	6.33
1.675	9.28	9.28	6.07	5.60	5.97
1.700	8.99	8.88	5.75	5.24	5.62
1.725	8.70	8.70	5.46	4.89	5.29
1.750	8.41	8.27	5.18	4.54	4.97
1.775	8.14	7.97	4.93	4.22	4.65
1.800	7.87	7.68	4.70	3.90	4.35
1.825	7.61	7.39	4.49	3.60	4.07
1.850	7.36	7.11	4.31	3.31	3.79
1.875	7.12	6.83	4.16	3.04	3.53
1.900			4.03	2.10	3.29
1.600	10.62	10.55	$2 \Delta g$		
1.625	10.27	10.20	7.03		
1.650	9.93	9.93	6.68	6.25	6.61
1.675	9.55	9.59	6.34	5.87	6.24
1.700	9.24	9.14	6.02	5.50	5.89
1.725	8.90	8.90	5.72	5.14	5.55
1.750	8.57	8.44	5.44	4.80	5.22
1.775	8.52	8.37	5.18	4.47	4.90
1.800	8.22	8.04	4.95	4.15	4.60
1.825	7.93	7.72	4.74	3.86	4.31
1.850	7.65	7.41	4.55	3.58	4.03
1.875	7.38	7.11	4.38	3.31	3.77
1.900			4.23	3.07	3.52
1.000	0.40	0.94	$2^{+}\Phi_{g}$		
1.600	9.40	9.34	6.13		
1.020	5.10	5.00	5 02	5.60	5.94
1.675	8.64	8.64	5.72	5.27	5.63
1,700	8.39	8,29	5.45	4.96	5.34
1.725	8.15	8.15	5.20	4.65	5.05
1.750	7.91	7.77	4.97	4.35	4.76
1.775	7.68	7.52	4.75	4.06	4.49
1.800	7.45	7.27	4.56	3.78	4.23
1.825	7.24	7.02	4.39	3.52	3.98
1.850	7.03	6.78	4.24	3.26	3.74
1.875	6.82	6.55	4.12	3.02	3.51
1.900			4.03	2.79	3.29
- 4 800	0.80	0.80	$1 \cdot \Pi_g$		
1.600	9.59	9.53	6.20		
1.020	9.33	9.20	6.00	5 69	6.00
1.030	9.00	9.00	5.00	5.00	5.71
1.070	0.00	0.00 8.47	5.52	5.04	5.71
1.725	8.33	8.33	5.30	4 73	5.13
1,750	8,10	7,95	5.07	4,43	4.84
1.775	7.86	7.70	4.86	4.15	4.57
1.800	7.64	7.45	4.67	3.87	4.31
1.825	7.42	7.21	4.50	3.60	4.06
1.850	7.21	6.97	4.36	3.35	3.82
1.875	7.01	6.73	4.25	3.11	3.59
1.900			4.16	2.88	3.37

Table S2: Excitation energies [eV] of UO_2^{2+} for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

S2 NUN

Figure S2: Potential energy surfaces of the lowest-lying excited states of NUN determined for various EOM-CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Table S3: Total electronic energies $[E_h]$ of NUN for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Distance[Å]	pCCD	pCCD-CCS	pCCD-LCCSD	CCSD	
			$X^{1}\Sigma^{+}$		
1.650	-28108.47864	-28108.47864	-28109.08992	-28109.05393	
1.675	-28108.48546	-28108.48546	-28109.10019	-28109.06409	
1.700	-28108.48865	-28108.48865	-28109.10594	-28109.06787	
1.725	-28108.48848	-28108.48849	-28109.10970	-28109.06964	
1.750	-28108.48541	-28108.48542	-28109.11075	-28109.06851	
1.775	-28108 47983	-28108 47984	-28109.10949	-28109.06483	
1.800	-28108 47208	-28108 47209	-28109 10622	-28109.05895	
1.825	28108 46248	28108 46248	28100 10131	28100.05113	
1.850	28108 45131	28108 45131	28109.10191	28100.04163	
1.875	-20100.40101	-20100.40101	28100.08730	-28109.04103	
1.075			-28109.08739	-20109.03000	
1.900			-28109.07809	-20109.01040	
	DOM CODIO	FOM COD COS	FOM GOD LOOD	DOM CCCD	
Distance[A]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
			$1^{i}\Delta_{g}$		
1.650	-28108.31639	-28108.31587	-28108.94563		
1.675	-28108.32738	-28108.32679	-28108.96126		
1.700	-28108.33474	-28108.33408	-28108.97256	-28108.93881	-28108.93763
1.725	-28108.33852	-28108.33775	-28108.98135	-28108.94652	-28108.94475
1.750	-28108.33941	-28108.33851	-28108.98737	-28108.95139	-28108.94898
1.775	-28108.33775	-28108.33670	-28108.99097	-28108.95374	-28108.95065
1.800	-28108.33386	-28108.33264	-28108.99241	-28108.95390	-28108.95005
1.825	-28108.32801	-28108.32660	-28108.99205	-28108.95213	-28108.94745
1.850	-28108.32046	-28108.31883	-28108.99007	-28108.94868	-28108.94307
1.875			-28108.98671	-28108.94376	-28108.93715
1.900			-28108.98211	-28108.93757	-28108.92990
			$1^1 \Phi$		
1.650	-28108 22800	-28108 23840	-28108 06367		
1.000	-20100.00099	-20100.00049	-20100.90307		
1.070	-20100.00049 98100 95074	-20100.04990 00100 0F010	-20100.97979	28108 05707	28108 05646
1.700	-20100.000/4	-20100.00812	-20100.99141	-20100.93/2/	-20100.90040
1.720	-20100.00284	-20100.30213	-26109.00000	-20100.90018	-20100.90404
1.750	-28108.36396	-28108.36315	-28109.00697	-28108.97014	-28108.96868
1.775	-28108.36248	-28108.36155	-28109.01088	-28108.97250	-28108.97073
1.800	-28108.35870	-28108.35763	-28109.01260	-28108.97256	-28108.97047
1.825	-28108.35292	-28108.35169	-28109.01247	-28108.97056	-28108.96818
1.850	-28108.34541	-28108.34399	-28109.01072	-28108.96675	-28108.96410
1.875			-28109.00755	-28108.96134	-28108.95842
1.900			-28109.00314	-28108.95450	-28108.95134
			$2^1 \Phi_q$		
1.650	-28108.22557	-28108.22426	-28108.90726		
1.675	-28108.23990	-28108.23841	-28108.92554		
1.700	-28108.25100	-28108.24936	-28108.93926	-28108.91522	-28108.90738
1.725	-28108.25801	-28108.25616	-28108.95029	-28108.92554	-28108.91717
1.750	-28108 26202	-28108 25991	-28108.95826	-28108.93276	-28108 92386
1.775	-28108 26337	-28108 26098	-28108 96354	-28108 93722	-28108 92779
1.800	-28108 26242	-28108 25971	-28108.96638	-28108 93922	-28108 92927
1.825	28108 25047	28108 25640	28108.96038	28108.03004	28108.02850
1.820	-20100.20947	28108.25040	-20100.90712	-20100.93904	-20100.92039
1.000	-28108.23470	-28108.25129	-28108.90595	-20100.93092	-26106.92597
1.873			-28108.90290	-20100.93300	-28108.92103
1.900			-20100.95027	-20100.92772	-28108.91581
			$1^{+}\Pi_{g}$		
1.650			-28108.90197		
1.675			-28108.92000		
1.700			-28108.93361	-28108.90993	-28108.90189
1.725	-28108.24344	-28108.24211	-28108.94456	-28108.92029	-28108.91168
1.750	-28108.24804	-28108.24632	-28108.95247	-28108.92754	-28108.91838
1.775	-28108.24984	-28108.24773	-28108.95766	-28108.93203	-28108.92233
1.800	-28108.24922	-28108.24671	-28108.96042	-28108.93406	-28108.92383
1.825	-28108.24654	-28108.24360	-28108.96106	-28108.93391	-28108.92316
1.850	-28108.24206	-28108.23865	-28108.95975	-28108.93182	-28108.92055
1.875			-28108.95665	-28108.92800	-28108.91623
1.900			-28108.95181	-28108.92265	-28108.91039
			$1^1\Sigma_u$		
1.650	-28108.28328	-28108 28436	-28108 95109		
1.675	-28108 20458	-28108 20572	-28108 96488		
1 700	-28108 20205	-28108 30/15	-28108.07/11	-28108 04022	-28108 05643
1 795	-20100.00290	-20100.00410	-20100.07411	-20100.94022	-28108.80043
1.720	20100.00/10	-20100.00000 98108 20076	-20100.00000	28108 04760	28108.80237
1.700	-20100.00009 28100 20717	-20100.00970 20100 20064	-20100.90401	-20100.94709 28108 04726	-20100.90007
1.770	-20100.00/1/	-20100.00804	-20100.90020	-20100.94/30	-20100.90079
1.800	-20108.30374	-20108.30531	-20108.98528	-20108.94475	-20108.90393
1.825			-28108.98231	-28108.94013	-28108.96008
1.850			-28108.97742	-28108.93376	-28108.95446
1.875			-28108.97064	-28108.92583	-28108.94728
1.900			-28108.96192	-28108.91656	-28108.93875
			$1^{i}\Delta_{u}$		
1.650	-28108.29186	-28108.29253	-28108.93871		
1.675	-28108.30123	-28108.30193	-28108.95170		
1.700	-28108.30778	-28108.30851	-28108.96047	-28108.92665	-28108.93427
1.725	-28108.31015	-28108.31092	-28108.96696	-28108.93216	-28108.93760
1.750	-28108.30973	-28108.31054	-28108.97086	-28108.93527	-28108.93755
1.775	-28108.30687	-28108.30771	-28108.97251	-28108.93638	-28108.93488
1.800	-28108.30187	-28108.30275	-28108.97216	-28108.93573	-28108.93050
1.825	-28108.29501	-28108.29592	-28108.97009	-28108.93346	-28108.92504
1.850	-28108 28605	-28108 28746	-28108 96642	-28108 92970	-28108 91872
1.875	-20100.20090	-20100.20140	-20100.00042	-20100.92970	-20100.01072
1 900			-28108.90120	-28108 01819	-28108 90349
1.300			-20100.30402	20100.01012	-20100.30043

Table S4: Excitation energies [eV] of NUN for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Distance[A]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
			$1^{1}\Delta_{g}$		
1.650	4.42	4.43	3.93		
1.675	4.30	4.32	3.78		
1.700	4.19	4.21	3.63	3.51	3.54
1.725	4.08	4.10	3.49	3.35	3.40
1.750	3.97	4.00	3.36	3.19	3.25
1.775	3.87	3.89	3.23	3.02	3.11
1 800	3 76	3 79	3 10	2.86	2.96
1.825	3.66	3 70	2.97	2.60	2.80
1.820	2.56	2.61	2.31	2.03	2.62
1.000	5.00	5.01	2.00	2.00	2.08
1.875			2.74	2.37	2.55
1.900			2.63	2.20	2.41
			$1^{1}\Phi_{g}$		
1.650	3.80	3.81	3.44		
1.675	3.67	3.69	3.28		
1.700	3.54	3.55	3.12	3.01	3.03
1.725	3.42	3.44	2.97	2.84	2.87
1.750	3.30	3.33	2.82	2.68	2.72
1 775	3 19	3 22	2.68	2.50	2.56
1.800	2.00	2 11	2.00	2.01	2.00
1.000	3.09	3.11	2.55	2.33	2.41
1.825	2.98	3.01	2.42	2.19	2.20
1.850	2.88	2.92	2.29	2.04	2.11
1.875			2.17	1.89	1.97
1.900			2.06	1.74	1.83
			$2^1 \Phi_q$		
1.650	6.89	6.92	4.97		
1.675	6,68	6.72	4.75		
1 700	6.47	6.51	4.54	4.15	4 37
1.705	6.27	6.32	4.34	3.02	4.15
1.720	0.27	0.52	4.54	3.92	4.15
1.750	6.08	6.14	4.15	3.69	3.94
1.775	5.89	5.96	3.97	3.47	3.73
1.800	5.71	5.78	3.81	3.26	3.53
1.825	5.52	5.61	3.65	3.05	3.33
1.850	5.35	5.44	3.51	2.85	3.15
1.875			3.39	2.66	2.97
1.900			3.28	2.47	2.79
			1 ¹ Π-		
1.650			5.11		
1.675			4.00		
1.075			4.90	1.00	1.50
1.700			4.69	4.30	4.52
1.725	6.67	6.70	4.49	4.06	4.30
1.750	6.46	6.51	4.31	3.84	4.09
1.775	6.26	6.32	4.13	3.61	3.88
1.800	6.06	6.13	3.97	3.40	3.68
1.825	5.88	5.96	3.82	3.19	3.48
1.850	5.69	5.79	3.68	2.99	3.29
1 875			3.56	2 79	3 11
1 000			3.45	2.10	2.04
1.500			115	2.01	2.34
1.050	F 00	F 00	1 <i>Lu</i>		
1.650	5.32	5.29	3.78		
1.075	5.19 5	01.6	3.68	o :=	0.55
1.700	5.05	5.02	3.59	3.47	3.03
1.725	4.94	4.90	3.50	3.38	2.92
1.750	4.82	4.78	3.43	3.29	2.81
1.775	4.70	4.66	3.36	3.20	2.70
1.800	4.58	4.54	3.29	3.11	2.59
1.825			3.24	3.02	2.48
1.850			3.20	2.94	2.37
1.875			3.18	2.85	2.27
1 900			3 18	2.00	2.2.
1.300			11 A	4.11	2.11
1.050	E OO	E OC	1 \(\Delta u \)		
1.650	5.08	5.06	4.11		
1.675	5.01	4.99	4.04	0.01	0.54
1.700	4.92	4.90	3.96	3.84	3.64
1.725	4.85	4.83	3.88	3.74	3.59
1.750	4.78	4.76	3.81	3.63	3.56
1.775	4.71	4.68	3.73	3.50	3.54
1.800	4,63	4,61	3.65	3,35	3.50
1 825	4 56	4 53	3 57	3 20	3 43
1.850	4.00	4.00	3 50	3.25	3 34
1.000	4.41	4.40	2 4 2	0.00 0 00	2.04
1.879			0.40	2.89	0.24
1.900			3.38	2.73	3.13

 $S3 PaO_2^+$

Figure S3: Potential energy surfaces of the lowest-lying excited states of PaO_2^+ determined for various EOM-CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Table S5: Total electronic energies $[E_h]$ of PaO_2^+ for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Distance[Å]	pCCD	pCCD-CCS	pCCD-LCCSD	CCSD	
	*	•	$X^1 \hat{\Sigma}^+$		
1.650	-27374 24940	-27374 24938			
1.675	-27374 96991	-27374 96918	-27374 82507	-27374 70788	
1 700	-21014.20221 -97974 97190	-21014.20210	-21014.02001	-21014.19100	
1.700	-21014.21120	-21014.21111	-21314.03013	-21314.00110	
1.720	-21014.21004 07274 07051	-21014.21000 07074 07046	-21314.04410	-21014.01424	
1.700	-21314.21951	-21314.21940	-21314.84899	-21014.81770	
1.775	-27374.27954	-27374.27948	-27374.85139	-27374.81848	
1.800	-27374.27724	-27374.27716	-27374.85152	-27374.81686	
1.825	-27374.27286	-27374.27276	-27374.84966	-27374.81310	
1.850	-27374.26665	-27374.26652	-27374.84603	-27374.80743	
1.875	-27374.25879	-27374.25864	-27374.84078	-27374.80005	
1.900	-27374.24947	-27374.24928	-27374.83413	-27374.79114	
1.925	-27374.23883	-27374.23861	-27374.82626	-27374.78086	
1.950	-27374.22704	-27374.22676	-27374.81732	-27374.76936	
1.975	-27374.21422	-27374.21389			
2.000	-27374.20049	-27374.20009	-27374.79683		
Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
	- I	1 - 1	$1^{1}\Phi_{-}$		
1.675			1 ¥g	27374 50620	27374 50308
1.075	97274 02460	97274 02200		-27374.03023	-21314.33300
1.700	-27374.03409	-27374.03390		-21314.01208	-27374.00007
1.725	-2/3/4.041/8	-2/3/4.041/4	25254 00000	-2/3/4.02380	-2/3/4.02141
1.750	-27374.04764	-27374.04657	-27374.66066	-27374.63617	-27374.63107
1.775	-27374.05001	-27374.04995	-27374.66885	-27374.64393	-27374.63816
1.800	-27374.05006	-27374.04859	-27374.67472	-27374.64937	-27374.64293
1.825	-27374.04809	-27374.04636	-27374.67849	-27374.65272	-27374.64561
1.850	-27374.04432	-27374.04230	-27374.68032	-27374.65417	-27374.64638
1.875	-27374.03894	-27374.03879	-27374.68033	-27374.65387	-27374.64543
1.900	-27374.03215	-27374.02940	-27374.67870	-27374.65196	-27374.64289
1.925			-27374.67555	-27374.64858	-27374.63890
1.950			-27374.67097	-27374.64385	-27374.63359
			$1^1\Delta_a$		
1.675			i ig	27374 58455	27374 58163
1.075	27274 01016	97974 01896		27274.60025	-27374.56105
1.700	-27374.01910	-27374.01630		-27374.00033	-21314.39013
1.720	-27374.02387	-21314.02383	07074 04770	-27374.01303	-21314.00810
1.750	-27374.03151	-27374.03039	-27374.64772	-27374.62293	-27374.61789
1.775	-27374.03374	-27374.03368	-27374.65556	-27374.63035	-27374.62458
1.800	-27374.03375	-27374.03221	-27374.66113	-27374.63552	-27374.62903
1.825	-27374.03182	-27374.03001	-27374.66467	-27374.63865	-27374.63145
1.850	-27374.02873	-27374.02605	-27374.66629	-27374.63991	-27374.63202
1.875	-27374.02296	-27374.02281	-27374.66615	-27374.63947	-27374.63090
1.900	-27374.01641	-27374.01352	-27374.66440	-27374.63746	-27374.62825
1.925			-27374.66117	-27374.63401	-27374.62419
1.950			-27374.65655	-27374.62923	-27374.61884
			$1^1\Sigma_n$		
1.675				-27374.60407	-27374 61282
1.700	-27374 03680	-27374 03704		-27374 61683	-27374 62552
1.700	27374.04441	27374.04437		27374.62637	27374 63407
1.720	27274 04967	27274 04991	27274 65060	27274 62207	27374.64159
1.750	27274.05064	27274.05059	27274.66475	27274.62725	-27374.04133
1.770	-27374.03004	-21314.05058	-27374.00473	-21314.03123	-21314.04333
1.800	-27374.05038	-27374.05037	-2/3/4.00/00	-2/3/4.03919	-2/3/4.04/20
1.825	-27374.04816	-27374.04805	-27374.66851	-27374.63912	-27374.64694
1.850	-27374.04421	-27374.04397	-27374.66767	-27374.63725	-27374.64480
1.875	-27374.03867	-27374.03852	-27374.66523	-27374.63376	-27374.64101
1.900	-27374.03175	-27374.03116	-27374.66139	-27374.62881	-27374.63574
1.925			-27374.65629	-27374.62253	-27374.62913
1.950			-27374.65007	-27374.61506	-27374.62132
			$1^{1}\Delta_{u}$		
1.675				-27374.59985	-27374.60547
1.700	-27374.03998	-27374.03995		-27374.61265	-27374.61797
1.725	-27374.04624	-27374.04620		-27374.62235	-27374.62732
1.750	-27374.04982	-27374.04965	-27374.65502	-27374.62931	-27374.63388
1.775	-27374.05088	-27374.05082	-27374.66030	-27374.63385	-27374.63797
1.800	-27374 04977	-27374 04938	-27374 66344	-27374 63622	-27374 63984
1.825	-27374 0/675	-27374 04622	-27374 66465	-27374 63665	-27374 63974
1.850	-21314.04013	-27374 04124	-27374 66417	21014.00000	-27374 63784
1.000	-21014.04200 97974 09501	-21014.04104 97974 09566	97374 66900	-21014.00002 07974 69941	-21314.03104
1.070	-21014.00001	-21014.00000	-21014.00200 07074 65050	-21014.00241	-21314.03434
1.900	-21314.02824	-21314.02108	-21314.03830	-21314.02807	-21314.02931
1.925			-21314.05377	-2/3/4.02242	-21314.62308
1.950			-2/3/4.64/81	-27374.61103	-27374.61559
			1'11 _g		
1.675				$-27374.5380\overline{1}$	-27374.54113
1.700	-27373.98869	-27373.98823		-27374.55568	-27374.55802
1.725	-27373.99984	-27373.99925		-27374.57030	-27374.57185
1.750	-27374.00798	-27374.00724	-27374.60496	-27374.58216	-27374.58290
1.775	-27374.01346	-27374.01255	-27374.61462	-27374.59150	-27374.59141
1.800	-27374.01657	-27374.01546	-27374.62198	-27374.59855	-27374.59759
1.825	-27374.01756	-27374.01624	-27374.62727	-27374.60351	-27374.60162
1.850	-27374.01669	-27374.01511	-27374.63065	-27374.60658	-27374.60364
1.875	-27374 01412	-27374 01224	-27374 63225	-27374 60792	-27374 60381
1 900	-27374 01004	-27374 00784	-27374 63228	-27374 60771	-27374 60223
1 0 25	21014.01004	21017.00104	-27374 63088	_27374 60610	-27374 50000
1.950			-27374 62645	-27374 60323	-27374 59462

Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T
			$1^+ \Phi_g$		
1.675				5.49	5.57
1.700	6.44	6.46		5.31	5.41
1.725	6.40	6.40		5.13	5.25
1 750	6.31	6.34	5 1 2	1 91	5.08
1.750	6.05	6.05	4.07	4.54	1.03
1.775	0.25	0.23	4.97	4.75	4.91
1.800	6.18	6.22	4.81	4.56	4.73
1.825	6.12	6.16	4.66	4.36	4.56
1.850	6.05	6.10	4.51	4.17	4.38
1.875	5.98	5.98	4.37	3.98	4.21
1 900	5.91	5.98	4.23	3 79	4.03
1.900	0.91	0.98	4.20	3.13	4.05
1.925			4.10	3.60	3.86
1.950			3.98	3.42	3.69
1 675			$1^{1}\Delta_{g}$	E 90	E 00
1.070	0.00	6.00		5.80	5.88
1.700	6.86	6.88		5.64	5.74
1.725	6.83	6.83		5.48	5.59
1.750	6.75	6.78	5.48	5.30	5.44
1.775	6 69	6 69	5.33	5.12	5.28
1 800	6.60	6.67	5.00	4.02	5.20 F 11
1.600	0.03	0.07	5.18	4.93	0.11
1.825	6.56	6.61	5.03	4.75	4.94
1.850	6.47	6.54	4.89	4.56	4.77
1.875	6.42	6.42	4.75	4.37	4.60
1 900	6.34	6.42	4.62	/ 19	1.00
1.005	0.04	0.42	4.40	4.10	4.40
1.925			4.49	4.00	4.26
1.950			4.37	3.81	4.10
1.075			$1^{+}\Sigma_{u}$	r 07	5.04
1.075				5.27	5.04
1.700	6.38	6.37		5.20	4.96
1.725	6.32	6.32		5.11	4.88
1.750	6.28	6.28	5.15	5.02	4.79
1 775	6.23	6.23	5.08	4.03	4.71
1.110	0.25	0.25	5.08	4.33	4.71
1.800	6.17	6.17	5.00	4.83	4.62
1.825	6.11	6.11	4.93	4.73	4.52
1.850	6.05	6.06	4.85	4.63	4.43
1.875	5.99	5.99	4.78	4.52	4.33
1 000	5.02	5.04	4 70	4.49	4.23
1.005	0.32	0.94	4.70	4.42	4.20
1.925			4.63	4.31	4.13
1.950			4.55	4.20	4.03
1.055			$1^{i}\Delta_{u}$	5 90	5.04
1.675	A			5.39	5.24
1.700	6.29	6.29		5.31	5.16
1.725	6.28	6.28		5.22	5.09
1.750	6.25	6.25	5.28	5.13	5.00
1 775	6.00	6.00	5.20	5.10	4.01
1.770	0.22	0.22	5.20	0.02	4.91
1.800	6.19	6.20	5.12	4.92	4.82
1.825	6.15	6.16	5.03	4.80	4.72
1.850	6.11	6.13	4.95	4.68	4.61
1 875	6.07	6.07	4 86	4 56	4 51
1.000	6.00	6.01	4.70	4.44	4.40
1.900	0.02	0.05	4.78	4.44	4.40
1.925			4.69	4.31	4.29
1.950			4.61	4.31	4.18
			$1^{1}\Pi_{g}$		
1.675				7.07	6.99
1.700	7.69	7.70		6.86	6.80
1.725	7.54	7.55		6.64	6.60
1 750	7 30	7 41	6.64	6 41	6 30
1.750	7.03	7.00	0.04 C 44	0.41	0.00
1.775	1.24	7.26	0.44	0.18	6.18
1.800	7.09	7.12	6.25	5.94	5.97
1.825	6.95	6.98	6.05	5.70	5.75
1 850	6.80	6.84	5.86	5.47	5 55
1.000	0.00	6 70	5.00 E 07	5.41	0.00 F 94
1.8/5	0.00	0.70	5.67	0.23	0.34
1.900	6.52	6.57	5.49	4.99	5.14
1.925			5.32	4.76	4.95
1.950			5 19	4 52	4 75

Table S6: Excitation energies [eV] of PaO_2^+ for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Figure S4: Potential energy surfaces of the lowest-lying excited states of ThO₂ determined for various EOM-CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

Table S7: Total electronic energies $[E_h]$ of ThO₂ for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods C_{2v} symmetry was imposed.

Distance[Å]	pCCD	pCCD-CCS	pCCD-LCCSD	CCSD	
	*	*	$X^1\Sigma^+$		
1.700	-26614.25295	-26614 25292	-26614.77198	-26614.74828	
1 750	-26614 29247	-26614 29244	-26614 81183	-26614 78697	
1 800	-26614 31837	-26614 31834	-26614 83911	-26614 81288	
1.850	-26614 33472	-26614 33469	-26614 85500	-26614.82817	
1.000	26614 34030	26614 34034	26614 86430	26614 83463	
1.900	-20014.34039	-20014.34034	-20014.80430	-20014.03403	
1.950	-20014.33937	-20014.33931	-20014.80483	-20014.00070	
2.000	-26614.33274	-26614.33267	-26614.86013	-26614.82689	
2.050	-26614.32098	-26614.32090	-26614.85100	-26614.81505	
2.100			-26614.83818	-26614.79921	
2.150	-26614.28593	-26614.28581	-26614.82449	-26614.78017	
2.200	-26614.26433	-26614.26418	-26614.81099	-26614.75860	
2.250	-26614.24085	-26614.24066	-26614.79601	-26614.73509	
Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
		*	a ₁		
1.700	-26614.03049	-26614.02994	-26614.61333	-26614.59677	-26614.59453
1 750	-26614 07277	-26614 07212	-26614 65957	-26614 64269	-26614 63972
1.800	-26614 10258	-26614 10181	-26614 69368	-26614 67638	-26614 67279
1.850	26614 19251	26614 12265	26614 71670	26614.60072	26614.60564
1.000	20014.12331	-20014.12205	-20014.71075	-20014.03373	26614 70084
1.900	-20014.13447	-20014.13544	-20014.75204	-20014.71455	-20014.70984
1.950	-26614.13917	-26614.13798	-26614.73978	-26614.72154	-26614.71676
2.000	-26614.13839	-26614.13703	-26614.74095	-26614.72256	-26614.71759
2.050	-26614.13067	-26614.13210	-26614.74105	-26614.71843	-26614.71336
2.100			-26614.73004	-26614.71006	-26614.70498
2.150	-26614.10801	-26614.10582	-26614.71801	-26614.69823	-26614.69323
2.200	-26614.09120	-26614.09105	-26614.70249	-26614.68361	-26614.67878
2.250	-26614.07187	-26614.06876		-26614.66675	-26614.66220
			ba		
1.700	-26614.08433	-26614 08396	-26614 65264	-26614.63485	-26614 63453
1 750	-26614 11983	-26614 11935	-26614 69417	-26614 67610	-26614 67476
1.800	26614 14310	26614 14250	26614 72431	26614 70585	26614 70354
1.800	-20014.14313	-20014.14209	20014.72451	-20014.70505	-20014.70334
1.850	-20014.10834	-20014.15762	-20014.74400	-20014.72597	-20014.72277
1.900	-26614.16430	-26614.16321	-26614.75733	-26614.73798	-26614.73398
1.950	-26614.16463	-26614.16332	-26614.76228	-26614.74317	-26614.73846
2.000	-26614.15780	-26614.15859	-26614.76174	-26614.74264	-26614.73731
2.050	-26614.14841	-26614.14682	-26614.75886	-26614.73732	-26614.73148
2.100			-26614.74838	-26614.72803	-26614.72180
2.150	-26614.11888	-26614.11661	-26614.73682	-26614.71548	-26614.70896
2.200	-26614.10006	-26614.09733	-26614.72314	-26614.70025	-26614.69358
2.250	-26614.07895	-26614.07565		-26614.68285	-26614.67617
			b_1		
1 700	-26613 96823	-26613 96757	-26614 56241	-26614 54684	-26614 54280
1.750	-26614 02261	-26614 02185	-26614 61739	-26614 60128	-26614 59677
1.750	26614.02201	26614.06126	26614 65026	26614 64262	26614 62770
1.800	-20014.00213	-20014.00120	-20014.03920	-20014.04202	-20014.03779
1.650	-20014.09595	-20014.09300	-20014.08990	-20014.07270	-20014.00770
1.900	-20014.11097	-20014.10978	-20014.71102	-20014.09335	-20014.08815
1.950	-26614.12259	-20014.12122	-26614.72440	-20014.70584	-20014.70057
2.000	-26614.12749	-26614.12591	-26614.73075	-26614.71148	-26614.70621
2.050	-26614.12668	-26614.12484	-26614.73360	-26614.71137	-26614.70614
2.100			-26614.72843	-26614.70644	-26614.70131
2.150	-26614.10922	-26614.10910	-26614.72176	-26614.69753	-26614.69256
2.200	-26614.09907	-26614.09610	-26614.71303	-26614.68533	-26614.68058
2.250	-26614.08411	-26614.08060		-26614.67046	-26614.66601
			a_2		
1.700	-26614.03049	-26614.02994	-26614.59561	-26614.57791	-26614.57731
1.750	-26614.06635	-26614 06585	-26614 63742	-26614 61954	-26614 61798
1 800	-26614 00018	-26614 08955	-26614 66813	-26614 65002	-26614 64759
1.850	-26614 10652	-26614 10577	-26614 68880	-26614 67110	-26614 66800
1 000	-20014.10002 96614 11956	26617 11161	26614 70210	26614 69459	26614 69060
1.900	-20014.11200	-20014.11101	-20014.70310	-20014.08403	-20014.00009
1.950	-20014.113/3	-20014.11208	-20014.70934	-20014.09127	-20014.08091
2.000	-26614.10968	-20014.10830	-20014.71036	-20014.69248	-20014.68772
2.050	-26614.10224	-26614.10058	-26614.70800	-26614.68938	-26614.68438
2.100			-26614.69951	-26614.68573	-26614.68092
2.150	-26614.07771	-26614.07537	-26614.68971	-26614.67863	-26614.67405
2.200	-26614.05723	-26614.05914	-26614.67779	-26614.66802	-26614.66374
2.250	-26614.03615	-26614.04128		-26614.65455	-26614.65062

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				a_1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.700	6.05	6.07	4.32	4.12	4.18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.750	5.98	6.00	4.14	3.93	4.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.800	5.87	5.89	3.96	3.71	3.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.850	5.75	5.77	3.76	3.49	3.61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.900	5.60	5.63	3.58	3.27	3.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.950	5.45	5.48	3.40	3.05	3.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.000	5.29	5.32	3.24	2.84	2.97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.050	5.18	5.14	2.99	2.63	2.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.100			2.94	2.43	2.56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.150	4.84	4.90	2.90	2.23	2.37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.200	4.71	4.71	2.95	2.04	2.17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.250	4.60	4.68	2.00	1.86	1.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.200	1.00	1.00	ha	1.00	1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 700	4 59	4.60	3 25	3.00	3 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 750	4 70	4 71	3 20	3.02	3.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.800	4.77	4.78	3.10	2.01	2.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.850	4.11	4.10	3.12	2.31	2.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.000	4.00	4.04	0.02 2.01	4.10 2.62	2.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.900	4.79	4.62	2.91	2.05	2.14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.950	4.70	4.79	2.79	2.47	2.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000	4.76	4.74	2.68	2.29	2.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.050	4.70	4.74	2.51	2.12	2.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.100		0.00	2.44	1.94	2.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.150	4.55	4.60	2.39	1.76	1.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.200	4.47	4.54		1.59	1.77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.250	4.41	4.49		1.42	1.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				b_1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.700	7.75	7.76	5.70	5.48	5.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.750	7.34	7.36	5.29	5.05	5.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.800	6.97	7.00	4.89	4.63	4.76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.850	6.55	6.58	4.49	4.23	4.37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.900	6.24	6.27	4.15	3.84	3.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.950	5.90	5.94	3.82	3.48	3.62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.000	5.59	5.63	3.52	3.14	3.28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.050	5.29	5.34	3.19	2.82	2.96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.100		0.00	2.99	2.52	2.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.150	4.81	4.81	2.80	2.25	2.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.200	4.50	4.57	2.67	1.99	2.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.250	4.27	4.36		1.76	1.88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				a_2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.700	6.05	6.07	4.80	4.64	4.65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.750	6.15	6.17	4.75	4.56	4.60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.800	6.21	6.23	4.65	4.43	4.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.850	6.21	6.23	4.52	4.27	4.36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.900	6.20	6.22	4.39	4.08	4.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.950	6.15	6.18	4.23	3.88	4.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000	6.07	6.11	4.08	3.66	3.79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.050	5.95	6.00	3.89	3.42	3.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,100	0.00	0.00	3 77	3.09	3 22
2.200 5.64 5.58 3.62 2.46 $2.582.250$ 5.57 5.43 2.10 2.39	2.150	5.67	5 73	3.67	2 76	2.89
2.200 0.07 0.00 0.02 2.40 2.00 2.250 5.57 5.43 2.10 2.30	2.100	5.64	5.58	3.62	2.16	2.58
	2.200	5.04	5.00	5.02	2.40	2.00

Table S8: Excitation energies [eV] of ThO₂ for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods D_{2h} symmetry was imposed.

S5 ThO

Figure S5: Potential energy surfaces of the lowest-lying excited states of ThO determined for various EOM-CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods C_{2v} symmetry was imposed.

Table S9: Total electronic energies $[E_h]$ of ThO for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods C_{2v} symmetry was imposed.

Distance[Å]	pCCD	pCCD-CCS	pCCD-LCCSD CCSD		
1 500	00405 00510	00405 00510	Χ*Σ*	00400 10010	
1.780	-26495.68519	-26495.68518	-26496.20682	-26496.18616	
1.790	-20495.08040	-20495.08045	-20490.20835	26406 19954	
1.800	-20495.08751	-20495.08750	-20490.20907	26490.18834	
1.810	-20493.08830	-20490.00050	-20490.21079	-20490.18942	
1.820	26405 68046	26405 68045	26406 21247	26496.19009	
1.830	-20495.08940	-20495.08945	-20490.21247	26490.19038	
1.850	-20495.08975	26405 68081	26496 21345	26496 10101	
1.850	-20495.08982	-20495.08981	-20490.21345	26490.19101	
1.870	-26495.08975	-26495.68948	-26496 21370	-26496 19077	
1.880	-26495 68908	-26495 68907	-26496 21376	-20450.15011	
1.890	-26495 68852	-26495 68851	-26496 21358	-26496 18992	
1.900	-26495.68781	-26495.68780	-26496.21334	-26496 18928	
1.908	-26495.68714	-26495.68713	-26496.21294	-26496.18867	
1.918	-26495.68618	-26495.68617	-26496.21241	-26496.18779	
Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
			$1^{1}\Delta$		
1.780	-26495.60974	-26495.60926	-26496.14831	-26496.13425	-26496.13824
1.790	-26495.61112	-26495.61063	-26496.14993		
1.800	-26495.61228	-26495.61180	-26496.15135	-26496.13693	-26496.14087
1.810	-26495.61324	-26495.61277	-26496.15258	-26496.13795	-26496.14188
1.820					
1.830	-26495.61459	-26495.61413	-26496.15447	-26496.13944	-26496.14332
1.840	-26495.61499	-26495.61454	-26496.15516	-26496.13991	-26496.14378
1.850	-26495.61522	-26495.61477	-26496.15568	-26496.14021	-26496.14405
1.860	-26495.61528	-26495.61484	-26496.15604	-26496.14034	-26496.14417
1.870	-26495.61518	-26495.61475	-26496.15626	-26496.14032	-26496.14413
1.880	-26495.61493	-26495.61450	-26496.15633		
1.890	-26495.61453	-26495.61410	-26496.15627	-26496.13984	-26496.14360
1.900	-26495.61398	-26495.61356	-26496.15613	-26496.13938	-26496.14313
1.908	-26495.61344	-26495.61302	-26496.15584	-26496.13893	-26496.14265
1.918	-26495.61265	-26495.61223	-26496.15543	-26496.13824	-26496.14194
			$1^{1}\Sigma$		
1.780	-26495.58483	-26495.58509	-26496.11801	-26496.09521	-26496.10003
1.790	-26495.58670	-26495.58696	-26496.12001		
1.800	-26495.58836	-26495.58861	-26496.12179	-26496.09852	-26496.10331
1.810	-26495.58982	-26495.59007	-26496.12339	-26496.09987	-26496.10465
1.820					
1.830	-26495.59218	-26495.59241	-26496.12602	-26496.10198	-26496.10674
1.840	-26495.59309	-26495.59331	-26496.12707	-26496.10277	-26496.10752
1.850	-26495.59382	-26495.59404	-26496.12797	-26496.10338	-26496.10813
1.860	-26495.59439	-26495.59460	-26496.12870	-26496.10383	-26496.10857
1.870	-26495.59479	-26495.59500	-26496.12928	-26496.10412	-26496.10885
1.880	-26495.59504	-26495.59524	-26496.12973	22402 10422	22402 10000
1.890	-26495.59515	-26495.59534	-26496.13003	-26496.10426	-26496.10898
1.900	-26495.59510	-26495.59528	-26496.13018	-26496.10411	-26496.10882
1.908	-26495.59497	-26495.59514	-26496.13026	-26496.10390	-26496.10861
1.918	-26495.59468	-20495.59484	-26496.13022	-20490.10352	-20490.10822
			$2^{1}\Delta$		
1.780	-26495.56094	-26495.56075	-26496.10338	-26496.01603	-26496.07224
1.790	-26495.56263	-26495.56245	-26496.10535	22102 01002	22102 055 12
1.800	-26495.56412	-26495.56394	-26496.10711	-26496.01932	-26496.07542
1.810	-26495.56541	-26495.56522	-26496.10868	-26496.02065	-26496.07670
1.820	96405 50740	06405 50700	26406 11120	26406 02275	96406 07960
1.830	-20495.50740 26405 56913	-20490.00723	-20490.11120	-20490.02275	-20490.07869
1.040	-20490.00010 26/05 56969	-20490.00790 96405 56951	-20490.11230	-20490.02332 26406.02412	26406 07007
1.000	-20499.00000 -26/05 56007	-20499.00001 -26405 56900	-20490.11317	-20490.02412	-20490.01991
1.000	-20490.00907 -26/05 56020	-20499.00090	-20490.11309 -26406 11447	-26/06 02/02	-26406 08059
1 880	-26405 560929	-20490.00912	-26496.11447	-20430.02403	-20430.000000
1 800	-26405 56028	-26/05 56011	-26406 11520	-26496 02494	-26496 08050
1 000	-26495.56926	-20490.00911	-26496.11520	-26496 02494	-26490.00039
1 908	-26495 56878	-26495 56862	-26496 11543	-26496 02417	-26496 08012
1.918	-26495 56831	-26495 56815	-26496 11540	-20450.02400	-20430.00012
	20100100001	20100100010	<u>1¹П</u>		
1.780	-26495.57737	-26495.57750	-26496.11997		
1.790	-26495 57911	-26495 57923	-26496 12191		
1.800	-26495.58064	-26495.58075	-26496.12365	-26496.10985	-26496.11539
1.810	-26495.58197	-26495.58207	-26496.12518	-26496.11122	-26496.11676
1.820				-26496.11239	-26496.11793
1.830	-26495.58404	-26495.58412	-26496.12768	-26496.11337	-26496.11892
1.840	-26495.58479	-26495.58486	-26496.12866	-26496.11417	-26496.11972
1.850	-26495.58538	-26495.58543	-26496.12948	-26496.11480	-26496.12035
1.860	-26495.58579	-26495.58583	-26496.13013	-26496.11526	-26496.12081
1.870	-26495.58604	-26495.58607	-26496.13063	-26496.11557	-26496.12111
1.880	-26495.58613	-26495.58615	-26496.13098		
1.890	-26495.58607	-26495.58608	-26496.13119	-26496.11572	-26496.12127
1.900	-26495.58586	-26495.58586	-26496.13126	-26496.11558	-26496.12113
1.908	-26495.58560	-26495.58559	-26496.13123	-26496.11537	-26496.12092
1.918	-26495.58514	-26495.58512	-26496.13108	-26496.11500	-26496.12054

Table S10: Excitation energies [eV] of ThO for different states and various CC methods.	In all pCCD-based methods,
no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC	methods C_{2v} symmetry was
imposed.	

Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-	pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
			$1^{1}\Delta$			
1.780	2.05	2.07		1.59	1.41	1.30
1.790	2.05	2.06		1.59		
1.800	2.05	2.06		1.59	1.40	1.30
1.810	2.04	2.06		1.58	1.40	1.29
1.820						
1.830	2.04	2.05		1.58	1.39	1.29
1.840	2.03	2.05		1.58	1.39	1.28
1.850	2.03	2.04		1.57	1.38	1.28
1.860	2.03	2.04		1.57	1.38	1.27
1.870	2.02	2.03		1.57	1.37	1.27
1.880	2.02	2.03		1.56		
1.890	2.01	2.02		1.56	1.36	1.26
1.900	2.01	2.02		1.56	1.36	1.26
1.908	2.01	2.02		1.55	1.35	1.25
1.918	2.00	2.01		1.55	1.35	1.25
		-	$1^{1}\Sigma$			-
1.780	2.73	2.72		2.42	2.47	2.34
1.700	2.70	2.71		2.12	2.11	2.01
1.800	2.71	2.69		2.10	2.45	2 32
1.810	2.10	2.03		2.33	2.40	2.02
1.820	2.00	2.01		2.00	2.11	2.01
1.820	2.65	2.64		2 35	2 41	2.28
1.840	2.00	2.04		2.30	2.41	2.20
1.850	2.03	2.02		2.04	2.40	2.21
1.850	2.01	2.01		2.33	2.30	2.20
1.870	2.53	2.55		2.31	2.37	2.24
1.870	2.56	2.57		2.30	2.30	2.20
1.880	2.50	2.55		2.29	0.99	2.20
1.090	2.04	2.54		2.21	2.00	2.20
1.900	2.52	2.52		2.20	2.32	2.19
1.908	2.01	2.50		2.20	2.31	2.18
1.918	2.49	2.49	014	2.24	2.29	2.17
1 790	0.00	2.20	$2^{-}\Delta$	0.01	4.00	2.10
1.780	3.38	3.39		2.81	4.63	3.10
1.790	3.37	3.37		2.80	4.00	2.00
1.800	3.36	3.36		2.79	4.60	3.08
1.810	3.35	3.35		2.78	4.59	3.07
1.820	0.00	2.22		0.75		8.04
1.830	3.32	3.33		2.75	4.57	3.04
1.840	3.31	3.31		2.74	4.55	3.03
1.850	3.30	3.30		2.73	4.54	3.02
1.860	3.28	3.29		2.72	1 50	8.00
1.870	3.27	3.28		2.70	4.52	3.00
1.880	3.26	3.26		2.69	4.40	2.00
1.890	3.24	3.25		2.68	4.49	2.98
1.900	3.23	3.24		2.67	4.48	2.96
1.908	3.22	3.23		2.65	4.47	2.95
1.918	3.21	3.21	.1_	2.64		
			$1^{1}\Pi$			
1.780	2.93	2.93		2.36		
1.790	2.92	2.92		2.35		
1.800	2.91	2.90		2.34	2.14	1.99
1.810	2.90	2.89		2.33	2.13	1.98
1.820	0.00			0.00	2.11	
1.830	2.87	2.87		2.31	2.10	1.95
1.840	2.86	2.85		2.30	2.09	1.94
1.850	2.84	2.84		2.29	2.07	1.92
1.860	2.83	2.83		2.27	2.06	1.91
1.870	2.82	2.81		2.26	2.05	1.90
1.880	2.80	2.80		2.25		
1.890	2.79	2.79		2.24	2.02	1.87
1.900	2.77	2.77		2.23	2.01	1.85
1.908	2.76	2.76		2.22	1.99	1.84
1.918	2.75	2.75		2.21	1.98	1.83

S6 ThS

Figure S6: Potential energy surfaces of the lowest-lying excited states of ThS determined for various EOM-CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods C_{2v} symmetry was imposed.

Table S11: Total electronic energies $[E_h]$ of ThS for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods C_{2v} symmetry was imposed.

Distance[Å]	pCCD	pCCD-CCS	pCCD-LCCSD	CCSD	
			$X^1\Sigma^+$		
1.75	-26818 79109	-26818 79109	-26819 28533		
1.85	-26818 95340	-26818 95340	-26819 44122	-26819 41836	
1.05	26810.06278	26810.06278	26810 54446	26810 52127	
2.05	26810 12200	26810 12200	26810 61056	26810 58672	
2.03	-20819.15299	-20819.15299	-20819.01030	-20819.08072	
2.15	-26819.17619	-26819.17619	-26819.65022	-26819.62540	
2.25	-26819.20012	-26819.20012	-26819.67115	-26819.64495	
2.35	-26819.20946	-26819.20945	-26819.67912	-26819.65089	
2.45	-26819.20819	-26819.20818	-26819.67849	-26819.64726	
2.55	-26819.19924	-26819.19924	-26819.67293	-26819.63707	
2.65	-26819.18493	-26819.18492	-26819.66727	-26819.62253	
2.75	-26819.16717	-26819.16716		-26819.60525	
2.85	-26819.14756	-26819.14755		-26819.58645	
Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
	x .	1	110		
1 75	26818 71747	26818 71737	26810 22440		
1.75	26818 87672	26818 87640	-20019.22449	26910 26252	26810 26774
1.65	-20010.07073	-20818.87049	-20819.37707	-20819.30233	-20819.30774
1.95	-20818.98000	-20818.98484	-26819.47994	-26819.46501	-26819.47000
2.05	-26819.05612	-26819.05590	-26819.54720	-26819.53172	-26819.53648
2.15	-26819.10110	-26819.10088	-26819.58866	-26819.57251	-26819.57702
2.25	-26819.12722	-26819.12699	-26819.61154	-26819.59450	-26819.59877
2.35	-26819.13934	-26819.13859	-26819.62118	-26819.60292	-26819.60696
2.45	-26819.13990	-26819.13957	-26819.62183	-26819.60168	-26819.60549
2.55	-26819.13317	-26819.13278	-26819.61701	-26819.59370	-26819.59727
2.65	-26819.12094	-26819 12049	-26819 61218	-26819.58115	-26819.58451
2 75	-26819 10514	-26819 10458	20010101210	20010.00110	20010100101
2.10	26810.08736	26810.08666		26810 54840	26810 55147
2.00	-20819.08730	-20813.08000	115	-20019.04049	-20819.00147
1.75	00010 07000	20010 05052	1 2		
1.75	-26818.67960	-26818.67952	-26819.18675		
1.85	-26818.84451	-26818.84447	-26819.34316	-26819.30889	-26819.31384
1.95	-26818.95947	-26818.95946	-26819.44960	-26819.41821	-26819.42355
2.05	-26819.03659	-26819.03657	-26819.52094	-26819.49099	-26819.49653
2.15	-26819.08697	-26819.08694	-26819.56651	-26819.53678	-26819.54239
2.25	-26819.11783	-26819.11779	-26819.59320	-26819.56284	-26819.56845
2.35	-26819.13374	-26819.13368	-26819.60656	-26819.57460	-26819.58020
2.45	-26819.13857	-26819.13849	-26819.61067	-26819.57613	-26819.58174
2.55	-26819 13515	-26819 13508	-26819 60917	-26819 57047	-26819 57611
2.65	26810 12575	26810 12571	26810.60727	26810 55001	26810 56563
2.00	26810 11228	26810 11221	-20015.00121	-20015.00551	-20015.000005
2.75	-20019.11220	-20819.11231		26910 F2041	26210 52656
2.60	-20819.09035	-20819.09040	214	-20819.03041	-20819.55050
			$2^{1}\Delta$		
1.75	-26818.66899	-26818.66887	-26819.18369		
1.85	-26818.83089	-26818.83070	-26819.33931	-26819.23398	-26819.30085
1.95	-26818.94150	-26818.94134	-26819.44410	-26819.34166	-26819.40609
2.05	-26819.01489	-26819.01473	-26819.51365	-26819.41266	-26819.47532
2.15	-26819.06218	-26819.06204	-26819.55761	-26819.45709	-26819.51845
2.25	-26819.09068	-26819.09054	-26819.58317	-26819.48222	-26819.54258
2.35	-26819,10485	$-26819\ 10472$	-26819 59592	-26819 49338	-26819 55291
2.45	-26819 10850	-26819 10836	-26819 60002	-26819 49452	-26819 55330
2.40	-26810 10440	_26810 10/25	-26810 50808	_26810 48860	-26819 54662
2.00	-20013.10440	20013.10420	-20017.09090 96910 E074E	-20013.40000	-20013.04002
2.05	-20819.09478	-20819.09403	-20819.39743	-20819.47781	-20819.33301
2.75	-26819.08155	-26819.08138		20010 11501	
2.85	-26819.06630	-26819.06608	1_	-26819.44784	-26819.50292
			1 ¹ Π		
1.75	-26818.67710	-26818.67686	-26819.17673		
1.85	-26818.84018	-26818.83997	-26819.33835	-26819.32377	-26819.33185
1.95	-26818.95328	-26818.95305	-26819.44840	-26819.43372	-26819.44113
2.05	-26819.02880	-26819.02855	-26819.52112	-26819.50611	-26819.51312
2.15	-26819.07746	-26819.07720	-26819 56683	-26819.55134	-26819 55808
2.10	-26810 10662	-26810 10636	-26819 59306	-26810 57601	-26819 58347
2.20 0.25	-20010.10100	26810 19080	26810 60549	26810 59991	26810 50474
2.00	-20019.12110	-20019.12000	-20013.00042	-20019.00001	-20019.094/4
2.40	-20819.12475	-20819.12444	-20819.00812	-20819.08959	-20819.59590
2.55	-26819.12046	-26819.12014	-26819.60442	-26819.58379	-26819.59014
2.65	-26819.11053	-26819.11022	-26819.59744	-26819.57319	-26819.57956
2.75	-26819.09693	-26819.09663		-26819.55947	-26819.56591
2.85	-26819.08133	-26819.08103		-26819.54393	-26819.55047

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.38 1.40 1.37 1.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ 1.38 \\ 1.40 \\ 1.37 \\ 1.32 $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.38 1.40 1.37 1.32
1.95 2.11 2.12 1.76 1.53 0.02 0.02 0.10 0.12 0.12	$1.40 \\ 1.37 \\ 1.32$
	$1.37 \\ 1.32$
2.05 2.09 2.10 1.72 1.50	1.32
2.15 2.04 2.05 1.68 1.44	
2.25 1.98 1.99 1.62 1.37	1.26
2.35 1.91 1.93 1.58 1.31	1.20
2.45 1.86 1.87 1.54 1.24	1.14
2 55 1 80 1 81 1 52 1 18	1.08
2.65 1.74 1.75 1.50 1.13	1.03
2.75 1.69 1.70	1100
2.85 1.64 1.66 1.03	0.95
100 100 100 100	0.00
1.10 0.00 0.04 2.00	2.84
1.05 2.70 2.70 2.07 2.78 1.05 2.81 2.52 2.90	2.04
2.05 2.01 2.01 2.00 2.00 2.00	2.00
2.05 2.02 2.02 2.44 2.00	2.40
2.15 2.43 2.43 2.28 2.41	2.20
2.25 2.24 2.24 2.12 2.23	2.08
2.35 2.06 2.06 1.97 2.08	1.92
2.45 1.89 1.90 1.85 1.94	1.78
2.55 1.74 1.75 1.74 1.81	1.66
2.65 1.61 1.61 1.63 1.70	1.55
2.75 1.49 1.49	
2.85 1.39 1.39 1.52	1.36
$2^{1}\Delta$	
1.75 3.32 3.33 2.77	
1.85 3.33 3.34 2.77 5.02	3.20
1.95 3.30 3.30 2.73 4.89	3.13
2.05 3.21 3.22 2.64 4.74	3.03
2.15 3.10 3.11 2.52 4.58	2.91
2.25 2.98 2.98 2.39 4.43	2.79
2.35 2.85 2.85 2.26 4.29	2.67
2.45 2.71 2.72 2.14 4.16	2.56
2.55 2.58 2.58 2.01 4.04	2.46
2.65 2.45 2.46 1.90 3.94	2.38
2.75 2.33 2.33	
2.85 2.21 2.22 3.77	2.27
$1^{1}\Pi$	
1.75 3.10 3.11 2.96	
1.85 3.08 3.09 2.80 2.57	2.35
1.95 2.98 2.99 2.61 2.38	2.18
2.05 2.84 2.84 2.43 2.19	2.00
2.15 2.69 2.69 2.27 2.02	1.83
2.25 2.54 2.55 2.12 1.85	1.67
2.35 2.40 2.41 2.01 1.70	1.53
245 227 228 191 157	1.40
255 214 215 186 145	1.28
265 202 203 190 134	1.17
2.00 1.02 2.00 1.00 $1.042.75$ 1.01 1.02 1.25	1.07
2.85 1.80 1.81 1.16	0.98

Table S12: Excitation energies [eV] of ThS for different states and various CC methods. In all pCCD-based methods, no symmetry constraints were imposed (C_1 symmetry), while in all conventional CC methods C_{2v} symmetry was imposed.

S7 Error measures for total electronic energies and excitation energies

Table S13: Error measures [eV] for excitation energies along the potential energy surfaces of the lowest-lying excited states of ThO, ThS, UO_2^{2+} , NUN, PaO_2^{+} , and ThO₂ determined for various EOM-CC methods with respect to CR-EOM-CCSD(T).

			EOM-p	CCD+S			EOM-pC	CD-CCS			EOM-pCO	CD-LCCSE)		EOM	-CCSD	
	State	NPE	MAE	ME	RME	NPE	MAE	ME	RME	NPE	MAE	ME	RME	NPE	MAE	ME	RME
	$1^{1}\Delta$	0.041	0.727	0.715	0.715	0.028	0.733	0.725	0.725	0.107	0.465	0.389	0.391	0.061	0.142	0.113	0.114
ThS	$1^{1}\Pi$	0.150	0.876	0.838	0.839	0.152	0.884	0.846	0.847	0.300	0.731	0.501	0.510	0.047	0.220	0.202	0.184
1110	$1^{1}\Sigma$	0.133	0.169	0.120	0.128	0.137	0.170	0.120	0.128	0.160	0.176	0.067	0.081	0.033	0.167	0.152	0.152
	$2^1\Delta$	0.131	0.192	0.146	0.153	0.140	0.196	0.149	0.156	0.091	0.481	0.418	0.419	0.321	1.820	1.644	1.647
	$1^1\Delta$	0.004	0.753	0.752	0.752	0.002	0.765	0.764	0.764	0.015	0.303	0.295	0.296	0.008	0.108	0.104	0.104
ThO	$1^{1}\Pi$	0.003	0.920	0.919	0.919	0.007	0.920	0.917	0.917	0.037	0.383	0.365	0.365	0.000	0.151	0.150	0.150
1110	$1^{1}\Sigma$	0.062	0.387	0.354	0.355	0.060	0.380	0.348	0.349	0.003	0.074	0.072	0.072	0.003	0.131	0.129	0.129
	$2^1\Delta$	0.014	0.281	0.274	0.274	0.015	0.286	0.279	0.279	0.015	0.301	-0.293	0.293	0.017	1.530	1.520	1.520
	$1^1 \Phi_q$	0.406	1.341	1.046	1.068	0.602	1.299	1.002	1.021	0.337	0.371	0.169	0.200	0.154	0.262	-0.190	0.196
	$1^1 \Delta_q$	0.670	1.526	1.195	1.214	0.532	1.388	1.133	1.146	0.341	0.363	0.158	0.191	0.229	0.348	-0.226	0.237
UOa^{2+}	$1^{1}\Gamma_{a}$	0.328	3.586	3.448	3.449	0.156	3.407	3.310	3.310	0.733	0.741	0.322	0.391	0.155	0.506	-0.434	0.436
002	$2^{1}\Delta_{a}^{g}$	0.316	3.623	3.478	3.481	0.246	3.466	3.353	3.354	0.639	0.706	0.326	0.386	0.099	0.456	-0.421	0.422
	$2^{1}\Phi_{a}^{g}$	0.365	3.318	3.154	3.157	0.154	3.103	3.021	3.021	0.721	0.739	0.310	0.384	0.158	0.500	-0.427	0.430
	$1^{1}\pi$	0.355	3 417	3 258	3 260	0.153	3 209	3 124	3 125	0.775	0.792	0.333	0.412	0.157	0.495	-0.423	0.426
	1 119	0.000	0.111	0.200	0.200	0.100	0.200	0.121	0.120	0.110	0.102	0.000	0.112	0.101	0.100	0.120	0.120
	$1^1 \Delta a$	0.235	0.879	0.760	0.764	0.261	0.923	0.790	0.795	0.132	0.217	0.141	0.148	0.177	0.209	-0.112	0.125
	1 ¹ Φ_{a}^{g}	0.269	0.772	0.635	0.641	0.290	0.811	0.661	0.668	0 144	0.229	0.148	0.155	0.064	0.086	-0.056	0.059
NUN	$2^{1}\Phi_{-}$	1 901	2 201	2 156	2 156	0.152	2 296	2 223	2 224	0.314	0.483	0.297	0.314	0 111	0.324	-0.270	0.272
non	$1^{1}\pi$	0.030	2.201	2.100	2.100	0.086	2.200	2.220	2.221	0.338	0.511	0.312	0.331	0.115	0.334	-0.278	0.280
	$1^{1}\Sigma$	0.035	2.000	2.004	2.004	0.025	1 0 9 9	1 072	1 072	0.452	1.008	0.726	0.351	0.162	0.604	0.522	0.525
	110	0.025	1.021	2.009	2.009	0.035	1.988	1.572	1.972	0.433	0.303	0.730	0.750	0.103	0.004	0.322	0.323
	$1 \Delta u$	0.100	1.280	1.189	1.191	0.105	1.207	1.108	1.364	0.185	0.323	0.215	0.223	0.558	0.398	-0.110	0.240
	$1^1 \Phi_a$	0.751	1 775	1 452	1 478	0.905	1 949	1 481	1 508	0.241	0.288	0.143	0.163	0.192	0.279	-0.184	0 194
	110	0.702	1.000	1 515	1 526	0.846	1 0 9 2	1.546	1.560	0.220	0.270	0.125	0.156	0.202	0.282	0.184	0.105
PaO_2^+	11Σ	0.755	1.606	1 5 5 7	1.550	0.040	1.303	1.540	1.505	0.166	0.213	0.130	0.100	0.200	0.200	0.211	0.110
2	$1 \Delta u$	0.276	1.090	1.337	1.300	0.295	1.707	1.007	1.300	0.150	0.525	0.433	0.196	0.008	0.238	0.211	0.213
	$1 \Delta u$	0.490	1.618	1.373	1.382	0.517	1.644	1.380	1.390	0.152	0.428	0.342	0.345	0.135	0.153	0.096	0.105
	$1^{-11}g$	0.483	1.375	1.129	1.140	0.526	1.429	1.159	1.1/2	0.188	0.439	0.323	0.327	0.232	0.234	-0.053	0.112
	11 4	0.745	2.615	2 261	2 273	0.810	2 694	2 285	2 297	0.647	0.781	0.287	0.347	0.078	0.138	-0.117	0.120
	11 P-	1 200	2.010	2.201	2.273	1 294	2.054	2.200	2.201	0.479	0.621	0.257	0.347	0.172	0.199	0.121	0.120
ThO_2	1 D2 11 D	1.309	2.002	2.170	2.210	1.304	2.001	2.208	2.201	0.413	0.021	0.209	0.297	0.173	0.162	-0.121	0.133
	1 ⁻ B1	0.268	2.424	2.278	2.280	0.302	2.476	2.316	2.318	0.432	0.543	0.236	0.270	0.033	0.144	-0.133	0.134
	1- A2	1.871	3.271	2.224	2.298	1.712	3.127	2.229	2.296	0.896	1.043	0.368	0.466	0.120	0.136	-0.133	0.105

Table S14: Error measures [eV] for adiabatic excitations energies of ThO and ThS determined for all excited states within a given method with respect to CR-EOM-CCSD(T).

		Th	ıО			T	hS	
Method	NPE	MAE	ME	RME	NPE	MAE	ME	RME
EOM-pCCD+S	0.640	0.920	0.575	0.636	0.770	0.840	0.435	0.552
EOM-pCCD-CCS	0.640	0.920	0.578	0.639	0.780	0.850	0.443	0.562
EOM-pCCD-LCCSD	0.300	0.340	0.088	0.276	0.460	0.470	0.100	0.380
EOM-CCSD	1.410	1.510	0.473	0.763	1.500	1.610	0.510	0.815

Table S15: Error measures [eV] for adiabatic excitations energies of UO_2^{2+} , NUN, PaO_2^{+} , and ThO_2 determined for all excited states within a given method with respect to CR-EOM-CCSD(T).

		UC	D_2^{2+}			Ν	IUN			Pa	0_{2}^{+}			Т	hO_2	
State	NPE	MAE	ME	RME	NPE	MAE	ME	RME	NPE	MAE	ME	RME	NPE	MAE	ME	RME
EOM-pCCD+S	2.640	3.680	2.688	2.914	1.830	2.540	1.628	1.781	0.320	1.620	1.484	1.489	0.160	2.320	2.238	2.239
EOM-pCCD-CCS	2.740	3.810	2.800	3.039	1.860	2.590	1.643	1.799	0.320	1.650	1.502	1.507	0.180	2.360	2.260	2.261
EOM-pCCD-LCCSD	0.090	0.100	-0.050	0.060	0.550	0.570	0.082	0.274	0.310	0.330	0.128	0.190	0.070	0.190	0.155	0.157
EOM-CCSD	0.270	0.460	-0.362	0.380	0.440	0.490	-0.030	0.264	0.220	0.310	-0.026	0.202	0.020	0.140	-0.133	0.133

r various EOM-CC methods with respect to CR-EOM-CCSD(T). pCCD/EOM-pCCD+S indicates that pCCD has been	e calculation, while EOM-pCCD+S was used to target excited states.
hO, and ThS determined for various EOM-CC method	nployed for the ground state calculation, while EOM-F
	ThO, and ThS determined for various EOM-CC methods with respect to CR-EOM-CCSD(T). pCCD/EOM-pCCD+S indicates that pCCD has been

	State	NPE	pCCD/EO MAE	M-pCCD+ ME	S RME	NPE	EOM-pC MAE	CCD-CCS	RME	E NPE	DM-PCC MAE	D-LCCSL ME	RME	NPE	EOM- MAE	CCSD	RME
	$X^{1}\Sigma$	0.549	16.124	15.868	15.869	0.541	16.12	15.864	15.865	0.886	2.011	-1.420	1.458	T	ī	ī	I
	$1^{1}\Phi_{g}$	0.702	17.422	16.913	16.918	1.143	17.414	16.866	16.870	0.708	1.640	-1.251	1.271	0.154	0.262	-0.190	0.196
10.2+	$1^{1} \Delta_{g}$	1.219	17.649	17.062	17.067	1.074	17.503	16.997	17.000	0.704	1.648	-1.262	1.281	0.229	0.348	-0.226	0.237
0.02	$^{1^{1}\Gamma}g$	0.877	19.709	19.315	19.317	0.585	19.416	19.174	19.175	0.336	1.271	-1.098	1.103	0.155	0.506	-0.434	0.436
	$2^{1}\Delta_{g}$	0.845	19.736	19.345	19.348	0.569	19.459	19.217	19.218	0.406	1.305	-1.094	1.101	0.099	0.456	-0.421	0.422
	$2^{1}\Phi_{g}$	0.914	19.441	19.022	19.024	0.630	19.156	18.885	18.886	0.326	1.272	-0.931	1.115	0.158	0.500	-0.427	0.430
	$1^{1}\Pi_{g}$	0.904	19.540	19.126	19.128	0.618	19.253	18.988	18.989	0.286	1.220	-0.908	1.090	0.157	0.495	-0.423	0.426
	x ¹ Σ	0.409	0.590	0.583	0.583	0.409	0.590	0.583	0.583	0.659	1.639	-1.248	1.267	I	I	I	I
	$1^1 \Delta_a$	0.537	16.942	16.676	16.677	0.563	16.987	16.706	16.707	0.470	1.421	-1.167	1.177	0.177	0.209	-0.112	0.125
NUN	$1^{1}\Phi_{a}^{s}$	0.571	16.835	16.551	16.552	0.593	16.874	16.577	16.578	0.458	1.409	-1.161	1.170	0.064	0.086	-0.056	0.059
	$2^{1}\Phi_{q}^{j}$	0.403	18.265	18.072	18.073	0.454	18.359	18.139	18.140	0.288	1.156	-1.011	1.016	0.111	0.324	-0.270	0.272
	$1^1\Pi_g$	0.279	18.463	18.326	18.326	0.335	18.556	18.390	18.390	0.264	1.127	-0.996	1.000	0.115	0.334	-0.278	0.280
	$1^1\Sigma_u$	0.183	17.965	17.875	17.876	0.173	17.922	17.838	17.838	0.154	0.636	-0.572	0.574	0.163	0.604	0.522	0.525
	$1^{1}\Delta_{u}$	0.144	17.191	17.105	17.105	0.150	17.178	17.084	17.084	0.679	1.391	-1.094	1.118	0.358	0.398	-0.116	0.240
	x ¹ Σ	0.181	14.740	14.68	14.678	0.188	15.915	15.604	15.571	0.454	1.305	-1.062	1.072	I	I	1	- 1
	$1^{1}\Phi_{a}$	0.879	16.503	16.131	16.134	1.048	16.694	16.161	16.165	0.212	1.017	-0.918	0.921	0.192	0.279	-0.184	0.194
Pa.O.5 +	$1^1 \Delta_a^{j}$	0.932	16.649	16.193	16.196	0.989	16.728	16.226	16.229	0.215	1.026	-0.927	0.929	0.203	0.283	-0.184	0.195
4) }	$1^1\Sigma_u^{j}$	0.416	16.436	16.235	16.236	0.438	16.452	16.238	16.238	0.288	0.782	-0.629	0.636	0.068	0.238	0.211	0.213
	$1^1 \Delta_u$	0.630	16.358	16.051	16.052	0.660	16.389	16.061	16.062	0.301	0.877	-0.720	0.727	0.135	0.153	0.096	0.105
	$1^{1}\Pi_{g}$	0.622	16.114	15.807	15.809	0.669	16.174	15.840	15.841	0.266	0.866	-0.739	0.745	0.232	0.234	-0.053	0.112
	-																
	$X^{+}A_{1}$	0.051	13.479	13.450	13.450	0.051	13.479	13.453	13.453	1.013	1.658	-0.971	1.017	- 0.70	- 1 00	- 0	- 100
i	$1B_{0}$	1.279	16.251	15.626	15.632	1.359	16.341	15.660	15.666	0.311	0.804	-0.650	0.657	0.173	0.182	-0.121	0.133
ThO_2	$1B_{1}^{2}$	0.260	15.873	15.729	15.729	0.291	15.930	15.768	15.768	0.349	0.883	-0.673	0.680	0.033	0.144	-0.133	0.134
	$1A_2$	1.841	16.721	15.674	15.685	1.687	16.581	15.681	15.691	0.260	0.643	-0.540	0.546	0.120	0.136	-0.133	0.105
	$x^{1}\Sigma^{+}$	0.018	13.650	13.640	13.640	0.017	13.650	13.640	13.640	0.108	0.670	-0.617	0.618	I	I	I	I
	$1^{1}\Delta$	0.022	14.403	14.392	14.392	0.020	14.414	14.404	14.404	0.357	0.367	-0.321	0.323	0.008	0.108	0.104	0.104
ThO	$1^{1}\Pi$	0.020	14.569	14.559	14.559	0.024	14.570	14.557	14.557	0.279	0.287	-0.252	0.253	0.000	0.151	0.150	0.150
	$1^{1}\Sigma$	0.045	14.019	13.994	13.994	0.042	14.012	13.988	13.988	0.581	0.599	-0.545	0.546	0.003	0.131	0.129	0.129
	$2^{1}\Delta$	0.001	13.914	13.913	13.913	0.001	13.919	13.918	13.918	0.930	0.961	-0.904	0.905	0.017	1.530	1.520	1.520
	v1v+	747	19 653	19.120	10 674	0 744	10 650	001.01	10 674	0 505	7 I C I	0.780	119.0				
	; _ 7 <	247.0	13 361	12 868	12 870	0.741	13 368	12 878	12 880	0.000	0 753	-0.400	110.0	0.061	0 149	0 113	114
ThS		0.617	13 370	12 970	12 972	0.615	13 385	12 978	12 979	0 309	0.486	886 0-	0 303	0.047	0.220	0.909	0 184
	11	108.0	10.771	10.073	10.076	0 803	10.770	10.072	10.077	0.477	1 1 2 2	0.780	1 705	0.033	0 167	0.150	0 150
	- 5	10000	10.70	00000.	00000	10000			1 4 4 4 4	1000		10.0	0.1.0	0.000	0.101	10.10	101.0

S8 Results for TZ-quality basis sets

We have employed the triple- ζ correlation consistent basis sets of Peterson⁶ for all heavy elements (cc-pVTZ-DK3), optimized specifically for the DKH3 Hamiltonian,^{5,7,8} and Dunning's aug-cc-pVTZ basis set for all light elements.⁹

Table S17: Vertical excitation energies of the lowest-lying states of NUN determined for a basis set of double- ζ ($D\zeta$) and triple- ζ ($T\zeta$) quality.

	$D\zeta$	$T\zeta$	
Method	$T_{\rm v} [{\rm eV}]$	$T_{\rm v}[{\rm eV}]$	$\Delta T_{\rm v} \; [{\rm eV}]$
		$1^1\Delta_g$	
EOM-pCCD+S	3.97	4.03	-0.06
EOM-pCCD-CCS	4.00	4.05	-0.05
EOM-pCCD-LCCSD	3.36	3.35	+0.01
		$1^1 \Phi_g$	
EOM-pCCD+S	3.30	3.38	-0.08
EOM-pCCD-CCS	3.33	3.40	-0.07
EOM-pCCD-LCCSD	2.82	2.82	± 0.00
		$2^{1}\Phi_{g}$	
EOM-pCCD+S	6.08	6.10	-0.02
EOM-pCCD-CCS	6.14	6.16	-0.02
EOM-pCCD-LCCSD	4.15	4.29	-0.14
		$1^1\Pi_g$	
EOM-pCCD+S	6.46	6.48	-0.02
EOM-pCCD-CCS	6.51	6.53	-0.02
EOM-pCCD-LCCSD	4.31	4.38	-0.07
		$1^{1}\Sigma_{u}$	
EOM-pCCD+S	4.82	4.85	-0.03
EOM-pCCD-CCS	4.78	4.81	-0.03
EOM-pCCD-LCCSD	3.43	3.56	-0.13
		$1^1\Delta_u$	
EOM-pCCD-CCS	4.76	4.79	-0.03
EOM-pCCD-LCCSD	3.81	3.85	-0.04

	$D\zeta$	$T\zeta$	
Method	$T_{\rm v} [{\rm eV}]$	$T_{\rm v}[{\rm eV}]$	$\Delta T_{\rm v} [{\rm eV}]$
		$1^1 \Phi_g$	
EOM-pCCD+S	4.62	4.63	-0.01
EOM-pCCD-CCS	4.66	4.67	-0.01
EOM-pCCD-LCCSD	3.82	3.76	+0.06
EOM-CCSD	3.57	3.49	+0.08
CR-EOM-CCSD(T)	3.73	3.59	+0.14
		$1^1\Delta_g$	
EOM-pCCD+S	5.15	5.16	-0.01
EOM-pCCD-CCS	5.21	5.20	+0.01
EOM-pCCD-LCCSD	4.20	4.15	+0.05
EOM-CCSD	3.94	3.87	+0.07
CR-EOM-CCSD(T)	4.12	3.99	+0.13
		$1^1\Gamma_g$	
EOM-pCCD+S	8.57	8.59	-0.02
EOM-pCCD-CCS	8.70	8.72	-0.02
EOM-pCCD-LCCSD	5.46	5.43	+0.03
EOM-CCSD	4.89	4.86	+0.03
CR-EOM-CCSD(T)	5.29	5.17	+0.12
		$2^1\Delta_g$	
EOM-pCCD+S	8.79	8.82	-0.03
EOM-pCCD-CCS	8.90	8.94	-0.04
EOM-pCCD-LCCSD	5.72	5.67	+0.05
EOM-CCSD	5.14	5.11	+0.03
CR-EOM-CCSD(T)	5.55	5.41	+0.14
		$2^{1}\Phi_{g}$	
EOM-pCCD+S	8.03	8.06	-0.03
EOM-pCCD-CCS	8.15	8.18	-0.03
EOM-pCCD-LCCSD	5.20	5.19	+0.01
EOM-CCSD	4.65	4.63	+0.02
CR-EOM-CCSD(T)	5.05	4.94	+0.11
		$1^1\Pi_g$	
EOM-pCCD+S	8.21	8.25	-0.04
EOM-pCCD-CCS	8.33	8.37	-0.04
EOM-pCCD-LCCSD	5.30	5.31	+0.01
EOM-CCSD	4.73	4.72	+0.01
CR-EOM-CCSD(T)	5.13	5.02	+0.11

Table S18: Vertical excitation energies of the lowest-lying states of UO_2^{2+} determined for a basis set of double- ζ ($D\zeta$) and triple- ζ ($T\zeta$) quality.

	$D\zeta$	$T\zeta$	
Method	$T_{\rm v} [{\rm eV}]$	$T_{\rm v}[{\rm eV}]$	$\Delta T_{\rm v} [{\rm eV}]$
		a_1	
EOM-pCCD+S	5.45	5.50	-0.05
EOM-pCCD-CCS	5.48	5.53	-0.05
EOM-pCCD-LCCSD	3.40	3.55	-0.15
EOM-CCSD	3.05	3.28	-0.23
CR-EOM-CCSD(T)	3.18	3.36	-0.18
		b_2	
EOM-pCCD+S	4.76	4.79	-0.03
EOM-pCCD-CCS	4.79	4.83	-0.04
EOM-pCCD-LCCSD	2.79	2.94	-0.15
EOM-CCSD	2.47	2.74	-0.27
CR-EOM-CCSD(T)	2.59	2.74	-0.12
		b_1	
EOM-pCCD+S	5.90	5.90	± 0.00
EOM-pCCD-CCS	5.94	5.93	+0.01
EOM-pCCD-LCCSD	3.82	3.96	-0.14
EOM-CCSD	3.48	3.96	-0.48
CR-EOM-CCSD(T)	3.62	3.99	-0.31
		a_2	
EOM-pCCD+S	6.15	6.15	± 0.00
EOM-pCCD-CCS	6.18	6.18	± 0.00
EOM-pCCD-LCCSD	4.23	4.31	-0.10
EOM-CCSD	3.88	4.14	-0.26
CR-EOM-CCSD(T)	4.00	4.13	-0.13

Table S19: Vertical excitation energies of the lowest-lying states of ThO₂ determined for a basis set of double- ζ ($D\zeta$) and triple- ζ ($T\zeta$) quality.

S9 Example results for all tested EOM-CC methods with imposed D_{2h} symmetry

S9.1 UO_2^{2+}

Figure S7: Potential energy surfaces of the lowest-lying excited states of UO_2^{2+} determined for various EOM-CC methods with imposed D_{2h} symmetry.

Distance[Å]	pCCD	pCCD-CCS	pCCD-LCCSD	CCSD	
			A Z		
1.600	-28148.67865	-28148.67861			
1.625	-28148.68626	-28148.68623	-28149.36515		
1.650	-28148.08938	-28148.68934	-28149.37480	-28149.35230585	
1.700	-28148.68454	-28148.08858	-28149.38108	-28149.35640687	
1.725	-28148.67758	-28148.67751	-28149.38519	-28149.35378603	
1.750	-28148.66819	-28148.66811	-28149.38399	-28149.34857922	
1.775	-28148.65668	-28148.65658	-28149.37962	-28149.34111895	
1.800	-28148.64333	-28148.64322	-28149.37726	-28149.33170396	
1.825	-28148.62840	-28148.62828	-28149.37293	-28149.32059737	
1.850	-28148.01213	-28148.01200	-28149.30891	-28149.3080308	
1.900				-28149.2794163	
Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
1.600			$1^{+}\Phi g$		
1.625	-28148.50097	-28148.50042	-28149.19921		
1.650	-28148.51019	-28148.50957	-28149.21639	-28149.19797	-28149.19402
1.675	-28148.51552	-28148.51480	-28149.22989	-28149.20950	-28149.20492
1.700	-28148.51657	-28148.51651	-28149.24014	-28149.21760	-28149.21238
1.725	-28148.51523	-28148.51516	-28149.24757	-28149.22266	-28149.21680
1.750	-28148.51132	-28148.51124	-28149.25268	-28149.22503	-28149.21855
1.800	-28148.49876	-28148.30314	-28149.25791	-28149.22288	-28149.21519
1.825	-28148.48963	-28148.48801	-28149.25932	-28149.21886	-28149.21061
1.850	-28148.47940	-28148.47763	-28149.26099	-28149.21318	-28149.20442
1.875				-28149.20605	-28149.19682
1.900			.1.	-28149.19764	-28149.18803
1 600			$1^{+}\Delta g$		
1.600	-28148 47640	-28148 48242	-281/0 19705	-28140 19524	-28140 19000
1.620	-20140.47040	-20140.46343 -28148 49188	-20149.10700	-20149.18034 -28149 19639	-20149.18099
1.675	-28148.49724	-28148.49646	-28149.21663	-28149.20409	-28149.19825
1.700	-28148.49851	-28148.49759	-28149.22641	-28149.20883	-28149.20224
1.725	-28148.49582	-28148.49576	-28149.23340	-28149.21095	-28149.20360
1.750	-28148.49150	-28148.49142	-28149.23813	-28149.21077	-28149.20264
1.775	-28148.48645	-28148.48501	-28149.23933	-28149.20855	-28149.19962
1.825	-28148.46922	-28148.46742	-28149.24203	-28149.19904	-28149.18835
1.850	-28148.45879	-28148.45682	-28149.24504	-28149.19219	-28149.18051
1.875				-28149.18424	-28149.17147
1.900			4		
			$1^{1}\Gamma_{g}$		
1.600	00110 00555	00140.00000	221 12 1222		
1.625	-28148.33757	-28148.33603	-28149.12087	28140 12276	28140 11086
1.675	-28148.36310	-28148.36116	-28149.16118	-28149.15023	-28149.13666
1.700	-28148.37038	-28148.36819	-28149.17567	-28149.16393	-28149.14970
1.725	-28148.37467	-28148.37218	-28149.18688	-28149.17426	-28149.15940
1.750	-28148.37615	-28148.37392	-28149.19510	-28149.18158	-28149.16609
1.775	-28148.37513	-28148.37198	-28149.20134	-28149.18617	-28149.17010
1.800	-28148.36659	-28148.36285	-28149.20390	-28149.18830	-28149.17119
1.850	-28148.35960	-28148.35474	-28149.20433	-28149.18628	-28149.16862
1.875				-28149.18252	-28149.16439
1.900				-28149.17722	-28149.15863
			$2^{1}\Delta g$		
1.600	00140 00000	00140 00500	00140 11001		
1.625	-28148.32000	-28148.32526	-28149.11021	28140 12248	28140 10026
1.675	-28148.35743	-28148.35553	-28149.15131	-28149.14030	-28149.12658
1.700	-28148.36528	-28148.36313	-28149.16609	-28149.15429	-28149.13998
1.725	-28148.37009	-28148.36765	-28149.17756	-28149.16483	-28149.14996
1.750	-28148.37207	-28148.36932	-28149.18598	-28149.17227	-28149.15689
1.775	-28148.36628	-28148.36368	-28149.19296	-28149.17692	-28149.16109
1.825	-20140.30301 -28148.36152	-20140.30213 -28148.35836	-20149.19010 -28149.19643	-20149.17904 -28149.17886	-20149.10282
1.850	-28148.35740	-28148.35239	-28149.19588	-28149.17660	-28149.15989
1.875				-28149.17245	-28149.15569
1.900			-1-	-28149.16661	-28149.14995
4.005			$2^{\perp}\Phi_g$		
1.600	-28149 26207	-28140 26100	-98140 19619		
1.650	-20140.30327	-28148 37474	-28149 15661	-28149 14656	-28149 13402
1.675	-28148.38559	-28148.38373	-28149.17309	-28149.16223	-28149.14898
1.700	-28148.39131	-28148.38921	-28149.18600	-28149.17423	-28149.16029
1.725	-28148.39405	-28148.39165	-28149.19569	-28149.18294	-28149.16834
1.750	-28148.39134	-28148.39126	-28149.20244	-28149.18873	-28149.17349
1.775	-20148.38844 -28148 38657	-20148.38834 -28148 28218	-20149.20010	-20149.19188 -28140 10260	-20149.17604 -28149.17628
1.825	-28148.37976	-28148.37604	-28149.20830	-28149.19138	-28149.17443
1.850	-28148.36722	-28148.36708	-28149.20643	-28149.18818	-28149.17074
1.875				-28149.18331	-28149.16539
1.900			1	-28149.17696	-28149.15860
1.000			$1 \cdot \Pi_g$		
1.600	-28149 25606	-98148 95450	-98140 12204		
1.020	-20140.30020 -28148 36045	-20140.30478 -28148 36780	-20149.13304 -28149.15346	-28149 1/36/	-28149 13191
1.675	-28148.37873	-28148.37686	-28149.16986	-28149.15927	-28149.14615
1.700	-28148.38454	-28148.38242	-28149.18268	-28149.17123	-28149.15742
1.725	-28148.38735	-28148.38494	-28149.19225	-28149.17990	-28149.16544
1.750	-28148.38470	-28148.38462	-28149.19887	-28149.18564	-28149.17055
1.775	-28148.38189	-28148.38179	-28149.20113	-28149.18876	-28149.17306
1.800	-28148.38015 -28148.37345	-28148.37673 -28148 36060	-28149.20455	-28149.18952 -28140 18817	-28149.17326 -28149.17138
1.850	-28148.36099	-28148.36085	-28149.20210	-28149.18494	-28149.16765
1.875			=	-28149.18004	-28149.16229
1.900				-28149.17369	-28149.15548

Table S20: Total electronic energies $[E_h]$ of UO_2^{2+} for different states and various CC methods. All EOM-CC methods are calculated with imposed D_{2h} symmetry.

S10 Example results for all tested EOM-CC methods with imposed C_{2v} symmetry

Figure S8: Potential energy surfaces of the lowest-lying excited states of ThO₂ determined for various EOM-CC methods with imposed C_{2v} symmetry.

			000 1 0000	acar	
Distance[A]	pCCD	pCCD-CCS	pCCD-LCCSD	CCSD	
			$X^{1}\Sigma^{+}$		
1 700	26614 15602	26614 15602	26614 75762	26614 74999	
1.700	-20014.10095	-20014.10095	-20014.75702	-20014.74626	
1.750	-26614.19402	-20014.19401	-20014.79719	-20014.78097	
1.800	-26614.21821	-26614.21821	-26614.82420	-26614.81288	
1.850	-26614.23164	-26614.23163	-26614.84090	-26614.82817	
1.900	-26614.23606	-26614.23606	-26614.84900	-26614.83463	
1.950	-26614.23303	-26614.23302	-26614.85042	-26614.83378	
2.000	-26614.22384	-26614.22383	-26614.84663	-26614.82689	
2.050	-26614.20947	-26614.20947	-26614.83949	-26614.81505	
2 100	20011120011	2001 11200 11	-26614 83394	-26614 79921	
2.100	26614 16994	26614 16992	26614 92197	26614 78017	
2.100	-20014.10004	-20014.10883	-20014.85187	-20014.76017	
2.200	-20014.14410	-20014.14409	-20014.70551	-20014.75800	
2.250				-26614.73509	
Distance[Å]	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	EOM-CCSD	CR-EOM-CCSD(T)
			a_1		
1.700	-26613.94573	-26613.94555	-26614.60135	-26614.59677	-26614.59453
1 750	-26613 98642	-26613 98642	-26614 64742	-26614 64269	-26614 63972
1.000	26614 01552	20010.00042	20014.04142	26614.67629	20014.03372
1.800	-20014.01555	-20014.01555	-20014.08133	-20014.07038	-20014.07279
1.850	-26614.03441	-26614.03420	-26614.70500	-26614.69973	-26614.69564
1.900	-26614.04501	-26614.04478	-26614.71987	-26614.71433	-26614.70984
1.950	-26614.04875	-26614.04851	-26614.72723	-26614.72154	-26614.71676
2.000	-26614.04650	-26614.04624	-26614.72863	-26614.72256	-26614.71759
2.050	-26614.03933	-26614.03903	-26614.72460	-26614.71843	-26614.71336
2.100			-26614.71661	-26614.71006	-26614,70498
2 150	-26614 02219	-26614 02180	-26614 71847	-26614 69823	-26614 69323
2.100	26614.00257	26614.02100	26614 70054	26614 69261	26614 67979
2.200	-20014.00237	-20014.00211	-20014.70954	-20014.08501	-20014.07878
2.250				-26614.66675	-26614.66220
			b_2		
1.700	-26613.99584	-26613.99571	-26614.63981	-26614.63485	-26614.63453
1.750	-26614.03016	-26614.03015	-26614.68137	-26614.67610	-26614.67476
1.800	-26614.05323	-26614.05306	-26614.71146	-26614.70585	-26614.70354
1.850	-26614 06664	-26614 06646	-26614 73202	-2661472597	-26614 72277
1 900	-26614 07217	-26614 07196	-26614 74447	-26614 73798	-26614 73398
1.500	26614.07076	-20014.07150	20014.74447	-20014.75756	20014.73336
1.950	-20014.07070	-20014.07055	-20014.75003	-20014.74317	-20014.73840
2.000	-26614.06442	-20014.00410	-20014.75018	-20014.74204	-20014.73731
2.050	-26614.05374	-26614.05344	-26614.74578	-26614.73732	-26614.73148
2.100			-26614.73808	-26614.72803	-26614.72180
2.150	-26614.01341	-26614.01304	-26614.73097	-26614.71548	-26614.70896
2.200	-26613.99594	-26613.99551	-26614.71045	-26614.70025	-26614.69358
2.250				-26614.68285	-26614.67617
			b.		
1 700	26612 22716	26612 88606	26614 55140	26614 54694	26614 54280
1.700	-20013.00710	-20013.88090	-20014.55140	-20014.04084	-20014.54280
1.750	-20013.93955	-20013.93955	-20014.00000	-20014.00128	-20014.39077
1.800	-26613.97856	-26613.97833	-26614.64771	-26614.64262	-26614.63779
1.850	-26614.00618	-26614.00594	-26614.67681	-26614.67276	-26614.66770
1.900	-26614.02427	-26614.02401	-26614.69934	-26614.69335	-26614.68815
1.950	-26614.03421	-26614.03393	-26614.71233	-26614.70584	-26614.70057
2.000	-26614.03702	-26614.03702	-26614.71875	-26614.71148	-26614.70621
2.050	-26614.03459	-26614.03424	-26614.71958	-26614.71137	-26614.70614
2,100			-26614.71538	-26614.70644	-26614.70131
2.150	-26614 01525	-26614 01480	-26614 70534	-26614 60752	-26614 60256
2.100	26614.01025	20014.01480	20014.70554	-20014.09700	20014.03230
2.200	-20014.00023	-20013.99973	-20014.70000	-20014.08055	-20014.08038
2.250				-20014.07040	-20014.00001
			a_2		
1.700	-26613.94188	$-26613.9417\overline{5}$	-26614.58280	-26614.57791	-26614.57731
1.750	-26613.97658	-26613.97658	-26614.62467	-26614.61954	-26614.61798
1.800	-26614.00035	-26614.00018	-26614.65537	-26614.65002	-26614.64759
1.850	-2661401474	-2661401456	-26614.67829	-26614 67119	-26614 66800
1 900	-26614 02156	-26614 02135	-26614 69028	-26614 68453	-26614 68069
1.050	26614 02166	26614 02133	26614 60791	26614 60197	26614 69601
1.900	-20014.02100	-20014.02142	-20014.09721	-20014.09127	-20014.00091
2.000	-20014.01714	-26614.01686	-20014.09805	-20014.09248	-26614.68772
2.050	-26614.00845	-26614.00814	-26614.69940	-26614.68938	-26614.68438
2.100			-26614.69943	-26614.68573	-26614.68092
2.150	-26613.97251	-26613.97211	-26614.69484	-26614.67863	-26614.67405
2.200	-26613.95817	-26613.95769	-26614.67439	-26614.66802	-26614.66374
2,250				-26614.65455	-26614.65062
2.200				=001 1.00 100	20011.00002

Table S21: Total electronic energies $[E_h]$ of ThO₂ for different states and various CC methods. All EOM-CC methods are calculated with imposed C_{2v} symmetry.

S11 Total CPU timing

Table S22: Total timings (in seconds [s]) for different EOM-CC methods. Please note that all the excited state calculations were performed on differenct computing nodes and using different software packages and optimization parameters (like, C_1 or D_{2h} point group symmetry). Thus, these timings are very approximate and should be considered with caution^{*}.

		PIERNIK		NWCHEM [*] (version 6.8)	Molpro2012
Molecule	EOM-pCCD+S	EOM-pCCD-CCS	EOM-pCCD-LCCSD	$\begin{array}{c} \text{EOM-CCSD} \\ + \text{CR-EOM-CCSD}(\text{T}) \end{array}$	FCIDUMP
ThO	173	262	9'459	24'501	188
ThS	174	254	7'669	30'936	342
ThO_2	233	221	36'836	8'349	74
NUN	91	166	4'510	6'576	35
UO_{2}^{2+}	85	146	6'642	10'121	35
PaO_2^+	89	192	6'985	6'633	35
CUO	66	140	3'426	6'785	45
NUO^+	66	137	5'252	10'029	47

*Specifically, the EOM-CCSD and CR-EOM-CCSD(T) calculations in NWCHEM benefit from the D_{2h} and C_{2v} point group symmetries, while all the calculations in PIERNIK do either not fully exploit the symmetry or have been done relaxing to C_1 point group symmetry. The NWCHEM code is written in modern CC+/Fortran languages and its fully optimized. The PIERNIK code is written mainly in Python, where only some few bottleneck operations have been exported to C++, and is not fully optimized, yet. Note that the Davidson diagonalization in PIERNIK is fully implemented in Python. Finally, the results for NWCHEM correspond to 5-7 excited states in one irreducible representation, while in PIERNIK up to 15-20 lowest-lying excited states have been targeted in total.

S12 Experimental reference data

TableS23: Experimental spectroscopic parameters of the ground and some low-lying singlet excited states of ThO, ^{10,11}
ThS, ¹² NUN, ¹³ and ThO ₂ . ¹⁴ $r_{\rm e}$ is the equilibrium bond length, $\omega_{\rm e}$ the harmonic vibrational frequency, and $T_{\rm v}$ the
excitation energy, respectively.

ThO				ThS			
State	$r_{\rm e}$ [Å]	$\omega_{\rm e} [{\rm cm}^{-1}]$	$T_{\rm v} [{\rm eV}]$	State	$r_{\rm e}$ [Å]	$\omega_{\rm e} [{\rm cm}^{-1}]$	$T_{\rm v} \; [{\rm eV}]$
$X^1\Sigma$	1.840	896		$X^1\Sigma$		475	
$1^{1}\Delta$	1.881	816	2.23				
$1^{1}\Sigma$	1.867	846	1.31				
$1^{1}\Pi$	1.864	843	1.38				
NUN				ThO_2			
State	$r_{\rm e}$ [Å]	$\omega_{\rm e} [{\rm cm}^{-1}]$	$T_{\rm v} [{\rm eV}]$	State	$r_{\rm e}$ [Å]	$\omega_{\rm e} [{\rm cm}^{-1}]$	$T_{\rm v} \; [{\rm eV}]$
$X^1\Sigma_g$		1008		$X^1 1 A_1$		808	
				B_2		757	

References

- B. O. Roos, R. Lindh, P.-A. k. Malmqvist, V. Veryazov and P.-O. Widmark, Chem. Phys. Lett., 2005, 409, 295–299.
- [2] F. Aquilante, J. Autschbach, R.K. Carlson, L.F. Chibotaru, M.G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L.M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C.E. Hoyer et al., J. Comput. Chem., 2016, 37, 506–541.
- [3] N. Douglas and N. M. Kroll, Ann. Phys., 1974, 82, 89–155.
- [4] B. A. Hess, *Phys. Rev. A*, 1986, **33**, 3742–3748.
- [5] M. Reiher and A. Wolf, Relativistic Quantum Chemistry. The Fundamental Theory of Molecular Science, Wiley, 2009.
- [6] K. A. Peterson, J. Chem. Phys., 2015, 142, 074105.
- [7] M. Reiher and A. Wolf, J. Chem. Phys., 2004, 121, 2037–2047.
- [8] M. Reiher and A. Wolf, J. Chem. Phys., 2004, 121, 10945–10956.
- [9] T. Dunning Jr., J. Chem. Phys., 1989, 90, 1007–1023.
- [10] V. Goncharov and M. C. Heaven, J. Chem. Phys., 2006, 124, 064312.
- T. Wentink and R. J. Spindler, Journal of Quantitative Spectroscopy and Radiative Transfer, 1972, 12, 1569 1590.
- [12] J. H. Bartlett, I. O. Antonov and M. C. Heaven, J. Phys. Chem. A, 2013, 117, 12042–12048.
- [13] R. D. Hunt, J. T. Yustein and L. Andrews, J. Chem. Phys., 1993, 98, 6070.
- [14] M. Idiri, T. Le Bihan, S. Heathman and J. Rebizant, Phys. Rev. B, 2004, 70, 014113.