Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

 $\begin{array}{c} \textbf{Electronic Supplementary Information (ESI)} \\ \textbf{for} \end{array}$

Controlled intramolecular H-transfer in Malonaldehyde in the electronic ground state mediated through the conical intersection of $^1n\pi^*$ and $^1\pi\pi^*$ excited electronic states

K. R. Nandipati^a, Arun Kumar Kanakati^a, H. Singh^b and S. Mahapatra^{a*}

^{a)} School of Chemistry, University of Hyderabad, Hyderabad 500 046, India and

^{b)} Center for Computational Natural Sciences and Bioinformatics,

IIIT Hyderabad, Hyderabad, 500 032, India

^{*} Corresponding author, E-mail: susanta.mahapatra@uohyd.ac.in

FIG. S1. The optimized geometry of hydrogen-transfer S_2/S_1 conical intersection (in two different orientations shown in a and b), computed with SA-CAS(4,4) SCF/6-31G(d) method.

FIG. S2. The active space orbitals chosen at the CI geometry from CAS(4,4) SCF calculations. Plots in panels a, b, c and d, respectively, denote n, π, π_1^*, π_2^* orbitals.

FIG. S3. The configuration interaction vector (CIV) coefficients of S_1 and S_2 electronic states along ξ . The blue and red colour asterisks are for the $n\pi^*$ (S_1) and $\pi\pi^*$ (S_2) states, respectively.

TABLE S1. Coefficients of configuration interaction wavefunctions at the conical intersection geometry calculated at the CAS(4,4) SCF level of theory. The first column represents the active space orbitals of $n\pi\pi_1^*\pi_2^*$. These orbitals are shown in Fig. S2. The second, third and fourth columns represent the coefficients of configuration interaction wavefunctions associated with the S_0 , S_1 and S_2 states Corresponding to the transition between the active space orbitals. The numbers in bold font reveal strong mixing between the S_1 - S_2 states

$n\pi\pi_1^*\pi_2^*$	S_0	S_1	S_2
2200	0.9842357	-0.0032572	-0.0006302
2ba0	-0.0022846	-0.5178297	-0.4236309
2ab0	0.0022846	0.5178297	0.4236309
b2a0	0.0006726	-0.4225931	0.5165817
a2b0	-0.0006726	0.4225931	-0.5165817
20ab	-0.0001213	0.1767158	0.1445192
20ba	0.0001213	-0.1767158	-0.1445192
aabb	0.0032851	0.0997484	-0.1219347
bbaa	0.0032851	0.0997484	-0.1219347
2002	-0.1157341	-0.0016340	0.0040155
abab	-0.0036956	-0.0871044	0.1064116
baba	-0.0036956	-0.0871044	0.1064116
2020	-0.1026442	0.0072943	-0.0091700
b0a2	0.0003179	0.0640672	-0.0782505
a0b2	-0.0003179	-0.0640672	0.0782505
2b0a	0.0600289	0.0052125	-0.0062727
2a0b	-0.0600289	-0.0052125	0.0062727