Supporting Information

S. 1 Symmetry analysis

The transition from the ground state ($A_{1}{ }^{\prime}$) to the $\mathrm{n} \rightarrow \pi^{*}$ state ($A_{1}{ }^{\prime \prime}$) (Figure S.1) in the gas phase nitrate anion $\left(D_{3 h}\right)$ is highly forbidden by symmetry which can be rationalized by an analysis of the symmetry of the transition.

Figure S.1: Energy diagram for the nitrate anion electronic ground-state including orbital symmetries and labels

Table S. 1 Character table for the $\mathrm{D}_{3 h}$ point group

$D_{3 h}$	E	σ_{h}	$2 \mathrm{C}_{3}$	$2 \mathrm{~S}_{3}$	$3 \mathrm{C}_{2}{ }^{\prime}$	$3 \sigma_{v}$	$\mathrm{~h}=12$
$A_{1}{ }^{\prime}$	1	1	1	1	1	1	$z^{2}, x^{2}+y^{2}$
$A_{2}{ }^{\prime}$	1	1	1	1	-1	-1	R_{z}
$A_{1}{ }^{\prime \prime}$	1	-1	1	-1	1	-1	
$A_{2}{ }^{\prime \prime}$	1	-1	1	-1	-1	1	z
E^{\prime}	2	2	-1	-1	0	0	$(x, y),\left(x y, x^{2}-y^{2}\right)$
$E^{\prime \prime}$	2	-2	-1	1	0	0	$(x z, y z),\left(R_{x}, R_{y}\right)$

The selection rule for electronic transitions states that the integrand in Equation 1 or its equivalents for x, y or z must span the totally symmetric symmetry species (A_{1}^{\prime} in the $D_{3 h}$ point group) for the transition dipole moment, $\mu_{z, f i}$, if it is not to vanish.

$$
\begin{equation*}
\mu_{z, f i}=-e \cdot \int \psi_{i}^{*} \cdot z \cdot \psi_{j} d \tau \tag{1}
\end{equation*}
$$

Within the $D_{3 h}$ point group (Table S.1) x and y have the E^{\prime} symmetry, while z has $A_{2}^{\prime \prime}$. Considering the $\pi \rightarrow \pi^{*}$ transition corresponding to a transition from A_{1}^{\prime} to E^{\prime} symmetry, the symmetries of the transition dipole moment components are:

$$
\begin{gathered}
\mu_{x, y}^{s}=A_{1}^{\prime} \times E^{\prime} \times E^{\prime}=A_{1}^{\prime}+A_{2}^{\prime}+E^{\prime} \\
\mu_{z}^{s}=A_{1}^{\prime} \times E^{\prime} \times A_{2}^{\prime \prime}=E^{\prime \prime}
\end{gathered}
$$

Here the superscript, s, indicates that it is the symmetry of the component. For x and y the product contains the A_{1}^{\prime} symmetry, thus the $\pi \rightarrow \pi^{*}$ transition is allowed for x or y polarized light.

Similarly for the $\mathrm{n} \rightarrow \pi^{*}$ transition corresponding to a transition from $A_{1}{ }^{\prime}$ to $A_{1}{ }^{\prime \prime}$:

$$
\begin{aligned}
& \mu_{x, y}^{s}=A_{1}^{\prime} \times A_{1}^{\prime \prime} \times E^{\prime}=E^{\prime \prime} \\
& \mu_{z}^{s}=A_{1}^{\prime} \times A_{1}^{\prime \prime} \times A_{2}^{\prime \prime}=A_{2}^{\prime}
\end{aligned}
$$

As neither of the above contain A_{1}^{\prime}, no orientation of light immediately allows the $\mathrm{n} \rightarrow \pi^{*}$ transition. Vibronic coupling to one or more vibrational modes of appropriate symmetry can result in symmetrically forbidden electronic transitions becoming allowed. It was just seen that the transition dipole moment for the $\mathrm{n} \rightarrow \pi^{*}$ transition in the x or y and the z direction spans $E^{\prime \prime}$ and A_{2}^{\prime} respectively. Hence vibronic coupling to a vibration of symmetry $E^{\prime \prime}$ or A_{2}^{\prime} is required:

$$
\begin{gathered}
E^{\prime \prime} \times E^{\prime \prime}=A_{1}^{\prime}+A_{2}^{\prime}+E^{\prime} \\
A_{2}^{\prime} \times A_{2}^{\prime}=A_{1}^{\prime}
\end{gathered}
$$

The nitrate anion has six vibrational modes of which two pairs are degenerate, giving four vibrational frequencies of symmetries $a_{1}^{\prime}, a_{2}^{\prime \prime}, e^{\prime}$ and e^{\prime}, respectively. The symmetries of vibrational modes are given as lower-case letters to distinguish them from electronic states. None of the vibrational modes have the appropriate symmetry to allow the $n \rightarrow \pi^{*}$ transition on their own. From the three vibrational symmetries of the nitrate normal modes four possible combinations can be made:

$$
\begin{array}{rr}
e^{\prime} \times a_{2}^{\prime \prime}=e^{\prime \prime} & \text { allowed for } \mathbf{x} \text { and } \mathbf{y} \\
e^{\prime} \times a_{1}^{\prime}=e^{\prime} & \text { not allowed } \\
e^{\prime} \times e^{\prime}=a_{1}^{\prime}+a_{2}^{\prime}+e^{\prime} & \text { allowed for } \mathbf{z} \\
a_{1}^{\prime} \times a_{2}^{\prime \prime}=a_{2}^{\prime \prime} & \text { not allowed }
\end{array}
$$

As vibronic coupling to $e^{\prime \prime}$ or a_{2}^{\prime} is required to make the transition dipole moment nonvanishing, vibronic coupling to vibrational modes with symmetries e^{\prime} and $a_{2}^{\prime \prime}$ or e^{\prime} and e^{\prime} can make the transition allowed in the x or y and z direction respectively.

Table 0.2 Character table for the $\mathrm{C}_{2 v}$ point group

$C_{2 v}$	E	C_{2}	σ_{v}	$\sigma_{v}{ }^{\prime}$	$\mathrm{h}=4$
A_{1}	1	1	1	1	$\mathrm{z}, z^{2}, x^{2}+y^{2}$
A_{2}	1	1	-1	-1	$x y, R_{z}$
B_{1}	1	-1	1	-1	$x, x z, R_{y}$
B_{2}	1	-1	-1	1	$y, y z, R_{x}$

In solution the symmetry of the nitrate anion is reduced to $C_{2 v}$. Within the $C_{2 v}$ framework (Table 0.2) the $\mathrm{n} \rightarrow \pi^{*}$ state has the A_{2} symmetry and the ground-state has A_{1} symmetry. The transition dipole moment in the x, y and z directions including no vibronic coupling have B_{2}, B_{1} and A_{2} symmetries:

$$
\begin{gathered}
\mu_{x}^{s}=A_{1} \times A_{2} \times B_{1}=B_{2} \\
\mu_{y}^{s}=A_{1} \times A_{2} \times B_{2}=B_{1} \\
\mu_{z}^{s}=A_{1} \times A_{2} \times A_{1}=A_{2}
\end{gathered}
$$

Again none of the components contain A_{1}, making all three components forbidden. Considering first vibronic coupling to one vibrational mode it is clear that vibrations of symmetry b_{2}, b_{1} or a_{2} can make the transition allowed in the x, y and z direction. The $C_{2 v}$ nitrate anion has six vibrational modes of symmetries $a_{1}, a_{1}, a_{1}, b_{1}, b_{2}$ and b_{2}. Thus, three vibrational modes have the correct symmetry in them self to allow the transition. Furthermore 11 combinations give the right symmetry.

To a first approximation the oscillator strength is proportional to the norm square of the transition dipole moment. However, given the low intensity of $n \rightarrow \pi^{*}$ state, higher order terms such as the magnetic transition dipole moment or the electric quadrupole moment could potentially contribute to the observed intensity. Within the $D_{3 h}$ point group the quadratic terms z^{2} and $x^{2}+y^{2}$ have A_{1}^{\prime} symmetry, $x y$ and $x^{2}-y^{2}$ have E^{\prime} symmetry and $x z$ and $y z$ have $E^{\prime \prime}$ symmetry. As the products of all of these with the involved states do not contain A_{1}^{\prime} the quadrupole moment for the $\mathrm{n} \rightarrow \pi^{*}\left(A_{1}^{\prime} \rightarrow A_{1}^{\prime \prime}\right)$ in the gas phase is zero:

$$
\begin{array}{r}
A_{1}^{\prime} \times A_{1}^{\prime \prime} \times A_{1}^{\prime}=A_{1}^{\prime \prime} \\
A_{1}^{\prime} \times A_{1}^{\prime \prime} \times E^{\prime}=E^{\prime \prime} \\
A_{1}^{\prime} \times A_{1}^{\prime \prime} \times E^{\prime \prime}=E^{\prime}
\end{array}
$$

Similarly the magnetic transition dipole moment is zero as the linear rotations R_{x}, R_{y} and R_{z} spans $E^{\prime \prime}, E^{\prime \prime}$ and A_{2}^{\prime} respectively and:

$$
A_{1}^{\prime} \times A_{1}^{\prime \prime} \times A_{2}^{\prime}=A_{2}^{\prime \prime}
$$

Thus, the electric transition quadrupole moment and the magnetic transition dipole moment are forbidden in the zeroth order approximation. Vibronic coupling to vibrational modes of symmetries $A_{2}^{\prime \prime}$ or E^{\prime} could potentially result in contributions from these terms, however these are assumed to be negligible.

In the $C_{2 v}$ geometry the electric transition quadrupole moment and the magnetic transition dipole moment of the $\mathrm{n} \rightarrow \pi^{*}$ transition $\left(A_{1} \rightarrow A_{2}\right)$ are allowed as $x z$ ad R_{z} both have the A_{2} symmetry. However it was found that the small structural change going from $D_{3 h}$ to $C_{2 v}$ was insufficient to make the first order vibronic coupling terms non-zero, although symmetry considerations show that these could potentially be non-zero. Hence it is assumed that also the electric transition quadrupole moment and the magnetic transition dipole moment terms can be neglected.

S. 2 Benchmark

Three parameters that are important for the calculation of oscillator strengths are chosen as benchmark parameters, namely the N-O bond length, the vibrational frequencies and the excitation energy. Five DFT methods and three basis sets (aug-cc-pVDZ (DZ), aug-cc-pVTZ (TZ) and aug-cc-pVQZ (QZ)) have been tested and compared with CCSD/aug-cc-pVTZ values.

The ground state N-O bond length, $r_{\mathrm{N}-\mathrm{O}}$ in the left panel of Figure S.2, for the free nitrate anion optimized at the CCSD/aug-cc-pVTZ level of theory is $1.249870 \AA$. For all five methods the bond length decreased with increasing zeta value, resulting in an overestimated bond length for DZ for the long-range corrected functionals, CAM-B3LYP and ω B97XD,
whereas for TZ these two methods predicts a bond length that is 99% of the CCSD value. The meta gga functionals B3LYP and BHandH both completely fail to reproduce the correct bond lengths with all three basis sets.

The central panel of Figure S. 2 shows the root mean square deviation for the vibrational frequencies. The long-range corrected performs the best. The same trend is observed for the excitation wavelength (Figure S. 2 right panel), namely, CAM-B3LYP and ω B97XD perform the best with ω B97XD giving sligtly better excitation energies while especially BHandH severely underestimates the excitation energy.

Figure S.2: N-O bond length (left panel), vibrational frequency (central panel) and excitation energy (right panel)

S. 3 Coordinates for Optimized Structures

Table S. 3 Coordinates in \AA for gas phase NO_{3}^{-}calculated at the ω B97XD/aug-cc-pVTZ level of theory

Atomic number	X	Y	Z
7	0.000000	0.000000	0.000000
8	0.000000	1.248745	-0.000000
8	1.081445	-0.624372	-0.000000
8	-1.081445	-0.624372	-0.000000

Table S. 4 Coordinates in \AA for aqueous phase NO_{3}^{-}calculated at the ω B97XD/aug-cc-pVTZ level of theory

Atomic number	X	Y	Z
7	-0.000000	0.000000	-0.000060
8	0.000000	-0.000000	1.246685
8	0.000000	1.079798	-0.623317
8	-0.000000	-1.079798	-0.623317

