Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

# **Supporting Information for**

# Exploring the structure bonding and stability of noble gas compound promoted by superhalogens. A case study on HNgMX<sub>3</sub> (Ng=Ar-Rn, M=Be-Ca, X=F-Br) via combined high-level ab initio and DFT calculations

Lin-Yu Wu,<sup>‡a</sup> Jin-Feng Li,<sup>‡ b</sup> Ru-Fang Zhao,<sup>c</sup> Lan Luo,<sup>c</sup> Yong-Cheng Wang,<sup>\*a</sup> and Bing Yin<sup>\*c</sup>

#### CONTENTS

| 1. Superhalogen MX <sub>3</sub>                                                                                                        | 1       |
|----------------------------------------------------------------------------------------------------------------------------------------|---------|
| Fig. S1 The optimized structures and selected bond lengths (in Å) of the MX <sub>3</sub> <sup>-</sup> and MX <sub>3</sub> (M=Be, Mg, G | Ca;     |
| X=F, Cl, Br) level (The bond lengths at ωB97XD /Def2-TZVP level are shown in the parentheses)                                          | 1       |
| Table S1. The comparison of VDE values of superhalogen MX <sub>3</sub> (M=Be, Mg, Ca; X=F, Cl, Br) at varie                            | ous     |
| theoretical levels (eV)                                                                                                                | 1       |
| Fig. S2 Comparison of VDE values (eV) at different theoretical levels at MP2/def2-TZVP, @B97XD/de                                      | f2-     |
| TZVP and CCSD(T)/def2-TZVP//MP2/def2-TZVP level of theory                                                                              | 1       |
| Fig. S3 The optimized structures and selected bond lengths (in Å) of the HNgY at MP2/def2-TZVP le                                      | vel     |
| (The bond lengths at $\omega B97XD$ /def2-TZVP level are shown in the parentheses).                                                    | 2       |
| 2. The dissociation process of HMX <sub>3</sub>                                                                                        | 3       |
| Fig. S4 The optimized structures and selected bond lengths (in Å) of the HMX <sub>3</sub> (M=Be, Mg, Ca; X=F, Cl,                      | Br)     |
| at MP2/def2-TZVP level (The bond lengths at $\omega$ B97XD /def2-TZVP level are shown in the parentheses)                              | 3       |
| Table S2. The ZPE-uncorrected dissociation energy ( $\Delta E$ , kcal/mol), the ZPE corrected dissociation energy                      | gy      |
| ( $\Delta E_0$ , kcal/mol) and dissociation free energy change ( $\Delta G$ , kcal/mol) at 298.15 K for dissociation process           | 4       |
| Fig. S5 Comparison of dissociation energy of $HMX_3 \rightarrow HX + MX_2$                                                             | 5       |
| <b>Fig. S6</b> Comparison of dissociation energy of $HMX_3 \rightarrow H^+ + MX_3^-$                                                   | 5       |
| Fig. S7 Comparison of dissociation energy of HMX <sub>3</sub> →H+MX <sub>3</sub>                                                       | 5       |
| 3.Geometrical parameters of stable structures                                                                                          | 6       |
| Table S3. Comparison of bond length (Å) in HNgMX3 at various theoretical levels                                                        | 6       |
| Fig. S8 Comparison of M-X bond length in HNgY with MX <sub>3</sub> <sup>-</sup> and MX <sub>3</sub> at various theoretical levels      | 6       |
| Fig. S9 Comparison of H-Ng-X2 bond angel in HNgY with MX <sub>3</sub> <sup>-</sup> and MX <sub>3</sub> at various theoretical levels   | 7       |
| Fig. S10 The changed trend of HNg, HX2 and MX3 distances along Ar-Kr-Xe-Rn, F-Cl-Br as well                                            | as      |
| Be-Mg-Ca                                                                                                                               | 7       |
| Fig. S11 The optimized structures and selected bond lengths (in Å) of the HNg <sup>+</sup> (Ng=Ar-Rn) at MP2/de                        | f2-     |
| TZVP level (The bond lengths at @B97XD /def2-TZVP level are shown in the parentheses)                                                  | 8       |
| Table S4. Comparison of H-Ng bond length (in Å) in HNgY with HNg <sup>+</sup> at various theoretical levels                            | 8       |
| 4.Charge distribution analysis of HngY                                                                                                 | 9       |
| <b>Table S5.</b> Calculated natural charges of each atom ( e ) of HNgMX <sub>3</sub> at CCSD/def2-TZVP//MP2/def2-TZV                   | VP<br>9 |
| <b>Fig. S12</b> The natural charges trend of Ng, H atoms and H+Ng in HNgY along Ar-Kr-Xe-Rn, Be-Mg-Ca well as F-Cl-Br                  | as      |
| Table S6. Wiberg bond indices (WBI) values atom-atom overlan-weighted NAO bond order and MO bo                                         | ond     |
| order of HNgY bonds at CCSD/def2-TZVP // MP2/def2-TZVP level                                                                           | .11     |
| Fig. S13 Comparison of Wiberg bond indices (WBI) values for M-X3 Ng-X3 and Ng-H along Ar-Kr-Xe-F                                       | <br>₹n  |
| F-Cl-Br as well as Be-Mg-Ca                                                                                                            | .14     |
| Table S7 MO bond order (Occupancy) Bond orbital                                                                                        | .15     |
|                                                                                                                                        | -       |

| Table S8 Analysis of charge density descriptors (au) at the bond critical point (BCPs) of th                                                                                                         | e nart of       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| HNgMY molecules by AIM at CCSD/def2 T7VD // MD2/def2 T7VD level                                                                                                                                      | c part of       |
| Fig. S14 Variation of relative energy (AE kcal/mol) and hardness (n. eV) of HNgBeF3 and HXeM                                                                                                         | 10<br>aCl3 with |
| reaction coordinates corresponding to trace the the IRC path. The most stable structure has been tal                                                                                                 | zen as the      |
| reference for calculating the rotational barrier                                                                                                                                                     |                 |
| Table S0 The LUMO and HOMO anergy of HNgMV, as well as the energy gap and shemical be                                                                                                                |                 |
| <b>Fable S9</b> The LONO and HONO energy of HNgMA <sub>3</sub> as well as the energy gap and chemical has $CCSD/def$ TZVP // MP2/def) TZVP level                                                     | 17              |
| <b>Fig. S15</b> Comparison of chamical hardness (n) values for HNgMV2 along VDE Ar Kr Va Dn E                                                                                                        | C1  Dr ac       |
| Fig. S15 Comparison of chemical hardness (ii) values for HitgmAS along VDE, AI-KI-Ae-Ki, F                                                                                                           | -CI-DI as       |
| 5 Thormodynamic and kinetic stability of HNgV                                                                                                                                                        | 10              |
| <b>Table S10</b> The fragment energies of HNgMY. (Ng= $\Lambda$ r Rp: M=Re Mg Ca: Y=F Cl Rr)                                                                                                         | along siv       |
| nathways (kool/mol)                                                                                                                                                                                  |                 |
| pathways (Kcal/mol)                                                                                                                                                                                  |                 |
| Fig. S10 The optimized geometries of transition state in HNgMA <sub>3</sub> (Ng–AI-Ki) are performed<br>MD2/def2 TZVD level (the corresponding value from $(D07XD/def2)$ TZVD level in perpethance)  |                 |
| Table S11. The energy harriage of UN-SMV, along channel 5 at aprices levels (in heat/mal)                                                                                                            |                 |
| <b>Fig. S17.</b> The energy barriers of HingMiX <sub>3</sub> along channel 5 at various levels (in kcal/mol)                                                                                         |                 |
| Fig. S17 The comparison of the change in X2-Ng and X3-Ng bond length from stable configu                                                                                                             | iration to      |
| transition state (A).                                                                                                                                                                                |                 |
| Table S12. Comparison of bond length (A) in HNgY with stable and transition state at various th                                                                                                      | neoretical      |
|                                                                                                                                                                                                      |                 |
| Fig. S18 Comparison of the difference of H-Ng bond length and H-Ng-X2 Angle from stable cont                                                                                                         | figuration      |
| to transition state along Ar-Kr-Xe-Rn, F-CI-Br as well as Be-Mg-Ca                                                                                                                                   |                 |
| Table S13. The natural charges of the transition state at CCSD/def2-TZVP //MP2/def2-TZVP level         Eine S10. The natural charges of the transition state at CCSD/def2-TZVP //MP2/def2-TZVP level | ( e )32         |
| Fig. S19 The natural charges trend of X2, X3 atoms in transition state along Ar-Kr-Xe-Rn, Be-N                                                                                                       | Ag-Ca, as       |
| well as the F-Cl-Br                                                                                                                                                                                  |                 |
| Fig. S20 The natural charges trend of Ng, H atoms and Ng+H in transition state along Ar-Kr-Xe-Rn                                                                                                     | i, Be-Mg-       |
| Ca, as well as the F-CI-Br                                                                                                                                                                           |                 |
| <b>Fig. S21</b> The relative energy barriers obtained from CCSD(T) calculation and chemical hardness                                                                                                 |                 |
| <b>Fig. S22</b> The relative energy barriers obtained from CCSD(T) calculation and chemical hardness                                                                                                 | 34              |
| 6.Geometry and stability of HNgX                                                                                                                                                                     | 35              |
| Fig. S23 The optimized geometries of transition state in HNgMX <sub>3</sub> (Ng=Ar-Rn) are performed                                                                                                 | ed at the       |
| MP2/def2-TZVP level (the corresponding value from $\omega$ B97XD/def2-TZVP level in parentheses)                                                                                                     | 35              |
| Fig. S24 Comparison of the change of H-Ng and X-Ng bond length from stable configuration to                                                                                                          | transition      |
| state along F-Cl-Br and Ar-Kr-Xe-Rn                                                                                                                                                                  | 35              |
| Table S14. The fragment energies of HNgX (Ng=Ar-Rn; X=F, Cl, Br) (kcal/mol)                                                                                                                          |                 |
| Fig. S25 Comparison of dissociation energy of HNgX→HX+Ng along F-Cl-Br and Ar-Kr-Xe-Rn                                                                                                               | 36              |
| Table S15. The activation energies of HNgX (Ng=Ar-Rn; X=F, Cl, Br) (kcal/mol)                                                                                                                        | 37              |
| Fig. S26 Comparison of energy barrier of HNgX→HX+Ng along F-Cl-Br and Ar-Kr-Xe-Rn                                                                                                                    | 37              |
| Cartesian coordinates                                                                                                                                                                                |                 |

#### 1. Superhalogen MX<sub>3</sub>



**Fig. S1** The optimized structures and selected bond lengths (in Å) of the  $MX_3^-$  and  $MX_3$  (M=Be, Mg, Ca; X=F, Cl, Br) level (The bond lengths at  $\omega$ B97XD /Def2-TZVP level are shown in the parentheses)

| × ,               |      |           |            |
|-------------------|------|-----------|------------|
| Licond            | MP2  | ωB97XD    | CCSD(T)-SP |
| Liganu            |      | def2-TZVP |            |
| BeF <sub>3</sub>  | 7.51 | 6.76      | 7.41       |
| BeCl <sub>3</sub> | 6.03 | 5.76      | 5.94       |
| BeBr <sub>3</sub> | 5.61 | 5.36      | 5.52       |
| MgF <sub>3</sub>  | 7.77 | 6.82      | 7.63       |
| MgCl <sub>3</sub> | 6.52 | 6.18      | 6.43       |
| MgBr <sub>3</sub> | 6.09 | 5.77      | 6.00       |
| CaF <sub>3</sub>  | 7.43 | 6.73      | 7.27       |
| CaCl <sub>3</sub> | 6.58 | 6.23      | 6.51       |
| CaBr <sub>3</sub> | 6.21 | 5.86      | 6.14       |

**Table S1.** The comparison of VDE values of superhalogen MX<sub>3</sub> (M=Be, Mg, Ca; X=F, Cl, Br) at various theoretical levels (eV)



**Fig. S2** Comparison of VDE values (eV) at different theoretical levels at MP2/def2-TZVP, ωB97XD/def2-TZVP and CCSD(T)/def2-TZVP//MP2/def2-TZVP level of theory



Fig. S3 The optimized structures and selected bond lengths (in Å) of the HNgY at MP2/def2-TZVP level (The bond lengths at  $\omega$ B97XD/def2-TZVP level are shown in the parentheses).

#### 2. The dissociation process of HMX<sub>3</sub>



**Fig. S4** The optimized structures and selected bond lengths (in Å) of the HMX<sub>3</sub> (M=Be, Mg, Ca; X=F, Cl, Br) at MP2/def2-TZVP level (The bond lengths at  $\omega$ B97XD /def2-TZVP level are shown in the parentheses)

|                    | (a) The dissociation process: $HMX_3 \rightarrow HX + MX_2$ |        |              |               |                       |                   |        |         |              |  |
|--------------------|-------------------------------------------------------------|--------|--------------|---------------|-----------------------|-------------------|--------|---------|--------------|--|
| Malaaria           | Dissociation                                                |        | ωB97Σ        | KD            |                       | MP2               |        | CCSD(T  | )            |  |
| Molecule           | processes                                                   | ΔΕ     | $\Delta E_0$ | ΔG            | ΔΕ                    | $\Delta E_0$      | ΔG     | ΔΕ      | $\Delta E_0$ |  |
| HBeF <sub>3</sub>  | BeF <sub>2</sub> +HF                                        | 10.    | 01 8.2       | 25 1.81       | 9.68                  | 7.84              | 1.37   | 10.01   | 8.18         |  |
| HMgF <sub>3</sub>  | MgF <sub>2</sub> +HF                                        | 18.    | 49 16.8      | 10.24         | 19.04                 | 17.50             | 10.83  | 18.90   | 17.36        |  |
| HCaF <sub>3</sub>  | CaF <sub>2</sub> +HF                                        | 24.    | 76 24.0      | 19.26         | 26.90                 | 25.89             | 19.26  | 26.66   | 25.65        |  |
| HBeCl <sub>3</sub> | BeCl <sub>2</sub> +HCl                                      | 4.     | 05 2.8       | -4.05         | 4.98                  | 3.70              | -3.30  | 4.12    | 2.84         |  |
| HMgCl <sub>3</sub> | MgCl <sub>2</sub> +HCl                                      | 9.     | 90 8.6       | 6 1.78        | 10.04                 | 8.89              | 2.17   | 9.54    | 8.40         |  |
| HCaCl <sub>3</sub> | CaCl <sub>2</sub> +HCl                                      | 12.    | 63 11.7      | 6.44          | 12.38                 | 11.45             | 6.00   | 11.04   | 10.11        |  |
| HBeBr <sub>3</sub> | BeBr <sub>2</sub> +HBr                                      | 3.     | 43 2.1       | 5 -1.62       | 5.22                  | 4.10              | -3.00  | 4.03    | 2.91         |  |
| HMgBr <sub>3</sub> | MgBr <sub>2</sub> +HBr                                      | 9.     | 11 8.1       | 5 1.42        | 9.71                  | 8.72              | 1.96   | 9.02    | 8.02         |  |
| HCaBr <sub>3</sub> | CaBr <sub>2</sub> +HBr                                      | 11.    | 35 10.6      | 52 3.41       | 11.74                 | 11.20             | 3.96   | 10.03   | 9.49         |  |
|                    |                                                             | (b) [  | The dissoci  | ation process | : HMX <sub>3</sub> →H | ++MX3-            |        |         |              |  |
|                    | Dissociation                                                |        | ωB97XD       |               | ]                     | MP2               |        | CCSD(T) |              |  |
| Molecule           | processes                                                   | ΔΕ     | $\Delta E_0$ | ΔG            | ΔΕ                    | $\Delta E_0$      | ΔG     | ΔΕ      | $\Delta E_0$ |  |
| HBeF <sub>3</sub>  | BeF3 <sup>-</sup> +H <sup>+</sup>                           | 301.27 | 294.85       | 290.26        | 298.25                | 291.85            | 287.22 | 300.07  | 293.66       |  |
| HMgF <sub>3</sub>  | MgF3 <sup>-</sup> +H <sup>+</sup>                           | 306.83 | 299.41       | 294.53        | 303.07                | 296.60            | 291.71 | 305.07  | 298.60       |  |
| HCaF <sub>3</sub>  | CaF3 <sup>-</sup> +H <sup>+</sup>                           | 318.32 | 312.70       | 308.39        | 317.18                | 311.03            | 306.19 | 319.45  | 313.30       |  |
| HBeCl <sub>3</sub> | BeCl <sub>3</sub> <sup>-</sup> +H <sup>+</sup>              | 284.70 | 279.85       | 275.45        | 280.41                | 275.53            | 271.05 | 283.04  | 278.16       |  |
| HMgCl <sub>3</sub> | MgCl <sub>3</sub> <sup>-</sup> +H <sup>+</sup>              | 280.72 | 275.78       | 271.29        | 277.07                | 272.16            | 267.82 | 279.42  | 274.50       |  |
| HCaCl <sub>3</sub> | CaCl3 <sup>-</sup> +H <sup>+</sup>                          | 282.77 | 278.12       | 273.55        | 280.26                | 275.57            | 270.91 | 281.71  | 277.03       |  |
| HBeBr <sub>3</sub> | BeBr <sub>3</sub> -+H+                                      | 279.28 | 274.92       | 270.67        | 274.28                | 269.80            | 265.34 | 277.07  | 272.59       |  |
| HMgBr <sub>3</sub> | MgBr <sub>3</sub> -+H+                                      | 275.72 | 271.30       | 265.98        | 271.15                | 266.67            | 261.33 | 273.65  | 269.17       |  |
| HCaBr <sub>3</sub> | $CaBr_3^-+H^+$                                              | 275.65 | 271.46       | 266.99        | 272.57                | 268.52            | 263.88 | 273.77  | 269.72       |  |
|                    |                                                             | (c)    | The dissoc   | iation proces | s: HMX₃→I             | I+MX <sub>3</sub> |        |         |              |  |
| Malazzla           | Dissociation                                                |        | ωB97XD       |               | ]                     | MP2               |        | CCSI    | <b>D</b> (T) |  |
| Molecule           | processes                                                   | ΔΕ     | $\Delta E_0$ | ΔG            | ΔΕ                    | $\Delta E_0$      | ΔG     | ΔΕ      | $\Delta E_0$ |  |
| HBeF <sub>3</sub>  | BeF3 <sup>-</sup> +H <sup>+</sup>                           | 141.09 | 157.21       | 156.66        | 132.89                | 151.86            | 144.67 | 127.72  | 146.32       |  |
| HMgF <sub>3</sub>  | MgF3 <sup>-</sup> +H <sup>+</sup>                           | 148.63 | 168.51       | 167.31        | 141.01                | 162.18            | 157.34 | 135.67  | 155.96       |  |
| HCaF <sub>3</sub>  | $CaF_3^-+H^+$                                               | 157.68 | 174.83       | 173.46        | 151.01                | 168.66            | 164.72 | 145.03  | 161.95       |  |
| HBeCl <sub>3</sub> | BeCl <sub>3</sub> <sup>-</sup> +H <sup>+</sup>              | 100.93 | 104.71       | 105.48        | 95.26                 | 100.95            | 96.99  | 90.69   | 95.76        |  |
| HMgCl <sub>3</sub> | MgCl <sub>3</sub> <sup>-</sup> +H <sup>+</sup>              | 107.55 | 113.58       | 113.79        | 101.94                | 109.07            | 106.63 | 97.38   | 103.68       |  |
| HCaCl <sub>3</sub> | CaCl3 <sup>-</sup> +H <sup>+</sup>                          | 110.87 | 118.42       | 118.16        | 105.55                | 113.91            | 111.81 | 100.27  | 107.26       |  |
| HBeBr <sub>3</sub> | BeBr <sub>3</sub> -+H+                                      | 86.34  | 88.89        | 89.99         | 81.32                 | 85.43             | 82.59  | 77.32   | 80.36        |  |
| HMgBr <sub>3</sub> | MgBr <sub>3</sub> <sup>-</sup> +H <sup>+</sup>              | 78.78  | 78.62        | 79.62         | 74.30                 | 74.15             | 73.40  | 68.17   | 68.15        |  |
| HCaBr <sub>3</sub> | CaBr <sub>3</sub> -+H+                                      | 95.23  | 102.15       | 101.60        | 90.50                 | 98.30             | 96.30  | 86.09   | 91.82        |  |

**Table S2.** The ZPE-uncorrected dissociation energy ( $\Delta E$ , kcal/mol), the ZPE corrected dissociation energy ( $\Delta E_0$ , kcal/mol) and dissociation free energy change ( $\Delta G$ , kcal/mol) at 298.15 K for dissociation process

 $\Delta E_0$  in CCSD(T) is equal to the electron energy plus the zero-point correction of MP2.



Fig. S5 Comparison of dissociation energy of HMX<sub>3</sub>→HX+MX<sub>2</sub>



Fig. S6 Comparison of dissociation energy of  $HMX_3 \rightarrow H^+ + MX_3^-$ 



Fig. S7 Comparison of dissociation energy of HMX<sub>3</sub>→H+MX<sub>3</sub>

## 3.Geometrical parameters of stable structures

|                 |                                 | HKrBeCl <sub>3</sub>    |                     |           | HXeBeCl <sub>3</sub>    |                     |                  | HRnBeCl <sub>3</sub>         |                |
|-----------------|---------------------------------|-------------------------|---------------------|-----------|-------------------------|---------------------|------------------|------------------------------|----------------|
|                 | MP2                             | ωB97XD                  | Δ                   | MP2       | ωB97XD                  | Δ                   | MP2              | ωB97XD                       | Δ              |
| r(M-X1)         | 1.878                           | 1.876                   | 0.002               | 1.877     | 1.874                   | 0.003               | 1.875            | 1.873                        | 0.002          |
| r(M-X2)         | 1.936                           | 1.933                   | 0.003               | 1.927     | 1.925                   | 0.002               | 1.926            | 1.924                        | 0.002          |
| r(M-X3)         | 2.021                           | 2.037                   | -0.016              | 2.031     | 2.047                   | -0.016              | 2.034            | 2.049                        | -0.015         |
| r(X2-Ng)        | 3.213                           | 3.269                   | -0.056              | 3.375     | 3.446                   | -0.071              | 3.405            | 3.486                        | -0.081         |
| r(X3-Ng)        | 2.724                           | 2.732                   | -0.008              | 2.814     | 2.820                   | -0.006              | 2.840            | 2.863                        | -0.023         |
| r(Ng-H)         | 1.435                           | 1.446                   | -0.011              | 1.618     | 1.632                   | -0.014              | 1.715            | 1.728                        | -0.013         |
|                 |                                 | HKrMgCl <sub>3</sub>    |                     |           | HXeMgCl <sub>3</sub>    |                     |                  | HRnMgCl <sub>3</sub>         |                |
|                 | MP2                             | ωB97XD                  | Δ                   | MP2       | ωB97XD                  | Δ                   | MP2              | ωB97XD                       | Δ              |
| r(M-X1)         | 2.218                           | 2.211                   | 0.007               | 2.216     | 2.210                   | 0.006               | 2.215            | 2.209                        | 0.006          |
| r(M-X2)         | 2.282                           | 2.277                   | 0.005               | 2.271     | 2.266                   | 0.005               | 2.270            | 2.265                        | 0.005          |
| r(M-X3)         | 2.362                           | 2.369                   | -0.007              | 2.372     | 2.381                   | -0.009              | 2.376            | 2.383                        | -0.007         |
| r(X2-Ng)        | 3.243                           | 3.292                   | -0.049              | 3.422     | 3.484                   | -0.062              | 3.460            | 3.531                        | -0.071         |
| r(X3-Ng)        | 2.747                           | 2.753                   | -0.006              | 2.832     | 2.838                   | -0.006              | 2.845            | 2.877                        | -0.032         |
| r(Ng-H)         | 1.433                           | 1.442                   | -0.009              | 1.615     | 1.629                   | -0.014              | 1.712            | 1.725                        | -0.013         |
|                 |                                 | HKrCaCl <sub>3</sub>    |                     |           | HXeCaCl <sub>3</sub>    |                     |                  | HRnCaCl <sub>3</sub>         |                |
|                 | MP2                             | ωB97XD                  | Δ                   | MP2       | ωB97XD                  | Δ                   | MP2              | ωB97XD                       | Δ              |
| r(M-X1)         | 2.530                           | 2.481                   | 0.049               | 2.530     | 2.481                   | 0.049               | 2.529            | 2.481                        | 0.048          |
| r(M-X2)         | 2.614                           | 2.566                   | 0.048               | 2.598     | 2.551                   | 0.047               | 2.594            | 2.549                        | 0.045          |
| r(M-X3)         | 2.700                           | 2.663                   | 0.037               | 2.713     | 2.675                   | 0.038               | 2.719            | 2.676                        | 0.043          |
| r(X2-Ng)        | 3.228                           | 3.269                   | -0.041              | 3.416     | 3.474                   | -0.058              | 3.459            | 3.527                        | -0.068         |
| r(X3-Ng)        | 2.754                           | 2.757                   | -0.003              | 2.827     | 2.845                   | -0.018              | 2.847            | 2.837                        | 0.010          |
| r(Ng-H)         | 1.430                           | 1.442                   | -0.012              | 1.615     | 1.628                   | -0.013              | 1.713            | 1.725                        | -0.012         |
| (a) <b>1.60</b> | HRnBel                          | F <sub>3</sub> -MP2     | (b)<br>1.60         | HRnBe     | eF <sub>3</sub> -ωB97XD | (c) 2.40            | HXel             | MgCl <sub>3</sub> -MP2       |                |
| ¥ 1.55          |                                 | ~                       | ¥<br>1.55           | -         | 1                       | £ 2.35              |                  | /                            |                |
| ug 1.50         | -                               |                         | u 1.50              | -         |                         | u 2.30              |                  |                              |                |
| əl bu 1.45      |                                 |                         | T puo 1.45          |           |                         | e pu 2.25           |                  | 1                            |                |
| ب<br>۲.40       | *                               |                         | ۲<br>1.40           |           | D E4 D E                | 2.20                |                  | N. 614                       | <u> </u>       |
| →-HN            | Be-FI I<br>NgY <del>−</del> Y-a | nion -Y-neutr           | al 🗕                | -HNgY -Y- | anion -Y-neu            | s<br>tral →         | Mg-CII<br>HNgY - | Mg-Cl2 Mg-<br>Y-anion — Y-ne | -Cl3<br>eutral |
| (d) 2.40        | HXeMg                           | Сl <sub>3</sub> -∞B97XD | <sup>(e)</sup> 2.90 | HKrCa     | aBr <sub>3</sub> -MP2   | <sup>(f)</sup> 2.90 | HKr              | CaBr <sub>3</sub> -0B97XD    |                |
| 2.35 g          |                                 |                         | (¥) 2.85<br>si 2.80 | -         |                         | Q 2.85<br>2.80      |                  |                              |                |
| 2.30            |                                 | <u> </u>                | 415 2.75            |           | 4                       | dia 2.75            |                  |                              |                |
| puog 2.25 -     | 1                               | *                       | puog 2.65           | *         |                         | puog 2.65           |                  |                              |                |
| 2.20            | Mg-Cl1 N                        | lg-Cl2 Mg-Cl3           | 2.60                | Ca-Br1    | Ca-Br2 Ca-B             | r3 2.60             | Ca-Br1           | Ca-Br2 Ca-                   | Br3            |
| →-HN            | lgY <mark>-≰-</mark> Y-a        | nion 🚽 Y-neutr          | al 🗕 🚽              | -HNgY -Y- | anion 📥 Y-neu           | tral 🔶              | HNgY             | Y-anion 📥 Y-ne               | eutral         |

Table S3. Comparison of bond length (Å) in  $HNgMX_3$  at various theoretical levels

Fig. S8 Comparison of M-X bond length in HNgY with MX<sub>3</sub><sup>-</sup> and MX<sub>3</sub> at various theoretical levels.



Fig. S9 Comparison of H-Ng-X2 bond angel in HNgY with MX3<sup>-</sup> and MX3 at various theoretical levels



Fig. S10 The changed trend of H. Ng, H. X2 and M. X3 distances along Ar-Kr-Xe-Rn, F-Cl-Br as well as Be-Mg-Ca



Fig. S11 The optimized structures and selected bond lengths (in Å) of the HNg<sup>+</sup> (Ng=Ar-Rn) at MP2/def2-TZVP level (The bond lengths at  $\omega$ B97XD /def2-TZVP level are shown in the parentheses)

 Table S4. Comparison of H-Ng bond length (in Å) in HNgY with HNg<sup>+</sup> at various theoretical levels

|    | I     | -INg+  |                      | r(l   | H-Ng)  | Absolu | ite error |                      | r(    | H-Ng)  | Absolu | ite error |
|----|-------|--------|----------------------|-------|--------|--------|-----------|----------------------|-------|--------|--------|-----------|
|    | def   | 2-TZVP |                      | def   | 2-TZVP | def2   | 2-TZVP    |                      | def   | 2-TZVP | def2   | -TZVP     |
|    | MP2   | ωB97XD |                      | MP2   | ωB97XD | MP2    | ωB97XD    |                      | MP2   | ωB97XD | MP2    | ωB97XD    |
| Ar | 1.283 | 1.285  | HArBeCl <sub>3</sub> | 1.282 | 1.295  | 0.001  | -0.010    | HArBeBr <sub>3</sub> | 1.287 | 1.303  | -0.004 | -0.018    |
|    | 1.422 | 1.426  | HKrBeCl <sub>3</sub> | 1.435 | 1.446  | -0.013 | -0.020    | HKrBeBr <sub>3</sub> | 1.444 | 1.455  | -0.022 | -0.029    |
| Kr | 1.422 | 1.426  | HKrMgCl <sub>3</sub> | 1.433 | 1.443  | -0.011 | -0.017    | HKrMgBr <sub>3</sub> | 1.439 | 1.450  | -0.017 | -0.024    |
|    | 1.422 | 1.426  | HKrCaCl <sub>3</sub> | 1.430 | 1.442  | -0.008 | -0.016    | HKrCaBr <sub>3</sub> | 1.436 | 1.448  | -0.014 | -0.022    |
|    | 1.593 | 1.602  | HXeBeCl <sub>3</sub> | 1.618 | 1.632  | -0.025 | -0.030    | HXeBeBr <sub>3</sub> | 1.626 | 1.640  | -0.033 | -0.038    |
| Xe | 1.593 | 1.602  | HXeMgCl <sub>3</sub> | 1.615 | 1.629  | -0.022 | -0.027    | HXeMgBr <sub>3</sub> | 1.622 | 1.636  | -0.029 | -0.034    |
|    | 1.593 | 1.602  | HXeCaCl <sub>3</sub> | 1.615 | 1.628  | -0.022 | -0.026    | HXeCaBr <sub>3</sub> | 1.621 | 1.634  | -0.028 | -0.032    |
|    | 1.680 | 1.688  | HRnBeCl <sub>3</sub> | 1.715 | 1.728  | -0.035 | -0.040    | HRnBeBr <sub>3</sub> | 1.725 | 1.736  | -0.045 | -0.048    |
| Rn | 1.680 | 1.688  | HRnMgCl <sub>3</sub> | 1.712 | 1.725  | -0.032 | -0.037    | HRnMgBr <sub>3</sub> | 1.720 | 1.733  | -0.04  | -0.045    |
|    | 1.680 | 1.688  | HRnCaCl <sub>3</sub> | 1.713 | 1.725  | -0.033 | -0.037    | HRnCaBr <sub>3</sub> | 1.719 | 1.730  | -0.039 | -0.042    |

## 4.Charge distribution analysis of HngY

 $\label{eq:table_state} \textbf{Table S5.} Calculated natural charges of each atom (|e|) of HNgMX_3 at CCSD/def2-TZVP//MP2/def2-TZVP level.$ 

|                      | Ng+H  | Ng    | Н     | F2     | F3     | М     | F1     |
|----------------------|-------|-------|-------|--------|--------|-------|--------|
| HArBeF <sub>3</sub>  | 0.971 | 0.579 | 0.392 | -0.791 | -0.793 | 1.366 | -0.754 |
| HKrBeF <sub>3</sub>  | 0.961 | 0.693 | 0.268 | -0.787 | -0.791 | 1.369 | -0.753 |
| HXeBeF <sub>3</sub>  | 0.952 | 0.843 | 0.109 | -0.784 | -0.789 | 1.372 | -0.751 |
| HRnBeF <sub>3</sub>  | 0.922 | 0.863 | 0.059 | -0.745 | -0.741 | 1.269 | -0.705 |
| HArMgF <sub>3</sub>  | 0.971 | 0.578 | 0.393 | -0.909 | -0.893 | 1.719 | -0.887 |
| HKrMgF <sub>3</sub>  | 0.958 | 0.695 | 0.263 | -0.906 | -0.885 | 1.721 | -0.887 |
| HXeMgF <sub>3</sub>  | 0.947 | 0.847 | 0.100 | -0.904 | -0.881 | 1.724 | -0.887 |
| HRnMgF <sub>3</sub>  | 0.919 | 0.868 | 0.051 | -0.872 | -0.839 | 1.642 | -0.850 |
| HKrCaF <sub>3</sub>  | 0.952 | 0.698 | 0.254 | -0.928 | -0.901 | 1.788 | -0.911 |
| HXeCaF <sub>3</sub>  | 0.940 | 0.854 | 0.086 | -0.927 | -0.894 | 1.792 | -0.912 |
| HRnCaF <sub>3</sub>  | 0.915 | 0.877 | 0.038 | -0.917 | -0.854 | 1.791 | -0.935 |
|                      | Ng+H  | Ng    | Н     | Cl2    | C13    | М     | Cl1    |
| HArBeCl <sub>3</sub> | 0.919 | 0.540 | 0.379 | -0.586 | -0.560 | 0.738 | -0.511 |
| HKrBeCl <sub>3</sub> | 0.883 | 0.631 | 0.252 | -0.572 | -0.543 | 0.740 | -0.508 |
| HXeBeCl <sub>3</sub> | 0.862 | 0.753 | 0.109 | -0.563 | -0.536 | 0.743 | -0.505 |
| HRnBeCl <sub>3</sub> | 0.856 | 0.801 | 0.055 | -0.561 | -0.535 | 0.743 | -0.505 |
| HKrMgCl <sub>3</sub> | 0.892 | 0.630 | 0.262 | -0.764 | -0.712 | 1.299 | -0.716 |
| HXeMgCl <sub>3</sub> | 0.870 | 0.754 | 0.116 | -0.758 | -0.700 | 1.303 | -0.714 |
| HRnMgCl <sub>3</sub> | 0.862 | 0.801 | 0.061 | -0.756 | -0.696 | 1.303 | -0.713 |
| HKrCaCl <sub>3</sub> | 0.891 | 0.626 | 0.265 | -0.760 | -0.706 | 1.290 | -0.715 |
| HXeCaCl <sub>3</sub> | 0.870 | 0.755 | 0.115 | -0.754 | -0.691 | 1.291 | -0.715 |
| HRnCaCl <sub>3</sub> | 0.861 | 0.802 | 0.059 | -0.753 | -0.687 | 1.294 | -0.715 |
|                      | Ng+H  | Ng    | Н     | Br2    | Br3    | Μ     | Br1    |
| HArBeBr <sub>3</sub> | 0.909 | 0.527 | 0.382 | -0.527 | -0.491 | 0.548 | -0.438 |
| HKrBeBr <sub>3</sub> | 0.858 | 0.611 | 0.247 | -0.506 | -0.465 | 0.550 | -0.436 |
| HXeBeBr <sub>3</sub> | 0.832 | 0.729 | 0.103 | -0.496 | -0.455 | 0.552 | -0.433 |
| HRnBeBr <sub>3</sub> | 0.823 | 0.775 | 0.048 | -0.492 | -0.453 | 0.552 | -0.431 |
| HKrMgBr <sub>3</sub> | 0.873 | 0.613 | 0.260 | -0.721 | -0.657 | 1.169 | -0.664 |
| HXeMgBr <sub>3</sub> | 0.843 | 0.731 | 0.112 | -0.713 | -0.640 | 1.172 | -0.663 |
| HRnMgBr <sub>3</sub> | 0.834 | 0.777 | 0.057 | -0.711 | -0.635 | 1.173 | -0.662 |
| HKrCaBr <sub>3</sub> | 0.875 | 0.609 | 0.266 | -0.719 | -0.652 | 1.159 | -0.663 |
| HXeCaBr <sub>3</sub> | 0.846 | 0.732 | 0.114 | -0.710 | -0.631 | 1.159 | -0.664 |
| HRnCaBr <sub>3</sub> | 0.836 | 0.778 | 0.058 | -0.709 | -0.626 | 1.162 | -0.663 |



**Fig. S12** The natural charges trend of Ng, H atoms and H+Ng in HNgY along Ar-Kr-Xe-Rn, Be-Mg-Ca as well as F-Cl-Br

|                      | (a) Wiberg bond index matrix in the NAO basis: |        |        |        |        |        |        |  |  |
|----------------------|------------------------------------------------|--------|--------|--------|--------|--------|--------|--|--|
|                      | H-Ng                                           | X2-Ng  | X3-Ng  | M-X1   | M-X2   | M-X3   | Х2-Н   |  |  |
| HArBeF <sub>3</sub>  | 0.7470                                         | 0.0051 | 0.0392 | 0.4674 | 0.3933 | 0.3327 | 0.0012 |  |  |
| HKrBeF <sub>3</sub>  | 0.8000                                         | 0.0069 | 0.0533 | 0.4700 | 0.3988 | 0.3179 | 0.0024 |  |  |
| HXeBeF <sub>3</sub>  | 0.8444                                         | 0.0102 | 0.0665 | 0.4735 | 0.3993 | 0.3081 | 0.0041 |  |  |
| HRnBeF <sub>3</sub>  | 0.8461                                         | 0.0141 | 0.0641 | 0.4758 | 0.3939 | 0.3115 | 0.0073 |  |  |
| HArBeCl <sub>3</sub> | 0.7057                                         | 0.0046 | 0.0523 | 0.7397 | 0.6232 | 0.5466 | 0.0015 |  |  |
| HKrBeCl <sub>3</sub> | 0.7469                                         | 0.0052 | 0.0822 | 0.7434 | 0.6446 | 0.5183 | 0.0008 |  |  |
| HXeBeCl <sub>3</sub> | 0.7884                                         | 0.0067 | 0.1113 | 0.7475 | 0.6555 | 0.4994 | 0.0012 |  |  |
| HRnBeCl <sub>3</sub> | 0.7857                                         | 0.0076 | 0.1159 | 0.7502 | 0.6578 | 0.4942 | 0.0024 |  |  |
| HArBeBr <sub>3</sub> | 0.6915                                         | 0.0054 | 0.0563 | 0.8280 | 0.6949 | 0.6232 | 0.0022 |  |  |
| HKrBeBr <sub>3</sub> | 0.7236                                         | 0.0057 | 0.0944 | 0.8319 | 0.7249 | 0.5868 | 0.0008 |  |  |
| HXeBeBr <sub>3</sub> | 0.7628                                         | 0.0068 | 0.1304 | 0.8360 | 0.7393 | 0.5648 | 0.0007 |  |  |
| HRnBeBr <sub>3</sub> | 0.7581                                         | 0.0072 | 0.1368 | 0.8388 | 0.7436 | 0.5573 | 0.0015 |  |  |
| HArMgF <sub>3</sub>  | 0.7453                                         | 0.0050 | 0.0403 | 0.2387 | 0.1900 | 0.1571 | 0.0008 |  |  |
| HKrMgF <sub>3</sub>  | 0.7987                                         | 0.0064 | 0.0580 | 0.2396 | 0.1949 | 0.1462 | 0.0016 |  |  |
| HXeMgF <sub>3</sub>  | 0.8413                                         | 0.0096 | 0.0733 | 0.2408 | 0.1945 | 0.1380 | 0.0032 |  |  |
| HRnMgF <sub>3</sub>  | 0.8425                                         | 0.0134 | 0.0708 | 0.2418 | 0.1905 | 0.1386 | 0.0060 |  |  |
| HKrMgCl <sub>3</sub> | 0.7529                                         | 0.0047 | 0.0759 | 0.4556 | 0.3739 | 0.2930 | 0.0006 |  |  |
| HXeMgCl <sub>3</sub> | 0.7946                                         | 0.0059 | 0.1056 | 0.4576 | 0.3820 | 0.2775 | 0.0008 |  |  |
| HRnMgCl <sub>3</sub> | 0.7915                                         | 0.0065 | 0.1114 | 0.4592 | 0.3841 | 0.2726 | 0.0017 |  |  |
| HKrMgBr <sub>3</sub> | 0.7337                                         | 0.0052 | 0.0860 | 0.5274 | 0.4330 | 0.3439 | 0.0006 |  |  |
| HXeMgBr <sub>3</sub> | 0.7722                                         | 0.0060 | 0.1230 | 0.5293 | 0.4450 | 0.3249 | 0.0004 |  |  |
| HRnMgBr <sub>3</sub> | 0.7671                                         | 0.0062 | 0.1305 | 0.6579 | 0.5901 | 0.3184 | 0.0009 |  |  |
| HKrCaF <sub>3</sub>  | 0.7984                                         | 0.0054 | 0.0628 | 0.2503 | 0.1897 | 0.1250 | 0.0010 |  |  |
| HXeCaF <sub>3</sub>  | 0.8372                                         | 0.0088 | 0.0807 | 0.2510 | 0.1881 | 0.1121 | 0.0027 |  |  |
| HRnCaF <sub>3</sub>  | 0.8371                                         | 0.0132 | 0.0782 | 0.2519 | 0.1801 | 0.1125 | 0.0058 |  |  |
| HKrCaCl <sub>3</sub> | 0.7564                                         | 0.0045 | 0.0725 | 0.4695 | 0.3881 | 0.3098 | 0.0007 |  |  |
| HXeCaCl <sub>3</sub> | 0.7946                                         | 0.0054 | 0.1058 | 0.4685 | 0.3973 | 0.2902 | 0.0006 |  |  |
| HRnCaCl <sub>3</sub> | 0.7912                                         | 0.0058 | 0.1125 | 0.4687 | 0.3984 | 0.2832 | 0.0012 |  |  |
| HKrCaBr <sub>3</sub> | 0.7397                                         | 0.0050 | 0.0803 | 0.5596 | 0.4609 | 0.3783 | 0.0007 |  |  |
| HXeCaBr <sub>3</sub> | 0.7748                                         | 0.0058 | 0.1203 | 0.5583 | 0.4744 | 0.3561 | 0.0004 |  |  |
| HRnCaBr <sub>3</sub> | 0.7695                                         | 0.0058 | 0.1287 | 0.5589 | 0.4774 | 0.3474 | 0.0007 |  |  |

 Table S6. Wiberg bond indices (WBI) values, atom-atom overlap-weighted NAO bond order and MO bond order of

 HNgY bonds at CCSD/def2-TZVP // MP2/def2-TZVP level

|                      | (b) Atom-atom overlap-weighted NAO bond order: |         |        |        |        |        |         |  |
|----------------------|------------------------------------------------|---------|--------|--------|--------|--------|---------|--|
| _                    | H-Ng                                           | X2-Ng   | X3-Ng  | M-X1   | M-X2   | M-X3   | Х2-Н    |  |
| HArBeF <sub>3</sub>  | 0.5855                                         | -0.0032 | 0.0222 | 0.5787 | 0.5144 | 0.4545 | -0.0011 |  |
| HKrBeF <sub>3</sub>  | 0.5942                                         | 0.0048  | 0.0501 | 0.5809 | 0.5201 | 0.4402 | -0.0003 |  |
| HXeBeF <sub>3</sub>  | 0.6018                                         | 0.0108  | 0.0633 | 0.5835 | 0.5216 | 0.4304 | 0.0007  |  |
| HRnBeF <sub>3</sub>  | 0.5796                                         | 0.0123  | 0.0631 | 0.5851 | 0.5171 | 0.4347 | 0.0009  |  |
| HArBeCl <sub>3</sub> | 0.5665                                         | -0.0006 | 0.0397 | 0.8367 | 0.7409 | 0.6702 | -0.0047 |  |
| HKrBeCl <sub>3</sub> | 0.5737                                         | 0.0054  | 0.0840 | 0.8159 | 0.7418 | 0.6298 | -0.0015 |  |
| HXeBeCl <sub>3</sub> | 0.5783                                         | 0.0108  | 0.1113 | 0.8188 | 0.7522 | 0.6128 | 0.0009  |  |
| HRnBeCl <sub>3</sub> | 0.5543                                         | 0.0099  | 0.1166 | 0.8208 | 0.7544 | 0.6088 | 0.0009  |  |
| HArBeBr <sub>3</sub> | 0.5576                                         | 0.0002  | 0.0382 | 0.9084 | 0.8016 | 0.7391 | -0.0068 |  |
| HKrBeBr <sub>3</sub> | 0.5626                                         | 0.0058  | 0.0872 | 0.9147 | 0.8280 | 0.7068 | -0.0023 |  |
| HXeBeBr <sub>3</sub> | 0.5664                                         | 0.0101  | 0.1213 | 0.9175 | 0.8409 | 0.6881 | 0.0008  |  |
| HRnBeBr <sub>3</sub> | 0.5418                                         | 0.0086  | 0.1286 | 0.9197 | 0.8447 | 0.6821 | 0.0008  |  |
| HArMgF <sub>3</sub>  | 0.5847                                         | -0.0040 | 0.0221 | 0.3898 | 0.3386 | 0.2957 | -0.0020 |  |
| HKrMgF <sub>3</sub>  | 0.5932                                         | 0.0039  | 0.0547 | 0.3899 | 0.3440 | 0.2818 | -0.0006 |  |
| HXeMgF <sub>3</sub>  | 0.5995                                         | 0.0099  | 0.0700 | 0.3908 | 0.3432 | 0.2712 | 0.0008  |  |
| HRnMgF <sub>3</sub>  | 0.8425                                         | 0.0134  | 0.0708 | 0.2418 | 0.1905 | 0.1386 | 0.0060  |  |
| HKrMgCl <sub>3</sub> | 0.5762                                         | 0.0055  | 0.0776 | 0.5886 | 0.5179 | 0.4367 | -0.0021 |  |
| HXeMgCl <sub>3</sub> | 0.5828                                         | 0.0097  | 0.1059 | 0.5901 | 0.5261 | 0.4206 | 0.0010  |  |
| HRnMgCl <sub>3</sub> | 0.5580                                         | 0.0081  | 0.1117 | 0.5914 | 0.5283 | 0.4158 | 0.0010  |  |
| HKrMgBr <sub>3</sub> | 0.5678                                         | 0.0041  | 0.0807 | 0.6550 | 0.5744 | 0.4838 | -0.0030 |  |
| HXeMgBr <sub>3</sub> | 0.5725                                         | 0.0071  | 0.1155 | 0.6564 | 0.5865 | 0.4644 | 0.0008  |  |
| HRnMgBr <sub>3</sub> | 0.5472                                         | 0.0050  | 0.1233 | 0.6579 | 0.5901 | 0.4579 | 0.0009  |  |
| HKrCaF <sub>3</sub>  | 0.5931                                         | 0.0062  | 0.0515 | 0.3672 | 0.2984 | 0.1768 | -0.0011 |  |
| HXeCaF <sub>3</sub>  | 0.5939                                         | 0.0134  | 0.0817 | 0.3663 | 0.3012 | 0.2469 | 0.0008  |  |
| HRnCaF <sub>3</sub>  | 0.5713                                         | 0.0161  | 0.0812 | 0.3667 | 0.2781 | 0.2471 | 0.0009  |  |
| HKrCaCl <sub>3</sub> | 0.5783                                         | 0.0056  | 0.0786 | 0.6883 | 0.6104 | 0.5251 | -0.0035 |  |
| HXeCaCl <sub>3</sub> | 0.5824                                         | 0.0093  | 0.1115 | 0.6830 | 0.6173 | 0.5034 | 0.0009  |  |
| HRnCaCl <sub>3</sub> | 0.5574                                         | 0.0075  | 0.1184 | 0.6834 | 0.6189 | 0.4962 | 0.0009  |  |
| HKrCaBr <sub>3</sub> | 0.5709                                         | 0.0055  | 0.0793 | 0.7763 | 0.6831 | 0.5942 | -0.0044 |  |
| HXeCaBr <sub>3</sub> | 0.5742                                         | 0.0080  | 0.1175 | 0.7764 | 0.6986 | 0.5727 | 0.0005  |  |
| HRnCaBr <sub>3</sub> | 0.5486                                         | 0.0055  | 0.1261 | 0.7768 | 0.7019 | 0.5638 | 0.0006  |  |

|                      | (c) MO bond order |         |         |         |         |         |         |  |  |
|----------------------|-------------------|---------|---------|---------|---------|---------|---------|--|--|
| -                    | H-Ng              | X2-Ng   | X3-Ng   | M-X1    | M-X2    | M-X3    | Х2-Н    |  |  |
| HArBeF <sub>3</sub>  | -0.0174           | 0.0276  | -0.0037 | -0.4933 | -0.5096 | 1.3017  | -0.0249 |  |  |
| HKrBeF <sub>3</sub>  | -0.1794           | 0.0389  | -0.0101 | -0.5010 | -0.4964 | 1.3059  | -0.0512 |  |  |
| HXeBeF <sub>3</sub>  | 1.2500            | -0.1602 | -0.4466 | 0.7974  | -0.1592 | -0.2673 | 0.0627  |  |  |
| HRnBeF <sub>3</sub>  | 1.1640            | -0.1421 | -0.5103 | 0.7530  | -0.1464 | -0.2700 | 0.0872  |  |  |
| HArBeCl <sub>3</sub> | 0.1930            | 0.0726  | 0.0035  | 0.9141  | 1.0070  | -0.1419 | 0.0318  |  |  |
| HKrBeCl <sub>3</sub> | -0.0781           | 0.1288  | -0.0509 | 0.8499  | 0.9917  | -0.2232 | 0.0064  |  |  |
| HXeBeCl <sub>3</sub> | -0.9382           | 0.0130  | -0.3136 | 0.2179  | 0.3019  | 0.6131  | -0.0519 |  |  |
| HRnBeCl <sub>3</sub> | 1.2119            | -0.1025 | -0.7732 | 0.2364  | 0.2533  | 0.6505  | 0.0414  |  |  |
| HArBeBr <sub>3</sub> | 0.3298            | 0.0539  | 0.0192  | 0.9661  | 1.0388  | -0.1234 | 0.0409  |  |  |
| HKrBeBr <sub>3</sub> | 0.0293            | 0.1385  | -0.0472 | 1.0251  | 1.0738  | -0.1720 | 0.0276  |  |  |
| HXeBeBr <sub>3</sub> | -0.1255           | 0.1422  | -0.0297 | 1.0516  | 1.0972  | -0.1940 | -0.0162 |  |  |
| HRnBeBr <sub>3</sub> | -0.9332           | -0.0167 | -0.3625 | 0.4592  | 0.2503  | 0.7595  | -0.0507 |  |  |
| HArMgF <sub>3</sub>  | 0.1284            | 0.0461  | 0.0302  | 0.6209  | 0.6205  | 0.0395  | 0.0007  |  |  |
| HKrMgF <sub>3</sub>  | -0.0897           | 0.0598  | 0.0313  | 0.6772  | 0.6338  | 0.0306  | -0.0354 |  |  |
| HXeMgF <sub>3</sub>  | 1.2981            | -0.0744 | -0.4820 | 0.1108  | 0.0821  | 0.4080  | 0.0218  |  |  |
| HRnMgF <sub>3</sub>  | 0.5772            | 0.0101  | 0.0694  | 0.3908  | 0.3384  | 0.2719  | 0.0009  |  |  |
| HKrMgCl <sub>3</sub> | 0.2139            | 0.0461  | -0.1046 | 0.5370  | 0.6406  | -0.2572 | -0.0050 |  |  |
| HXeMgCl <sub>3</sub> | -0.9105           | 0.0317  | -0.3038 | -0.1385 | -0.0526 | 0.4654  | -0.0122 |  |  |
| HRnMgCl <sub>3</sub> | 1.2555            | -0.0366 | -0.7976 | 0.1043  | -0.2266 | 0.4695  | 0.0119  |  |  |
| HKrMgBr <sub>3</sub> | 0.1562            | 0.1188  | -0.1053 | 0.6243  | 0.7492  | -0.1526 | 0.0246  |  |  |
| HXeMgBr <sub>3</sub> | -0.0258           | 0.1326  | -0.0827 | -0.0019 | 0.1326  | -0.0827 | -0.0161 |  |  |
| HRnMgBr <sub>3</sub> | -0.9084           | -0.0146 | -0.3503 | -0.0972 | -0.1142 | 0.5287  | -0.0146 |  |  |
| HKrCaF <sub>3</sub>  | 1.4175            | -0.0142 | -0.3466 | 0.3189  | 0.4491  | 0.4020  | -0.0286 |  |  |
| HXeCaF <sub>3</sub>  | 1.4704            | -0.0534 | -0.3588 | 0.3387  | 0.4336  | 0.3895  | 0.0084  |  |  |
| HRnCaF <sub>3</sub>  | 1.2227            | -0.0430 | -0.5997 | -0.4758 | 0.3557  | 0.1492  | 0.0274  |  |  |
| HKrCaCl <sub>3</sub> | 0.1694            | 0.1100  | -0.0887 | 0.9919  | 0.8681  | -0.1476 | 0.0343  |  |  |
| HXeCaCl <sub>3</sub> | -0.8733           | 0.0627  | -0.3306 | 0.6044  | -0.2974 | -0.0176 | 0.0225  |  |  |
| HRnCaCl <sub>3</sub> | -0.9807           | 0.0569  | -0.2376 | 0.3107  | -0.6313 | -0.1422 | 0.0077  |  |  |
| HKrCaBr <sub>3</sub> | 0.2516            | 0.1050  | -0.1078 | 0.9787  | 0.9198  | -0.2510 | 0.0372  |  |  |
| HXeCaBr <sub>3</sub> | 0.0418            | 0.1429  | -0.0892 | 0.9198  | 0.9708  | -0.3069 | 0.0006  |  |  |
| HRnCaBr <sub>3</sub> | -0.8806           | 0.0385  | -0.3585 | 0.6057  | -0.3769 | 0.0147  | 0.0284  |  |  |



**Fig. S13** Comparison of Wiberg bond indices (WBI) values for M-X3, Ng-X3 and Ng-H along Ar-Kr-Xe-Rn, F-Cl-Br as well as Be-Mg-Ca

|                      | В      | D      | B      | D*     |
|----------------------|--------|--------|--------|--------|
|                      | Ng     | Н      | Ng     | Н      |
| HArBeF <sub>3</sub>  | 70.64% | 29.36% | 29.36% | 70.64% |
| HArBeCl <sub>3</sub> | 72.11% | 27.89% | 27.89% | 72.11% |
| HArBeBr <sub>3</sub> | 72.62% | 27.38% | 27.38% | 72.62% |
| HKrBeF <sub>3</sub>  | 64.66% | 35.34% | 35.34% | 64.66% |
| HXeBeF <sub>3</sub>  | 56.73% | 43.27% | 43.27% | 56.73% |
| HRnBeF <sub>3</sub>  | 55.14% | 44.86% | 44.86% | 55.14% |
| HKrBeCl <sub>3</sub> | 66.62% | 33.38% | 33.38% | 66.62% |
| HXeBeCl <sub>3</sub> | 59.39% | 40.61% | 40.61% | 59.39% |
| HRnBeCl <sub>3</sub> | 56.82% | 43.18% | 43.18% | 56.82% |
| HKrBeBr <sub>3</sub> | 67.18% | 32.82% | 32.82% | 67.18% |
| HXeBeBr <sub>3</sub> | 59.97% | 40.03% | 40.03% | 59.97% |
| HRnBeBr <sub>3</sub> | 57.43% | 42.57% | 42.57% | 57.43% |
| HArMgF <sub>3</sub>  | 70.71% | 29.29% | 29.29% | 70.71% |
| HKrMgF <sub>3</sub>  | 64.48% | 35.52% | 35.52% | 64.48% |
| HXeMgF <sub>3</sub>  | 56.41% | 43.59% | 43.59% | 56.41% |
| HKrMgCl <sub>3</sub> | 66.80% | 33.20% | 33.20% | 66.80% |
| HXeMgCl <sub>3</sub> | 59.53% | 40.47% | 40.47% | 59.53% |
| HRnMgCl <sub>3</sub> | 56.97% | 43.03% | 43.03% | 56.97% |
| HKrMgBr <sub>3</sub> | 67.33% | 32.67% | 32.67% | 67.33% |
| HXeMgBr <sub>3</sub> | 60.08% | 39.92% | 39.92% | 60.08% |
| HRnMgBr <sub>3</sub> | 57.56% | 42.44% | 42.44% | 57.56% |
| HKrCaF <sub>3</sub>  | 64.19% | 35.81% | 35.81% | 64.19% |
| HXeCaF <sub>3</sub>  | 55.87% | 44.13% | 44.13% | 55.87% |

Table S7 MO bond order (Occupancy) Bond orbital

|                      |        | ρ(r)  | $\bigtriangledown^2$ | G(r <sub>c</sub> ) | V(r <sub>c</sub> ) | H(r <sub>c</sub> ) |
|----------------------|--------|-------|----------------------|--------------------|--------------------|--------------------|
|                      | H-Ar   |       |                      |                    |                    |                    |
| HArBeCl <sub>3</sub> | Ar-Cl2 | 0.016 | 0.068                | 0.015              | -0.012             | 0.002              |
|                      | Ar-Cl3 | 0.034 | 0.113                | 0.028              | -0.028             | 0.000              |
|                      | H-Kr   | 0.200 | -0.469               | 0.049              | -0.216             | -0.166             |
| HKrBeCl <sub>3</sub> | Kr-Cl2 | 0.015 | 0.053                | 0.012              | -0.010             | 0.002              |
|                      | Kr-Cl3 | 0.039 | 0.103                | 0.028              | -0.031             | -0.002             |
|                      | H-Xe   | 0.162 | -0.267               | 0.057              | -0.182             | -0.124             |
| HXeBeCl <sub>3</sub> | Xe-Cl2 | 0.014 | 0.045                | 0.010              | -0.008             | 0.001              |
|                      | Xe-Cl3 | 0.040 | 0.092                | 0.027              | -0.031             | -0.004             |
|                      | H-Rn   | 0.141 | -0.122               | 0.064              | -0.158             | -0.094             |
| HRnBeCl <sub>3</sub> | Rn-Cl2 | 0.014 | 0.044                | 0.010              | -0.008             | 0.001              |
|                      | Rn-Cl3 | 0.041 | 0.093                | 0.028              | -0.033             | -0.005             |
|                      | H-Ar   |       |                      |                    |                    |                    |
| HArBeBr <sub>3</sub> | Ar-Br2 | 0.016 | 0.057                | 0.013              | -0.011             | 0.002              |
|                      | Ar-Br3 | 0.030 | 0.088                | 0.022              | -0.022             | 0.000              |
|                      | H-Kr   | 0.196 | -0.449               | 0.049              | -0.210             | -0.161             |
| HKrBeBr <sub>3</sub> | Kr-Br2 | 0.014 | 0.043                | 0.010              | -0.009             | 0.001              |
|                      | Kr-Br3 | 0.036 | 0.081                | 0.023              | -0.025             | -0.003             |
|                      | H-Xe   | 0.159 | -0.258               | 0.056              | -0.176             | -0.120             |
| HXeBeBr <sub>3</sub> | Xe-Br2 | 0.013 | 0.036                | 0.008              | -0.007             | 0.001              |
|                      | Xe-Br3 | 0.037 | 0.073                | 0.022              | -0.026             | -0.004             |
|                      | H-Rn   | 0.138 | -0.117               | 0.062              | -0.153             | -0.091             |
| HRnBeBr <sub>3</sub> | Rn-Br2 | 0.013 | 0.035                | 0.008              | -0.007             | 0.001              |
|                      | Rn-Br3 | 0.038 | 0.073                | 0.023              | -0.028             | -0.005             |

**Table S8** Analysis of charge density descriptors (a.u.) at the bond critical point (BCPs) of the part of HNgMX<sub>3</sub> molecules by AIM at CCSD/def2-TZVP // MP2/def2-TZVP level.

(Carried out at CCSD/def2-TZVP//MP2/def2-TZVP level of theory with the help of Multiwfn software)



Fig. S14 Variation of relative energy ( $\Delta E$ , kcal/mol) and hardness ( $\eta$ , eV), of HNgBeF3 and HXeMgCl3 with reaction coordinates corresponding to trace the the IRC path. The most stable structure has been taken as the reference for calculating the rotational barrier.

|                      | LUMO(a.u.) | HOMO(a.u.) | gap (eV) | η(eV) |
|----------------------|------------|------------|----------|-------|
| HArBeF <sub>3</sub>  | -0.00549   | -0.51255   | 13.80    | 6.90  |
| HKrBeF <sub>3</sub>  | 0.00671    | -0.51687   | 14.25    | 7.12  |
| HXeBeF <sub>3</sub>  | 0.02124    | -0.52065   | 14.75    | 7.37  |
| HRnBeF <sub>3</sub>  | 0.02223    | -0.50581   | 14.37    | 7.18  |
| HArBeCl <sub>3</sub> | -0.02047   | -0.38592   | 9.94     | 4.97  |
| HKrBeCl <sub>3</sub> | -0.01070   | -0.38803   | 10.27    | 5.13  |
| HXeBeCl <sub>3</sub> | 0.00245    | -0.39144   | 10.72    | 5.36  |
| HRnBeCl <sub>3</sub> | 0.00501    | -0.39358   | 10.85    | 5.42  |
| HArBeBr <sub>3</sub> | -0.02400   | -0.35539   | 9.02     | 4.51  |
| HKrBeBr <sub>3</sub> | -0.01605   | -0.35695   | 9.28     | 4.64  |
| HXeBeBr <sub>3</sub> | -0.00322   | -0.35981   | 9.70     | 4.85  |
| HRnBeBr <sub>3</sub> | -0.00046   | -0.36184   | 9.83     | 4.92  |
| HArMgF <sub>3</sub>  | 0.00234    | -0.49465   | 13.52    | 6.76  |
| HKrMgF <sub>3</sub>  | 0.01338    | -0.49753   | 13.90    | 6.95  |
| HXeMgF <sub>3</sub>  | 0.02740    | -0.50229   | 14.41    | 7.21  |
| HRnMgF <sub>3</sub>  | 0.02791    | -0.49247   | 14.16    | 7.08  |
| HKrMgCl <sub>3</sub> | -0.01059   | -0.39194   | 10.38    | 5.19  |
| HXeMgCl <sub>3</sub> | 0.00144    | -0.39439   | 10.77    | 5.39  |
| HRnMgCl <sub>3</sub> | 0.00395    | -0.39628   | 10.89    | 5.45  |
| HKrMgBr <sub>3</sub> | -0.01596   | -0.36272   | 9.44     | 4.72  |
| HXeMgBr <sub>3</sub> | -0.00446   | -0.36474   | 9.80     | 4.90  |
| HRnMgBr <sub>3</sub> | -0.00174   | -0.36647   | 9.92     | 4.96  |
| HKrCaF <sub>3</sub>  | 0.02400    | -0.47167   | 13.49    | 6.74  |
| HXeCaF <sub>3</sub>  | 0.03563    | -0.47566   | 13.91    | 6.96  |
| HRnCaF <sub>3</sub>  | 0.03357    | -0.46883   | 13.67    | 6.84  |
| HKrCaCl <sub>3</sub> | -0.00410   | -0.38212   | 10.29    | 5.14  |
| HXeCaCl <sub>3</sub> | 0.00668    | -0.38365   | 10.62    | 5.31  |
| HRnCaCl <sub>3</sub> | 0.00837    | -0.38515   | 10.71    | 5.35  |
| HKrCaBr <sub>3</sub> | -0.01102   | -0.35577   | 9.38     | 4.69  |
| HXeCaBr <sub>3</sub> | -0.00093   | -0.35696   | 9.69     | 4.84  |
| HRnCaBr <sub>3</sub> | 0.00115    | -0.35830   | 9.78     | 4.89  |

**Table S9** The LUMO and HOMO energy of  $HNgMX_3$  as well as the energy gap and chemical hardness at CCSD/def2-TZVP // MP2/def2-TZVP level.

gap=( $\epsilon_{LUMO}$ - $\epsilon_{HOMO}$ );  $\eta$ =( $\epsilon_{LUMO}$ - $\epsilon_{HOMO}$ )/2



Fig. S15 Comparison of chemical hardness ( $\eta$ ) values for HNgMX3 along VDE, Ar-Kr-Xe-Rn, F-Cl-Br as well as Be-Mg-Ca.

## 5.Thermodynamic and kinetic stability of HNgY

Table S10. The fragment energies of HNgMX<sub>3</sub> (Ng=Ar-Rn; M=Be, Mg, Ca; X=F, Cl, Br) along six pathways (kcal/mol)

|                     | Dissociation                                     |        | ωB97X-D      | )       |        | MP2          |         | CCS    | D(T)         |
|---------------------|--------------------------------------------------|--------|--------------|---------|--------|--------------|---------|--------|--------------|
| Molecule            | processes                                        | ΔΕ     | $\Delta E_0$ | ΔG      | ΔΕ     | $\Delta E_0$ | ΔG      | ΔΕ     | $\Delta E_0$ |
|                     | HBeF <sub>3</sub> +Ar                            | -96.33 | -95.79       | -103.19 | -98.28 | -97.89       | -105.31 | -97.96 | -97.57       |
|                     | BeF <sub>3</sub> +H+Ar                           | 44.75  | 37.10        | 24.53   | 58.93  | 53.97        | 41.00   | 58.70  | 53.74        |
|                     | BeF <sub>2</sub> +HF+Ar                          | -86.32 | -87.54       | -101.38 | -88.61 | -90.05       | -103.94 | -87.94 | -89.39       |
| HArBer <sub>3</sub> | HAr <sub>+</sub> +BeF <sub>3</sub> -             | 109.65 | 107.67       | 100.15  | 108.18 | 106.06       | 98.50   | 108.35 | 106.23       |
|                     | HArF+BeF <sub>2</sub>                            | 46.42  | 45.38        | 37.53   | 49.94  | 48.66        | 40.78   | 50.31  | 49.02        |
|                     | H++Ar+BeF3-                                      | 204.93 | 199.06       | 187.07  | 199.97 | 193.96       | 181.91  | 202.11 | 196.09       |
|                     | HBeF <sub>3</sub> +Kr                            | -82.38 | -81.44       | -88.89  | -84.56 | -83.79       | -91.24  | -83.96 | -83.19       |
|                     | BeF <sub>3</sub> +H+Kr                           | 58.71  | 51.45        | 38.84   | 72.65  | 68.07        | 55.07   | 72.70  | 68.12        |
| UIV #D ₀E           | BeF <sub>2</sub> +HF+Kr                          | -72.37 | -73.19       | -87.07  | -74.88 | -75.94       | -89.88  | -73.95 | -75.01       |
| INIDER3             | HKr <sup>+</sup> +BeF <sub>3</sub> -             | 111.89 | 110.02       | 102.34  | 110.48 | 108.50       | 100.77  | 110.70 | 108.71       |
|                     | HKrF+BeF <sub>2</sub>                            | 42.03  | 41.01        | 33.14   | 44.51  | 43.32        | 35.42   | 44.91  | 43.73        |
|                     | H++Kr+BeF3-                                      | 218.89 | 213.42       | 201.37  | 213.69 | 208.06       | 195.98  | 216.11 | 210.48       |
|                     | HBeF <sub>3</sub> +Xe                            | -63.27 | -61.92       | -69.34  | -67.19 | -65.98       | -73.39  | -65.58 | -64.38       |
|                     | BeF <sub>3</sub> +H+Xe                           | 77.82  | 70.97        | 58.38   | 90.02  | 85.88        | 72.93   | 91.07  | 86.93        |
| UVaDaE              | BeF <sub>2</sub> +HF+Xe                          | -53.26 | -53.68       | -67.52  | -57.51 | -58.14       | -72.02  | -55.57 | -56.20       |
| плевегз             | $HXe_{+}+BeF_{3}$                                | 115.09 | 113.30       | 105.51  | 113.34 | 111.51       | 103.70  | 113.50 | 111.67       |
|                     | HXeF+BeF <sub>2</sub>                            | 37.37  | 36.44        | 28.57   | 40.38  | 39.29        | 31.39   | 40.56  | 39.47        |
|                     | H++Xe+BeF3-                                      | 238.00 | 232.93       | 220.92  | 231.06 | 225.87       | 213.83  | 234.48 | 229.28       |
|                     | HBeF <sub>3</sub> +Rn                            | -54.52 | -52.93       | -60.35  | -57.36 | -55.86       | -63.27  | -55.87 | -54.38       |
|                     | BeF <sub>3</sub> +H+Rn                           | 86.57  | 79.96        | 67.37   | 99.86  | 96.00        | 83.05   | 100.79 | 96.93        |
| IID#DeE             | BeF <sub>2</sub> +HF+Rn                          | -44.51 | -44.69       | -58.53  | -47.68 | -48.02       | -61.90  | -45.86 | -46.20       |
| пкпber3             | HRn <sup>+</sup> +BeF <sub>3</sub> <sup>-</sup>  | 117.44 | 115.76       | 107.92  | 116.47 | 114.75       | 106.88  | 116.33 | 114.61       |
|                     | HRnF+BeF <sub>2</sub>                            | 38.85  | 37.60        | 29.67   | 41.49  | 40.30        | 32.36   | 41.64  | 40.45        |
|                     | H <sup>+</sup> +Rn+BeF <sub>3</sub> <sup>-</sup> | 246.75 | 241.92       | 229.91  | 240.90 | 235.99       | 223.95  | 244.20 | 239.29       |

(a) The fragment energies of HNgBeF3 (Ng=Ar - Rn) along six pathways kcal/mol

| Malassila            | Dissociation                                     |        | ωB97XD       |         |        | MP2          |         | CCS    | D(T)         |
|----------------------|--------------------------------------------------|--------|--------------|---------|--------|--------------|---------|--------|--------------|
| Molecule             | processes                                        | ΔΕ     | $\Delta E_0$ | ΔG      | <br>ΔΕ | $\Delta E_0$ | ΔG      | ΔΕ     | $\Delta E_0$ |
|                      | HBeCl <sub>3</sub> +Ar                           | -92.37 | -92.37       | -100.32 | -92.31 | -92.96       | -100.28 | -93.68 | -94.33       |
|                      | BeCl <sub>3</sub> +H+Ar                          | 8.56   | 2.31         | -9.63   | 12.39  | 7.99         | -4.52   | 11.80  | 11.80        |
| IIA "DaCl            | BeCl <sub>2</sub> +HCl+Ar                        | -88.32 | -90.13       | -104.38 | -87.33 | -89.26       | -103.58 | -89.56 | -91.49       |
| HAIBeCI <sub>3</sub> | HAr++BeCl3-                                      | 97.05  | 95.50        | 88.21   | 96.31  | 94.68        | 87.37   | 95.60  | 93.97        |
|                      | HArCl+BeCl <sub>2</sub>                          | 29.52  | 28.55        | 20.43   | 34.33  | 32.81        | 24.64   | 31.86  | 30.33        |
|                      | H++Ar+BeCl3-                                     | 192.33 | 186.90       | 172.39  | 188.10 | 182.57       | 168.50  | 189.35 | 183.83       |
|                      | HBeCl <sub>3</sub> +Kr                           | -79.13 | -79.39       | -86.87  | -78.87 | -79.19       | -86.60  | -80.04 | -80.36       |
|                      | BeCl <sub>3</sub> +H+Kr                          | 21.80  | 15.86        | 3.83    | 25.84  | 21.76        | 9.16    | 25.44  | 21.36        |
|                      | BeCl <sub>2</sub> +HCl+Kr                        | -75.08 | -76.57       | -90.92  | -73.89 | -75.49       | -89.90  | -75.92 | -77.52       |
| HKrBeCl <sub>3</sub> | HKr <sup>+</sup> +BeCl3 <sup>-</sup>             | 98.57  | 97.06        | 89.55   | 98.34  | 96.78        | 89.25   | 97.59  | 96.03        |
|                      | HKrCl+BeCl <sub>2</sub>                          | 30.33  | 25.66        | 17.46   | 30.51  | 28.48        | 20.91   | 28.26  | 26.24        |
|                      | H++Kr+BeCl3-                                     | 205.57 | 200.46       | 185.79  | 201.55 | 196.34       | 182.06  | 203.00 | 197.80       |
|                      | HBeCl <sub>3</sub> +Xe                           | -61.17 | -61.08       | -68.52  | -62.29 | -62.24       | -69.60  | -62.70 | -62.65       |
|                      | BeCl <sub>3</sub> +H+Xe                          | 39.77  | 34.17        | 22.17   | 42.42  | 38.71        | 26.16   | 42.78  | 39.07        |
| UV-D-Cl              | BeCl <sub>2</sub> +HCl+Xe                        | -57.12 | -58.26       | -72.58  | -57.31 | -58.54       | -72.90  | -58.57 | -59.81       |
| HXeBeCl <sub>3</sub> | HXe <sup>+</sup> +BeCl <sub>3</sub> <sup>-</sup> | 100.62 | 99.13        | 91.52   | 100.40 | 98.93        | 91.32   | 99.36  | 97.89        |
|                      | HXeCl+BeCl <sub>2</sub>                          | 23.43  | 22.77        | 14.58   | 27.70  | 26.05        | 19.48   | 25.58  | 23.93        |
|                      | H++Xe+BeCl3-                                     | 223.54 | 218.77       | 206.92  | 218.13 | 213.29       | 201.45  | 220.34 | 215.51       |
|                      | HBeCl <sub>3</sub> +Rn                           | -52.68 | -52.50       | -59.99  | -52.62 | -52.32       | -59.70  | -53.36 | -53.06       |
|                      | BeCl <sub>3</sub> +H+Rn                          | 48.25  | 42.75        | 30.70   | 52.09  | 48.63        | 36.06   | 52.12  | 48.66        |
| UD #D •C1            | BeCl <sub>2</sub> +HCl+Rn                        | -48.63 | -49.68       | -64.05  | -49.68 | -48.62       | -63.00  | -49.24 | -50.22       |
| HKnBeCl <sub>3</sub> | HRn <sup>+</sup> +BeCl <sub>3</sub> -            | 102.72 | 101.19       | 93.46   | 103.36 | 101.98       | 94.28   | 101.81 | 100.42       |
|                      | HRnCl+BeCl <sub>2</sub>                          | 23.41  | 22.43        | 14.14   | 27.18  | 27.18        | 18.09   | 25.19  | 24.37        |
|                      | H++Rn+BeCl3-                                     | 232.02 | 227.35       | 215.45  | 227.79 | 223.22       | 211.35  | 229.67 | 225.10       |

(b) The fragment energies of  $HNgBeCl_3$  (Ng=Ar - Rn) along six pathways

| Malazzla    | Dissociation                                     |        | ωB97XD       |        |        | MP2          |        | CCS    | D(T)         |
|-------------|--------------------------------------------------|--------|--------------|--------|--------|--------------|--------|--------|--------------|
| Molecule    | processes                                        | ΔΕ     | $\Delta E_0$ | ΔG     | <br>ΔΕ | $\Delta E_0$ | ΔG     | ΔΕ     | $\Delta E_0$ |
|             | HBeBr <sub>3</sub> +Ar                           | -89.82 | -90.67       | -98.28 | -88.76 | -89.55       | -96.84 | -90.41 | -91.19       |
|             | BeBr <sub>3</sub> +H+Ar                          | -3.48  | -9.35        | -20.97 | 0.13   | -4.12        | -16.47 | -0.42  | -4.67        |
| II A "DoD"  | BeBr <sub>2</sub> +HBr+Ar                        | -86.39 | -88.53       | -99.90 | -83.55 | -85.45       | -99.84 | -86.38 | -88.28       |
| HAIBeBI3    | HAr++BeBr3-                                      | 94.17  | 92.85        | 85.47  | 93.73  | 92.36        | 85.09  | 92.91  | 91.54        |
|             | HArBr+BeBr <sub>2</sub>                          | 25.73  | 24.50        | 19.31  | 31.00  | 29.20        | 21.02  | 27.35  | 25.55        |
|             | H++Ar+BeBr3-                                     | 189.46 | 184.25       | 172.39 | 185.52 | 180.25       | 168.50 | 186.67 | 181.40       |
|             | HBeBr <sub>3</sub> +Kr                           | -76.75 | -77.28       | -84.88 | -77.28 | -75.84       | -83.27 | -76.82 | -77.31       |
|             | BeBr <sub>3</sub> +H+Kr                          | 9.59   | 4.04         | -7.56  | 13.55  | 13.55        | -2.91  | 13.17  | 9.21         |
| UIV #D • D# | BeBr <sub>2</sub> +HBr+Kr                        | -73.32 | -75.13       | -86.49 | -70.13 | -71.74       | -86.27 | -72.79 | -74.40       |
| HKIBeBI3    | HKr <sup>+</sup> +BeBr <sub>3</sub> -            | 95.53  | 94.25        | 86.76  | 95.72  | 94.39        | 86.86  | 94.85  | 93.52        |
|             | HKrBr+BeBr <sub>2</sub>                          | 23.13  | 21.30        | 16.75  | 27.69  | 26.54        | 18.26  | 24.65  | 23.50        |
|             | H++Kr+BeBr3-                                     | 202.53 | 197.64       | 185.79 | 198.94 | 193.96       | 182.06 | 200.26 | 195.28       |
|             | HBeBr <sub>3</sub> +Xe                           | -58.96 | -59.23       | -66.81 | -58.71 | -58.86       | -66.25 | -59.48 | -59.63       |
|             | BeBr <sub>3</sub> +H+Xe                          | 27.38  | 22.09        | 10.51  | 30.18  | 26.57        | 14.11  | 26.57  | 26.89        |
| IIV aD aD # | BeBr <sub>2</sub> +HBr+Xe                        | -55.53 | -57.08       | -68.43 | -53.50 | -54.76       | -69.25 | -55.46 | -56.72       |
| ILEDEDI3    | HXe <sup>+</sup> +BeBr <sub>3</sub> <sup>-</sup> | 97.41  | 96.06        | 88.45  | 97.84  | 96.58        | 88.95  | 96.61  | 95.34        |
|             | HXeBr+BeBr <sub>2</sub>                          | 20.53  | 19.60        | 14.48  | 25.54  | 24.81        | 16.55  | 22.80  | 22.07        |
|             | H++Xe+BeBr3-                                     | 220.32 | 215.70       | 203.86 | 215.57 | 210.94       | 199.09 | 217.59 | 212.96       |
|             | HBeBr <sub>3</sub> +Rn                           | -50.45 | -50.55       | -58.23 | -48.89 | -48.77       | -56.21 | -50.06 | -49.95       |
|             | BeBr <sub>3</sub> +H+Rn                          | 35.89  | 30.77        | 19.08  | 40.01  | 36.65        | 24.15  | 39.92  | 36.57        |
| UD #D »D #  | BeBr <sub>2</sub> +HBr+Rn                        | -47.02 | -48.40       | -59.85 | -48.40 | -44.67       | -59.21 | -46.04 | -47.04       |
| HKIIBeBI3   | HRn <sup>+</sup> +BeBr <sub>3</sub> <sup>-</sup> | 99.53  | 98.22        | 90.44  | 100.97 | 99.78        | 92.05  | 99.14  | 97.96        |
|             | HRnBr+BeBr <sub>2</sub>                          | 20.34  | 19.26        | 14.00  | 24.98  | 23.58        | 15.74  | 22.42  | 21.02        |
|             | H++Rn+BeBr3-                                     | 228.83 | 224.37       | 212.44 | 225.39 | 221.02       | 209.12 | 227.01 | 222.64       |

(c) The fragment energies of  $HNgBeBr_3$  (Ng=Ar - Rn) along six pathways

| Molecule              | Dissociation                                     | (       | 0B97X-D      |         | MP2     |              |         | CCSD(T) | )            |
|-----------------------|--------------------------------------------------|---------|--------------|---------|---------|--------------|---------|---------|--------------|
|                       | processes                                        | ΔΕ      | $\Delta E_0$ | ΔG      | ΔΕ      | $\Delta E_0$ | ΔG      | ΔΕ      | $\Delta E_0$ |
|                       | HMgF <sub>3</sub> +Ar                            | -101.02 | -100.41      | -107.72 | -103.61 | -103.09      | -110.34 | -103.31 | -102.80      |
|                       | MgF <sub>3</sub> +H+Ar                           | 47.61   | 40.59        | 27.96   | 64.90   | 59.09        | 45.63   | 64.00   | 58.18        |
|                       | MgF <sub>2</sub> +HF                             | -82.53  | -83.54       | -97.48  | -84.57  | -85.59       | -99.50  | -84.41  | -85.43       |
| HArMgF <sub>3</sub>   | HAr <sup>+</sup> +MgF <sub>3</sub> <sup>-</sup>  | 110.52  | 107.59       | 99.89   | 107.67  | 105.61       | 97.96   | 108.00  | 105.94       |
|                       | HArF+MgF <sub>2</sub>                            | 50.22   | 49.38        | 41.44   | 53.98   | 53.12        | 45.22   | 53.84   | 52.98        |
|                       | H <sup>+</sup> +Ar+MgF <sub>3</sub> <sup>-</sup> | 205.81  | 198.99       | 186.81  | 199.46  | 193.50       | 181.37  | 201.76  | 195.80       |
|                       | HMgF <sub>3</sub> +Kr                            | -87.29  | -86.26       | -93.60  | -90.17  | -89.33       | -96.64  | -89.57  | -88.72       |
|                       | MgF <sub>3</sub> +H+Kr                           | 61.34   | 54.75        | 42.08   | 78.33   | 72.86        | 59.33   | 77.74   | 72.26        |
| IIIZaM aE             | MgF <sub>2</sub> +HF                             | -68.80  | -69.39       | -83.36  | -71.13  | -71.82       | -85.80  | -70.67  | -71.36       |
| HKINIGF <sub>3</sub>  | HKr <sup>+</sup> +MgF <sub>3</sub> -             | 112.54  | 109.75       | 101.90  | 109.68  | 107.70       | 99.87   | 110.10  | 108.12       |
|                       | HKrF+MgF <sub>2</sub>                            | 45.60   | 44.82        | 36.85   | 48.26   | 47.45        | 39.50   | 48.19   | 47.38        |
|                       | H++Kr+MgF3-                                      | 219.54  | 213.15       | 200.93  | 212.89  | 207.27       | 195.07  | 215.50  | 209.88       |
|                       | HMgF <sub>3</sub> +Xe                            | -68.16  | -66.66       | -73.77  | -72.99  | -71.70       | -78.95  | -71.34  | -70.05       |
|                       | MgF <sub>3</sub> +H+Xe                           | 80.47   | 74.35        | 61.90   | 95.52   | 90.48        | 77.02   | 95.97   | 90.93        |
| UV MaE                | MgF <sub>2</sub> +HF                             | -49.68  | -49.79       | -63.53  | -53.95  | -54.20       | -68.11  | -52.44  | -52.69       |
| nrewigr <sub>3</sub>  | HXe <sup>+</sup> +MgF <sub>3</sub> -             | 115.76  | 113.12       | 105.35  | 112.35  | 110.53       | 102.63  | 112.75  | 110.94       |
|                       | HXeF+MgF <sub>2</sub>                            | 40.95   | 40.33        | 32.56   | 43.95   | 43.23        | 35.30   | 43.69   | 42.98        |
|                       | H++Xe+MgF3-                                      | 238.67  | 232.75       | 220.76  | 230.08  | 224.90       | 212.77  | 233.73  | 228.55       |
|                       | HMgF <sub>3</sub> +Rn                            | -72.64  | -69.76       | -76.29  | -63.20  | -61.62       | -68.88  | -61.65  | -60.07       |
|                       | MgF <sub>3</sub> +H+Rn                           | 75.99   | 71.25        | 59.38   | 105.31  | 100.56       | 87.09   | 105.66  | 100.91       |
| UD#MeE                | MgF <sub>2</sub> +HF                             | -54.15  | -52.89       | -66.06  | -44.16  | -44.12       | -58.04  | -42.75  | -42.71       |
| HKIIVIGF <sub>3</sub> | HRn <sup>+</sup> +MgF <sub>3</sub> <sup>-</sup>  | 104.89  | 103.49       | 96.24   | 115.44  | 113.74       | 105.76  | 115.56  | 113.85       |
|                       | HRnF+MgF <sub>2</sub>                            | 29.21   | 29.40        | 22.15   | 45.01   | 44.20        | 36.22   | 44.74   | 43.94        |
|                       | H++Rn+MgF3 <sup>-</sup>                          | 234.19  | 229.65       | 218.24  | 239.87  | 234.98       | 222.84  | 243.42  | 238.53       |

(d) The fragment energies of HNgMgF3 (Ng=Ar - Rn) along six pathways

| Malagula              | Dissociation                                     |        | ωB97XD       |        |        | MP2          |        | CCS    | D(T)         |
|-----------------------|--------------------------------------------------|--------|--------------|--------|--------|--------------|--------|--------|--------------|
| Molecule              | processes                                        | ΔΕ     | $\Delta E_0$ | ΔG     | ΔΕ     | $\Delta E_0$ | ΔG     | ΔΕ     | $\Delta E_0$ |
|                       | HMgCl <sub>3</sub> +Kr                           | -77.01 | -77.17       | -84.71 | -77.54 | -77.81       | -85.48 | -78.43 | -78.70       |
|                       | MgCl <sub>3</sub> +H+Kr                          | 30.53  | 24.77        | 12.68  | 36.03  | 31.26        | 18.20  | 35.35  | 30.58        |
| IIV#MaCl              | MgCl <sub>2</sub> +HCl+Kr                        | -67.12 | -68.51       | -82.93 | -67.12 | -67.12       | -83.31 | -68.89 | -70.30       |
| IIIIIgC13             | HKr <sup>+</sup> +MgCl <sub>3</sub> -            | 96.71  | 95.22        | 87.55  | 96.31  | 94.79        | 87.14  | 95.57  | 94.04        |
|                       | HKrCl+MgCl <sub>2</sub>                          | 34.44  | 33.72        | 25.45  | 36.89  | 35.07        | 27.49  | 35.28  | 33.46        |
|                       | H++Kr+MgCl3-                                     | 203.71 | 198.61       | 186.59 | 199.52 | 194.35       | 182.34 | 200.98 | 195.81       |
|                       | HMgCl <sub>3</sub> +Xe                           | -59.35 | -59.17       | -66.61 | -61.36 | -61.25       | -68.86 | -61.46 | -61.35       |
|                       | MgCl <sub>3</sub> +H+Xe                          | 48.20  | 42.76        | 30.77  | 52.22  | 47.82        | 34.82  | 52.33  | 47.93        |
| UV McCl               | MgCl <sub>2</sub> +HCl+Xe                        | -49.45 | -50.51       | -64.83 | -51.32 | -52.36       | -66.69 | -51.92 | -52.95       |
| HAEMIGCI <sub>3</sub> | HXe <sup>+</sup> +MgCl <sub>3</sub> -            | 98.46  | 96.97        | 89.27  | 97.99  | 96.54        | 88.83  | 96.98  | 95.54        |
|                       | HXeCl+MgCl <sub>2</sub>                          | 31.09  | 30.52        | 22.32  | 33.69  | 32.24        | 25.69  | 32.24  | 30.79        |
|                       | H++Xe+MgCl3-                                     | 221.37 | 216.61       | 204.68 | 215.71 | 210.91       | 198.96 | 217.96 | 213.15       |
|                       | HMgCl <sub>3</sub> +Rn                           | -50.90 | -50.45       | -57.87 | -51.84 | -51.48       | -59.09 | -52.25 | -51.89       |
|                       | MgCl <sub>3</sub> +H+Rn                          | 56.64  | 51.48        | 39.51  | 61.74  | 57.59        | 44.59  | 61.54  | 57.39        |
| IID nMaCl             | MgCl <sub>2</sub> +HCl+Rn                        | -41.00 | -41.79       | -56.09 | -41.80 | -41.79       | -56.92 | -42.71 | -43.49       |
| IIKIIVIGCI3           | HRn <sup>+</sup> +MgCl <sub>3</sub> <sup>-</sup> | 100.51 | 99.17        | 91.43  | 100.80 | 99.44        | 91.66  | 99.30  | 99.30        |
|                       | HRnCl+MgCl <sub>2</sub>                          | 31.03  | 30.32        | 22.10  | 33.02  | 32.39        | 24.17  | 31.73  | 31.10        |
|                       | H++Rn+MgCl3-                                     | 229.82 | 225.33       | 213.42 | 225.23 | 220.68       | 208.73 | 227.16 | 222.62       |

(e) The fragment energies of  $HNgMgCl_3$  (Ng=Ar - Rn) along six pathways

| Molecule             | Dissociation                                     |        | ωB97XD       |        |   |        | MP2          |            | CCS    | D(T)         |
|----------------------|--------------------------------------------------|--------|--------------|--------|---|--------|--------------|------------|--------|--------------|
| Molecule             | processes                                        | ΔΕ     | $\Delta E_0$ | ΔG     |   | ΔΕ     | $\Delta E_0$ | $\Delta G$ | ΔΕ     | $\Delta E_0$ |
|                      | HMgBr <sub>3</sub> +Kr                           | -74.80 | -75.28       | -82.95 | - | -74.05 | -74.53       | -82.26     | -75.26 | -75.74       |
|                      | MgBr <sub>3</sub> +H+Kr                          | 3.98   | -0.99        | -14.78 |   | 4.57   | -0.38        | -14.11     | 4.36   | -0.59        |
| IIV #MaD#            | MgBr <sub>2</sub> +HBr                           | -65.69 | -67.14       | -81.53 | - | -64.34 | -65.81       | -80.30     | -66.24 | -67.71       |
| IIIIIgDI3            | HKr <sup>+</sup> +MgBr <sub>3</sub> -            | 93.91  | 92.62        | 84.00  |   | 93.89  | 92.57        | 83.87      | 92.99  | 91.67        |
|                      | HKrBr+MgBr <sub>2</sub>                          | 30.75  | 29.30        | 21.72  |   | 33.48  | 32.46        | 24.24      | 31.20  | 30.18        |
|                      | HKrBr+MgBr <sub>2</sub>                          | 200.92 | 196.02       | 183.03 | 1 | 197.11 | 192.14       | 179.07     | 198.40 | 193.43       |
|                      | HMgBr <sub>3</sub> +Xe                           | -57.29 | -57.51       | -65.18 | - | -57.79 | -57.93       | -65.60     | -58.27 | -58.41       |
|                      | MgBr <sub>3</sub> +H+Xe                          | 21.50  | 16.79        | 2.99   |   | 20.82  | 16.22        | 2.55       | 21.35  | 16.75        |
| UV MoDa              | MgBr <sub>2</sub> +HBr                           | -48.17 | -49.36       | -63.76 | - | -48.08 | -49.21       | -63.64     | -49.25 | -50.38       |
| HAewgBr <sub>3</sub> | HXe <sup>+</sup> +MgBr <sub>3</sub> -            | 95.52  | 94.16        | 85.39  |   | 95.64  | 94.38        | 85.60      | 94.40  | 93.15        |
|                      | HXeBr+MgBr <sub>2</sub>                          | 27.89  | 27.32        | 19.14  |   | 30.96  | 30.36        | 22.17      | 29.00  | 28.40        |
|                      | H++Xe+MgBr3-                                     | 218.43 | 213.79       | 200.80 | 2 | 213.36 | 208.74       | 195.73     | 215.38 | 210.76       |
|                      | HMgBr <sub>3</sub> +Rn                           | -48.81 | -48.71       | -56.38 |   | -48.12 | -47.99       | -55.68     | -48.98 | -48.85       |
|                      | MgBr <sub>3</sub> +H+Rn                          | 29.97  | 25.59        | 11.79  |   | 30.49  | 26.15        | 12.46      | 30.64  | 26.30        |
| IID#MaD#             | MgBr <sub>2</sub> +HBr                           | -39.69 | -40.56       | -54.96 | - | -38.41 | -39.28       | -53.72     | -39.96 | -40.83       |
| IIIIIIIgDI 3         | HRn <sup>+</sup> +MgBr <sub>3</sub> <sup>-</sup> | 97.61  | 96.43        | 87.60  |   | 98.61  | 97.44        | 88.57      | 96.81  | 95.64        |
|                      | HRnBr+MgBr <sub>2</sub>                          | 27.66  | 27.10        | 18.89  |   | 30.25  | 28.98        | 21.23      | 28.50  | 27.23        |
|                      | H++Rn+MgBr3-                                     | 226.91 | 222.59       | 209.60 | 2 | 223.03 | 218.68       | 205.64     | 224.68 | 220.32       |

(f) The fragment energies of  $HNgMgBr_3$  (Ng=Ar - Rn) along six pathways

| Malaanla                         | Dissociation                                     | (      | ωB97X-D      |         | MP2     |              |         | CCSD(T) | )            |
|----------------------------------|--------------------------------------------------|--------|--------------|---------|---------|--------------|---------|---------|--------------|
| Molecule                         | processes                                        | ΔΕ     | $\Delta E_0$ | ΔG      | ΔΕ      | $\Delta E_0$ | ΔG      | ΔΕ      | $\Delta E_0$ |
|                                  | HCaF <sub>3</sub> +Kr                            | -96.81 | -96.67       | -104.40 | -101.16 | -100.70      | -108.11 | -100.24 | -100.24      |
|                                  | CaF <sub>3</sub> +H+Kr                           | 60.87  | 54.35        | 40.64   | 73.67   | 67.96        | 53.84   | 72.75   | 67.05        |
| IIV#CoE                          | CaF <sub>2</sub> +HF                             | -72.05 | -72.65       | -85.14  | -74.25  | -74.81       | -88.86  | -74.04  | -74.60       |
| пкісаг <sub>3</sub>              | HKr <sup>+</sup> +CaF <sub>3</sub> <sup>-</sup>  | 114.51 | 112.64       | 104.97  | 112.81  | 110.77       | 102.88  | 113.33  | 111.29       |
|                                  | HKrF+CaF <sub>2</sub>                            | 42.35  | 41.55        | 35.08   | 45.14   | 44.46        | 36.44   | 44.82   | 44.14        |
|                                  | H <sup>+</sup> +Kr+CaF <sub>3</sub> <sup>-</sup> | 221.51 | 216.04       | 204.00  | 216.02  | 210.33       | 198.08  | 218.74  | 213.06       |
|                                  | HCaF <sub>3</sub> +Xe                            | -77.43 | -76.90       | -84.58  | -83.64  | -82.70       | -90.04  | -82.09  | -81.16       |
|                                  | CaF <sub>3</sub> +H+Xe                           | 80.24  | 74.11        | 60.45   | 91.19   | 85.96        | 71.91   | 91.37   | 86.13        |
| UV <sub>2</sub> C <sub>2</sub> E | CaF <sub>2</sub> +HF+Xe                          | -52.68 | -52.89       | -65.33  | -56.73  | -56.82       | -70.79  | -55.43  | -55.51       |
| плесагз                          | HXe <sup>+</sup> +CaF <sub>3</sub> -             | 117.97 | 116.17       | 108.40  | 115.82  | 113.97       | 106.02  | 116.38  | 114.53       |
|                                  | HXeF+CaF <sub>2</sub>                            | 37.95  | 37.23        | 30.77   | 41.16   | 40.61        | 32.62   | 40.71   | 40.15        |
|                                  | H++Xe+CaF3                                       | 240.89 | 235.80       | 223.81  | 233.55  | 228.33       | 216.15  | 237.36  | 232.14       |
|                                  | HCaF <sub>3</sub> +Rn                            | -68.60 | -67.73       | -75.36  | -73.81  | -72.59       | -79.93  | -72.36  | -71.14       |
|                                  | CaF <sub>3</sub> +H+Rn                           | 89.08  | 83.28        | 69.67   | 101.02  | 96.07        | 82.02   | 101.10  | 96.15        |
| HRnCaF <sub>3</sub>              | CaF <sub>2</sub> +HF+Rn                          | -43.84 | -43.72       | -56.10  | -46.91  | -46.70       | -60.68  | -45.70  | -45.49       |
|                                  | HRn++CaF3-                                       | 120.42 | 118.81       | 111.04  | 118.94  | 117.20       | 109.19  | 119.22  | 117.48       |
|                                  | HRnF+CaF <sub>2</sub>                            | 39.52  | 38.57        | 32.11   | 42.26   | 41.62        | 33.58   | 41.79   | 41.15        |
|                                  | H++Rn+CaF3-                                      | 249.72 | 244.97       | 233.04  | 243.37  | 238.44       | 226.26  | 247.09  | 242.16       |

(g) The fragment energies of  $HNgCaF_3$  (Ng=Ar - Rn) along six pathways

| Malaaula   | Dissociation                                     |        | ωB97XD       |        |        | MP2          |            | CCS    | D(T)         |
|------------|--------------------------------------------------|--------|--------------|--------|--------|--------------|------------|--------|--------------|
| Molecule   | processes                                        | ΔΕ     | $\Delta E_0$ | ΔG     | ΔΕ     | $\Delta E_0$ | $\Delta G$ | ΔΕ     | $\Delta E_0$ |
|            | HCaCl <sub>3</sub> +Kr                           | -78.31 | -78.81       | -86.20 | -79.82 | -80.34       | -87.69     | -79.83 | -80.35       |
|            | CaCl <sub>3</sub> +H+Kr                          | 32.56  | 26.74        | 14.06  | 38.59  | 33.57        | 19.57      | 38.33  | 33.31        |
|            | CaCl <sub>2</sub> +HCl+Kr                        | -65.68 | -67.04       | -79.77 | -67.44 | -67.44       | -81.68     | -67.44 | -70.24       |
| IINICaCI3  | HKr++CaCl3-                                      | 97.45  | 95.92        | 88.32  | 97.22  | 95.67        | 88.02      | 96.47  | 94.92        |
|            | HKrCl+CaCl <sub>2</sub>                          | 35.87  | 35.19        | 28.61  | 36.95  | 35.09        | 29.12      | 35.38  | 33.52        |
|            | H++Kr+CaCl3-                                     | 204.45 | 199.31       | 187.35 | 200.43 | 195.24       | 183.22     | 201.87 | 196.68       |
|            | HCaCl <sub>3</sub> +Xe                           | -60.81 | -60.91       | -68.19 | -63.81 | -63.92       | -71.18     | -63.02 | -63.02       |
|            | CaCl <sub>3</sub> +H+Xe                          | 50.06  | 44.65        | 32.08  | 54.61  | 49.99        | 36.08      | 55.15  | 50.53        |
|            | CaCl <sub>2</sub> +HCl+Xe                        | -48.17 | -49.14       | -61.75 | -51.42 | -52.47       | -65.18     | -51.97 | -53.02       |
| ILLECACI3  | HXe <sup>+</sup> +CaCl <sub>3</sub> -            | 99.05  | 97.58        | 89.95  | 98.72  | 97.29        | 89.59      | 97.71  | 96.28        |
|            | HXeCl+CaCl <sub>2</sub>                          | 32.37  | 31.89        | 25.40  | 33.59  | 32.13        | 27.20      | 32.18  | 30.73        |
|            | H++Xe+CaCl3-                                     | 221.96 | 217.21       | 205.36 | 216.45 | 211.66       | 199.72     | 218.69 | 213.90       |
|            | HCaCl <sub>3</sub> +Rn                           | -52.41 | -52.41       | -59.91 | -54.37 | -54.22       | -61.48     | -53.88 | -53.74       |
|            | CaCl <sub>3</sub> +H+Rn                          | 58.46  | 53.14        | 40.36  | 64.05  | 59.69        | 45.78      | 64.28  | 59.91        |
| IID n CoCl | CaCl <sub>2</sub> +HCl+Rn                        | -39.78 | -40.65       | -53.47 | -41.98 | -42.77       | -55.48     | -42.84 | -43.63       |
| IIKIICaCI3 | HRn <sup>+</sup> +CaCl <sub>3</sub> <sup>-</sup> | 101.05 | 99.55        | 91.65  | 101.46 | 100.11       | 92.35      | 99.96  | 98.61        |
|            | HRnCl+CaCl <sub>2</sub>                          | 32.26  | 31.46        | 24.72  | 32.84  | 32.20        | 25.61      | 31.59  | 30.96        |
|            | H++Rn+CaCl3-                                     | 230.36 | 225.71       | 213.65 | 225.89 | 221.35       | 209.42     | 227.82 | 223.29       |

(h) The fragment energies of  $HNgCaCl_3$  (Ng=Ar - Rn) along six pathways

| Molecule Dissocia    | Disconintion processo                            |            | ωB97XD       |        |        | MP2          |            | CCSD(T) |              |  |
|----------------------|--------------------------------------------------|------------|--------------|--------|--------|--------------|------------|---------|--------------|--|
| Molecule             | Dissociation processes                           | $\Delta E$ | $\Delta E_0$ | ΔG     | ΔΕ     | $\Delta E_0$ | $\Delta G$ | ΔΕ      | $\Delta E_0$ |  |
|                      | HCaBr <sub>3</sub> +Kr                           | -74.59     | -75.29       | -82.68 | -75.08 | -76.04       | -83.43     | -75.07  | -76.03       |  |
|                      | CaBr <sub>3</sub> +H+Kr                          | 20.63      | 15.21        | 3.41   | 27.07  | 22.27        | 8.40       | 26.53   | 21.73        |  |
| IIV #CoD#            | CaBr <sub>2</sub> +HBr                           | -63.25     | -64.66       | -79.27 | -63.35 | -64.83       | -79.46     | -65.05  | -66.53       |  |
| INICadi <sub>3</sub> | HKr <sup>+</sup> +CaBr <sub>3</sub> -            | 94.05      | 92.77        | 85.27  | 94.28  | 92.92        | 85.26      | 93.29   | 91.93        |  |
|                      | HKrBr+CaBr <sub>2</sub>                          | 33.20      | 31.77        | 23.98  | 34.47  | 33.44        | 25.07      | 32.39   | 31.36        |  |
|                      | H++Kr+CaBr3-                                     | 201.06     | 196.17       | 184.30 | 197.49 | 192.48       | 180.46     | 198.70  | 193.69       |  |
|                      | HCaBr <sub>3</sub> +Xe                           | -57.28     | -57.68       | -65.02 | -59.06 | -59.61       | -66.93     | -58.32  | -58.87       |  |
|                      | CaBr <sub>3</sub> +H+Xe                          | 37.95      | 32.82        | 21.07  | 43.09  | 38.69        | 24.90      | 43.29   | 38.89        |  |
| UV a C a D a         | CaBr <sub>2</sub> +HBr+Xe                        | -45.93     | -47.06       | -61.61 | -47.32 | -48.41       | -62.96     | -48.29  | -49.37       |  |
| плесавг <sub>3</sub> | HXe <sup>+</sup> +CaBr <sub>3</sub> -            | 95.46      | 94.14        | 86.55  | 95.79  | 94.54        | 86.82      | 94.54   | 93.23        |  |
|                      | HXeBr+CaBr <sub>2</sub>                          | 30.13      | 29.62        | 21.30  | 31.72  | 31.16        | 22.84      | 29.97   | 29.41        |  |
|                      | H++Xe+CaBr3-                                     | 218.37     | 213.78       | 201.96 | 213.51 | 208.90       | 196.96     | 215.46  | 210.85       |  |
|                      | HCaBr <sub>3</sub> +Rn                           | -48.87     | -49.01       | -56.49 | -49.50 | -49.79       | -57.11     | -49.13  | -49.42       |  |
|                      | CaBr <sub>3</sub> +H+Rn                          | 46.35      | 41.49        | 29.60  | 52.65  | 48.51        | 34.71      | 52.47   | 48.34        |  |
| UD#CaD#              | CaBr <sub>2</sub> +HBr+Rn                        | -37.53     | -38.39       | -53.08 | -37.76 | -38.59       | -53.15     | -39.10  | -39.93       |  |
| HKnCaBr <sub>3</sub> | HRn <sup>+</sup> +CaBr <sub>3</sub> <sup>-</sup> | 97.47      | 96.29        | 88.50  | 98.64  | 97.48        | 89.70      | 96.78   | 95.62        |  |
|                      | HRnBr+CaBr <sub>2</sub>                          | 27.23      | 29.27        | 20.77  | 30.89  | 29.67        | 21.81      | 29.36   | 29.36        |  |
|                      | H++Rn+CaBr3-                                     | 226.77     | 222.44       | 210.49 | 223.07 | 218.72       | 206.77     | 224.64  | 220.30       |  |

(i) The fragment energies of  $HNgCaBr_3(Ng=Ar - Rn)$  along six pathways



**Fig. S16** The optimized geometries of transition state in HNgMX<sub>3</sub> (Ng=Ar-Rn) are performed at the MP2/def2-TZVP level (the corresponding value from  $\omega$ B97XD/def2-TZVP level in parentheses).

|    |                      |                       | ωB97XI                  | )                     |                       | MP2                     |                       |                       | CCSD(T)-                  | SP                    |
|----|----------------------|-----------------------|-------------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|---------------------------|-----------------------|
| М  | HNgY                 | $\Delta E^{\ddagger}$ | $\Delta E_0^{\ddagger}$ | $\Delta G^{\ddagger}$ | $\Delta E^{\ddagger}$ | $\Delta E_0^{\ddagger}$ | $\Delta G^{\ddagger}$ | $\Delta E^{\ddagger}$ | $\Delta E_0$ <sup>‡</sup> | $\Delta G^{\ddagger}$ |
|    | HArBeF <sub>3</sub>  | 2.01                  | 1.40                    | 1.53                  | 1.28                  | 0.64                    | 0.76                  | 1.31                  | 0.67                      | 0.79                  |
|    | HKrBeF <sub>3</sub>  | 6.01                  | 5.32                    | 5.36                  | 5.14                  | 4.34                    | 4.35                  | 5.32                  | 4.52                      | 4.53                  |
|    | HXeBeF <sub>3</sub>  | 11.64                 | 10.74                   | 10.56                 | 10.20                 | 9.34                    | 9.22                  | 10.64                 | 9.78                      | 9.66                  |
|    | HRnBeF <sub>3</sub>  | 14.90                 | 13.71                   | 13.75                 | 13.72                 | 12.88                   | 12.70                 | 14.07                 | 13.24                     | 13.05                 |
|    | HArBeCl <sub>3</sub> | 0.81                  | 0.26                    | 0.49                  | 0.81                  | 0.26                    | 0.49                  | 0.30                  | -0.15                     | -0.02                 |
| D. | HKrBeCl <sub>3</sub> | 4.19                  | 3.50                    | 3.54                  | 3.59                  | 2.94                    | 3.00                  | 3.73                  | 3.09                      | 3.14                  |
| Ве | HXeBeCl <sub>3</sub> | 9.57                  | 8.69                    | 8.41                  | 8.57                  | 7.82                    | 7.62                  | 8.92                  | 8.17                      | 7.97                  |
|    | HRnBeCl <sub>3</sub> | 12.56                 | 11.59                   | 11.21                 | 12.56                 | 11.59                   | 11.21                 | 12.27                 | 11.52                     | 10.92                 |
|    | HArBeBr <sub>3</sub> | 0.42                  | -0.12                   | 0.14                  | 0.07                  | -0.28                   | 0.12                  | 0.08                  | -0.27                     | 0.13                  |
|    | HKrBeBr <sub>3</sub> | 3.61                  | 2.94                    | 3.10                  | 3.11                  | 2.52                    | 2.65                  | 3.29                  | 2.70                      | 2.83                  |
|    | HXeBeBr <sub>3</sub> | 9.02                  | 8.18                    | 8.06                  | 8.16                  | 7.47                    | 7.37                  | 8.57                  | 7.88                      | 7.78                  |
|    | HRnBeBr <sub>3</sub> | 11.80                 | 10.81                   | 10.39                 | 11.44                 | 10.75                   | 10.62                 | 11.74                 | 11.05                     | 10.92                 |
|    | HArMgF <sub>3</sub>  | 0.66                  | 0.13                    | 0.36                  | 0.24                  | -0.23                   | 0.04                  | 0.27                  | -0.20                     | 0.07                  |
|    | HKrMgF <sub>3</sub>  | 4.24                  | 3.54                    | 3.64                  | 3.52                  | 2.80                    | 2.93                  | 3.71                  | 3.00                      | 3.12                  |
|    | HXeMgF <sub>3</sub>  | 10.06                 | 9.22                    | 9.30                  | 8.69                  | 7.88                    | 7.90                  | 9.21                  | 8.40                      | 8.42                  |
|    | HRnMgF <sub>3</sub>  | 13.32                 | 12.05                   | 11.29                 | 12.23                 | 12.09                   | 12.18                 | 12.67                 | 12.54                     | 12.62                 |
|    | HKrMgCl <sub>3</sub> | 2.37                  | 1.73                    | 1.90                  | 1.94                  | 1.36                    | 1.54                  | 2.08                  | 1.50                      | 1.68                  |
| Ма | HXeMgCl <sub>3</sub> | 7.36                  | 6.56                    | 6.60                  | 6.51                  | 5.82                    | 5.83                  | 6.89                  | 6.19                      | 6.21                  |
| Mg | HRnMgCl <sub>3</sub> | 10.17                 | 9.29                    | 9.12                  | 9.71                  | 9.00                    | 8.98                  | 10.00                 | 9.30                      | 9.27                  |
|    | HKrMgBr <sub>3</sub> | 1.95                  | 1.35                    | 1.65                  | 1.60                  | 1.06                    | 1.29                  | 1.76                  | 1.21                      | 1.45                  |
|    | HXeMgBr              | 6.93                  | 6.09                    | 6.14                  | 6.18                  | 5.52                    | 5.59                  | 6.58                  | 5.92                      |                       |
|    | 3                    |                       |                         |                       |                       |                         |                       |                       |                           | 5.99                  |
|    | HRnMgBr              | 9.53                  | 8.76                    | 8.72                  | 9.16                  | 8.50                    | 8.55                  | 9.51                  | 8.85                      | 8 9                   |
|    | 3                    |                       |                         |                       |                       |                         |                       |                       |                           | 8.9                   |
|    | HKrCaF <sub>3</sub>  | 3.10                  | 2.37                    | 2.55                  | 2.27                  | 1.62                    | 1.80                  | 2.43                  | 1.78                      | 1.96                  |
|    | HXeCaF <sub>3</sub>  | 9.28                  | 8.39                    | 8.48                  | 7.85                  | 7.09                    | 7.18                  | 8.42                  | 7.66                      | 7.75                  |
|    | HRnCaF <sub>3</sub>  | 12.58                 | 11.71                   | 11.75                 | 11.43                 | 10.73                   | 10.80                 | 12.00                 | 11.29                     | 11.37                 |
|    | HKrCaCl <sub>3</sub> | 1.32                  | 0.76                    | 0.96                  | 0.93                  | 0.40                    | 0.65                  | 1.05                  | 0.52                      | 0.77                  |
| Ca | HXeCaCl <sub>3</sub> | 6.06                  | 5.37                    | 5.47                  | 5.26                  | 4.60                    | 4.72                  | 5.65                  | 4.99                      | 5.11                  |
|    | HRnCaCl <sub>3</sub> | 8.76                  | 7.95                    | 7.83                  | 8.27                  | 7.59                    | 7.68                  | 8.63                  | 7.96                      | 8.04                  |
|    | HKrCaBr <sub>3</sub> | 0.98                  | 0.46                    | 0.91                  | 0.69                  | 0.19                    | 0.49                  | 0.81                  | 0.31                      | 0.61                  |
|    | HXeCaBr <sub>3</sub> | 5.58                  | 4.84                    | 5.04                  | 4.86                  | 4.22                    | 4.36                  | 5.27                  | 4.62                      | 4.77                  |
|    | HRnCaBr <sub>3</sub> | 8.05                  | 7.27                    | 7.26                  | 7.62                  | 7.24                    | 7.68                  | 8.01                  | 7.63                      | 8.07                  |

Table S11. The energy barriers of  $HNgMX_3$  along channel 5 at various levels (in kcal/mol).

 $\Delta E^{\ddagger}$  is the ZPVE-uncorrected reaction energy;  $\Delta E_0^{\ddagger}$  is the ZPVE-corrected reaction energy;  $\Delta G^{\ddagger}$  is the reaction free energy



Fig. S17 The comparison of the change in X2-Ng and X3-Ng bond length from stable configuration to transition state (Å)

|                            |              | MP2                               |                       |                           |                     |                   |                      | ωB97X                              | (D                    |
|----------------------------|--------------|-----------------------------------|-----------------------|---------------------------|---------------------|-------------------|----------------------|------------------------------------|-----------------------|
|                            |              | stable                            | TS                    | differen                  | ce                  | -                 | stable               | TS                                 | difference            |
|                            | r(M-X1)      | 1.878                             | 1.883                 | -0.005                    |                     |                   | 1.876                | 1.880                              | -0.004                |
|                            | r(M-X2)      | 1.936                             | 1.985                 | -0.049                    |                     |                   | 1.933                | 1.989                              | -0.056                |
|                            | r(M-X3)      | 2.021                             | 1.981                 | 0.040                     |                     |                   | 2.037                | 1.989                              | 0.048                 |
| HKrBeCl <sub>3</sub>       | r(X2-Ng)     | 3.213                             | 3.078                 | 0.135                     |                     |                   | 3.269                | 3.098                              | 0.171                 |
|                            | r(X3-Ng)     | 2.724                             | 2.954                 | -0.230                    |                     |                   | 2.732                | 2.973                              | -0.241                |
|                            | r(Ng-H)      | 1.435                             | 1.418                 | 0.017                     |                     |                   | 1.446                | 1.427                              | 0.019                 |
|                            | r(X2-H)      | 3.961                             | 2.845                 | 1.116                     |                     |                   | 4.040                | 2.853                              | 1.187                 |
|                            | r(M-X1)      | 1.877                             | 1.884                 | -0.007                    |                     |                   | 1.874                | 1.883                              | -0.009                |
|                            | r(M-X2)      | 1.927                             | 1.987                 | -0.060                    |                     |                   | 1.925                | 1.994                              | -0.069                |
|                            | r(M-X3)      | 2.031                             | 1.974                 | 0.057                     |                     |                   | 2.047                | 1.979                              | 0.068                 |
| HXeBeCl <sub>3</sub>       | r(X2-Ng)     | 3.375                             | 3.229                 | 0.146                     |                     |                   | 3.446                | 3.259                              | 0.187                 |
|                            | r(X3-Ng)     | 2.814                             | 3.172                 | -0.358                    |                     |                   | 2.820                | 3.205                              | -0.385                |
|                            | r(Ng-H)      | 1.618                             | 1.589                 | 0.029                     |                     |                   | 1.632                | 1.601                              | 0.031                 |
|                            | r(X2-H)      | 4.378                             | 2.754                 | 1.624                     |                     |                   | 4.477                | 2.772                              | 1.705                 |
|                            | r(M-X1)      | 1.875                             | 1.884                 | -0.009                    |                     |                   | 1.873                | 1.883                              | -0.010                |
|                            | r(M-X2)      | 1.926                             | 1.987                 | -0.061                    |                     |                   | 1.924                | 1.993                              | -0.069                |
|                            | r(M-X3)      | 2.034                             | 1.975                 | 0.059                     |                     |                   | 2.049                | 1.980                              | 0.069                 |
| HRnBeCl <sub>3</sub>       | r(X2-Ng)     | 3.405                             | 3.286                 | 0.119                     |                     |                   | 3.486                | 3.330                              | 0.156                 |
|                            | r(X3-Ng)     | 2.840                             | 3.216                 | -0.376                    |                     |                   | 2.863                | 3.267                              | -0.404                |
|                            | r(Ng-H)      | 1.715                             | 1.679                 | 0.036                     |                     |                   | 1.728                | 1.689                              | 0.039                 |
|                            | r(X2-H)      | 4.521                             | 2.672                 | 1.849                     |                     |                   | 4.630                | 2.718                              | 1.912                 |
| (a) differen               | ncer(H-X2)   | (c)                               | differe               | encer(H-X2)               |                     | (e).0             | d                    | ifferencer(H                       | I-X2)                 |
| 1.5 -                      |              | BeCb 1.6                          |                       |                           |                     | 1.6               |                      | A A A                              | a a                   |
| <b>710</b>                 |              | → MgF <sub>3</sub> 1.2            | EE-E                  | -                         |                     | 1.2<br>✔          |                      | ~                                  | <ul> <li>1</li> </ul> |
|                            |              |                                   | ~                     |                           | E E                 | 0.8               | ~                    |                                    |                       |
| 0.5                        |              | -CaCb                             |                       |                           |                     | 0.4               |                      |                                    | *                     |
| 0.0 Ar Kr                  | Xe Rn        | Cabis                             | BeF₃ BeCbBeBr₃<br>→Ar | MgF₃MgClMgBr₃<br>━Kr ━★Xe | CaF3 CaCb CaBr3<br> |                   | BeF₃ MgF₃CaF₃<br>→Ar | BeCbMgCbCaCb<br>─ <b>E</b> ─Kr ★Xe | BeBr:MgBr:CaBr:<br>   |
| (b) <sub>80</sub> differen | nce∠(H-Ng-X2 | ) (d) 80                          | differe               | ence∠(H-Ng                | -X2)                | (f) <sub>80</sub> | differ               | ence∠(H-N                          | [g-X2)                |
| 70 -<br>60 -               |              | →BeCb 70<br>→BeBr <sub>3</sub> 60 | A                     | Las                       | -                   | 70<br>60          | A                    | A CO                               |                       |
| CX 50                      |              | -MgF <sub>3</sub> 50              |                       |                           | X                   | (CX-50            | ~                    |                                    | A A                   |
| H 30                       |              | MgBr <sub>3</sub> H 30            | -                     | N. I                      |                     | N-H) 30           |                      | 1                                  |                       |
| 20                         |              | -E-CaCb<br>-E-CaBrs 10            | ReF. ReCL DaDr        | •<br>MaE-MaCiMaDr         | CaELCaCLCaBr        | V 20<br>10        | ReF. MaECaF          | Rech Machan                        | ReBr.MgBrCaDr.        |
| 10 Ar Kr                   | Xe Rn        |                                   | -Ar                   | Kr Xe                     |                     |                   |                      | -Kr -Xe                            |                       |

Table S12. Comparison of bond length (Å) in HNgY with stable and transition state at various theoretical levels

**Fig. S18** Comparison of the difference of H-Ng bond length and H-Ng-X2 Angle from stable configuration to transition state along Ar-Kr-Xe-Rn, F-Cl-Br as well as Be-Mg-Ca

|    | HNgY                 | М     | F1     | F2     | F3     | Ng    | Н     | Ng+H  |
|----|----------------------|-------|--------|--------|--------|-------|-------|-------|
|    | HArBeF3              | 1.367 | -0.755 | -0.802 | -0.799 | 0.553 | 0.435 | 0.988 |
| D  | HKrBeF3              | 1.369 | -0.756 | -0.804 | -0.800 | 0.639 | 0.352 | 0.991 |
| Ве | HXeBeF3              | 1.369 | -0.756 | -0.806 | -0.801 | 0.761 | 0.233 | 0.994 |
|    | HRnBeF3              | 1.264 | -0.714 | -0.772 | -0.765 | 0.778 | 0.208 | 0.986 |
|    | HArMgF3              | 1.719 | -0.888 | -0.912 | -0.901 | 0.560 | 0.422 | 0.982 |
| M  | HKrMgF3              | 1.719 | -0.888 | -0.913 | -0.906 | 0.641 | 0.347 | 0.988 |
| Mg | HXeMgF3              | 1.719 | -0.888 | -0.913 | -0.909 | 0.755 | 0.236 | 0.991 |
|    | HRnMgF3              | 1.641 | -0.852 | -0.883 | -0.879 | 0.763 | 0.209 | 0.972 |
|    | HKrCaF3              | 1.783 | -0.910 | -0.933 | -0.922 | 0.644 | 0.338 | 0.982 |
| Ca | HXeCaF3              | 1.781 | -0.909 | -0.931 | -0.927 | 0.750 | 0.237 | 0.987 |
|    | HRnCaF3              | 1.771 | -0.934 | -0.912 | -0.906 | 0.770 | 0.210 | 0.980 |
|    | HNgY                 | М     | Cl1    | Cl2    | C13    | Ng    | Н     | Ng+H  |
|    | HArBeCl <sub>3</sub> | 0.741 | -0.512 | -0.602 | -0.574 | 0.534 | 0.414 | 0.948 |
| Da | HKrBeCl <sub>3</sub> | 0.743 | -0.513 | -0.607 | -0.582 | 0.614 | 0.344 | 0.958 |
| Ве | HXeBeCl <sub>3</sub> | 0.744 | -0.514 | -0.608 | -0.590 | 0.727 | 0.241 | 0.968 |
|    | HRnBeCl <sub>3</sub> | 0.744 | -0.514 | -0.604 | -0.591 | 0.755 | 0.211 | 0.966 |
|    | HKrMgCl <sub>3</sub> | 1.300 | -0.716 | -0.781 | -0.754 | 0.612 | 0.339 | 0.951 |
| Mg | HXeMgCl <sub>3</sub> | 1.300 | -0.717 | -0.779 | -0.766 | 0.722 | 0.239 | 0.961 |
|    | HRnMgCl <sub>3</sub> | 1.300 | -0.717 | -0.774 | -0.767 | 0.749 | 0.209 | 0.958 |
|    | HKrCaCl <sub>3</sub> | 1.288 | -0.713 | -0.771 | -0.739 | 0.609 | 0.327 | 0.936 |
| Ca | HXeCaCl <sub>3</sub> | 1.281 | -0.713 | -0.767 | -0.753 | 0.719 | 0.233 | 0.952 |
|    | HRnCaCl <sub>3</sub> | 1.281 | -0.713 | -0.761 | -0.754 | 0.745 | 0.202 | 0.947 |
|    | HNgY                 | М     | Br1    | Br2    | Br3    | Ng    | Н     | Ng+H  |
|    | HArBeBr <sub>3</sub> | 0.550 | -0.438 | -0.539 | -0.501 | 0.524 | 0.404 | 0.928 |
| Da | HKrBeBr <sub>3</sub> | 0.553 | -0.438 | -0.544 | -0.511 | 0.602 | 0.338 | 0.940 |
| Ве | HXeBeBr <sub>3</sub> | 0.555 | -0.441 | -0.545 | -0.522 | 0.717 | 0.237 | 0.954 |
|    | HRnBeBr <sub>3</sub> | 0.554 | -0.441 | -0.538 | -0.523 | 0.745 | 0.203 | 0.948 |
|    | HKrMgBr <sub>3</sub> | 1.170 | -0.665 | -0.738 | -0.701 | 0.601 | 0.333 | 0.934 |
| Mg | HXeMgBr <sub>3</sub> | 1.171 | -0.666 | -0.735 | -0.717 | 0.712 | 0.234 | 0.946 |
|    | HRnMgBr <sub>3</sub> | 1.170 | -0.665 | -0.727 | -0.718 | 0.740 | 0.200 | 0.940 |
|    | HKrCaBr <sub>3</sub> | 1.161 | -0.662 | -0.730 | -0.686 | 0.596 | 0.321 | 0.917 |
| Ca | HXeCaBr <sub>3</sub> | 1.156 | -0.662 | -0.723 | -0.704 | 0.707 | 0.227 | 0.934 |
|    | HRnCaBr <sub>3</sub> | 1.159 | -0.660 | -0.713 | -0.704 | 0.727 | 0.191 | 0.918 |

Table S13. The natural charges of the transition state at CCSD/def2-TZVP //MP2/def2-TZVP level (|e|)



**Fig. S19** The natural charges trend of X2 , X3 atoms in transition state along Ar-Kr-Xe-Rn, Be-Mg-Ca, as well as the F-Cl-Br



**Fig. S20** The natural charges trend of Ng, H atoms and Ng+H in transition state along Ar-Kr-Xe-Rn, Be-Mg-Ca, as well as the F-Cl-Br



Fig. S21 The relative energy barriers obtained from CCSD(T) calculation and chemical hardness



Fig. S22 The relative energy barriers obtained from CCSD(T) calculation and chemical hardness

#### 6.Geometry and stability of HNgX



**Fig. S23** The optimized geometries of transition state in HNgMX<sub>3</sub> (Ng=Ar-Rn) are performed at the MP2/def2-TZVP level (the corresponding value from  $\omega$ B97XD/def2-TZVP level in parentheses).



**Fig. S24** Comparison of the change of H-Ng and X-Ng bond length from stable configuration to transition state along F-Cl-Br and Ar-Kr-Xe-Rn

|       |        | ωB97XD  |                |         |   | MP2     |                 | <br>CCSD(T) |             |                 |
|-------|--------|---------|----------------|---------|---|---------|-----------------|-------------|-------------|-----------------|
| HNgX  |        | ΔΕ      | $\Delta E_{0}$ | ΔG      | - | ΔΕ      | $\Delta E_{_0}$ | ΔG          | ΔΕ          | $\Delta E_{_0}$ |
| HArF  | HF+Ar  | -132.75 | -132.93        | -138.91 |   | -138.55 | -138.71         | -144.72     | <br>-138.25 | -138.41         |
| HKrF  | HF+Kr  | -114.40 | -114.20        | -120.21 |   | -119.39 | -119.27         | -125.30     | -118.86     | -118.74         |
| HXeF  | HF+Xe  | -90.62  | -90.12         | -96.09  |   | -97.89  | -97.43          | -103.41     | -96.13      | -95.67          |
| HRnF  | HF+Rn  | -83.36  | -82.29         | -88.20  |   | -89.17  | -88.32          | -94.26      | -87.49      | -86.64          |
| HArCl | HCl+Ar | -117.84 | -118.68        | -124.80 |   | -121.67 | -122.07         | -128.22     | <br>-121.42 | -121.82         |
| HKrCl | HCl+Kr | -101.55 | -102.23        | -108.38 |   | -104.39 | -103.98         | -110.81     | -104.18     | -103.76         |
| HXeCl | HCl+Xe | -80.55  | -81.03         | -87.15  |   | -85.01  | -84.60          | -92.38      | -84.15      | -83.74          |
| HRnCl | HCl+Rn | -72.04  | -72.11         | -78.19  |   | -74.82  | -74.97          | -81.09      | -74.44      | -74.59          |
| HArBr | HBr+Ar | -112.12 | -113.02        | -119.20 |   | -114.55 | -114.64         | -120.86     | <br>-113.73 | -113.82         |
| HKrBr | HBr+Kr | -96.44  | -96.43         | -103.25 |   | -97.82  | -98.27          | -104.54     | -97.44      | -97.90          |
| HXeBr | HBr+Xe | -76.06  | -76.68         | -82.90  |   | -79.04  | -79.57          | -85.80      | -78.26      | -78.78          |
| HRnBr | HBr+Rn | -67.36  | -67.66         | -73.85  |   | -68.66  | -68.26          | -74.95      | <br>-68.46  | -68.0603        |

 Table S14. The fragment energies of HNgX (Ng=Ar-Rn; X=F, Cl, Br) (kcal/mol)



Fig. S25 Comparison of dissociation energy of HNgX→HX+Ng along F-Cl-Br and Ar-Kr-Xe-Rn

| Table S15. | Table S15. The activation energies of HNgX (Ng=Ar-Rn; X=F, Cl, Br) (kcal/mol) |       |              |       |       |              |       |       |              |  |  |
|------------|-------------------------------------------------------------------------------|-------|--------------|-------|-------|--------------|-------|-------|--------------|--|--|
|            |                                                                               |       | ωB97XD       |       |       | MP2          |       | CC    | CSD          |  |  |
|            |                                                                               | ΔΕ    | $\Delta E_0$ | ΔG    | ΔΕ    | $\Delta E_0$ | ΔG    | ΔΕ    | $\Delta E_0$ |  |  |
| HArF       | HF+Ar                                                                         | 29.86 | 28.19        | 26.87 | 27.86 | 26.54        | 25.20 | 28.65 | 27.33        |  |  |
| HKrF       | HF+Kr                                                                         | 35.96 | 34.32        | 32.90 | 35.32 | 33.90        | 32.47 | 36.31 | 34.89        |  |  |
| HXeF       | HF+Xe                                                                         | 41.38 | 39.80        | 38.33 | 40.20 | 38.75        | 37.29 | 40.20 | 38.75        |  |  |
| HRnF       | HF+Rn                                                                         | 43.38 | 42.14        | 40.68 | 42.84 | 41.55        | 40.08 | 44.25 | 42.96        |  |  |
| HArCl      | HCl+Ar                                                                        | 22.71 | 21.45        | 20.10 | 21.10 | 20.74        | 19.41 | 21.10 | 20.74        |  |  |
| HKrCl      | HCl+Kr                                                                        | 28.63 | 27.48        | 26.02 | 28.08 | 28.24        | 26.15 | 28.08 | 28.24        |  |  |
| HXeCl      | HCl+Xe                                                                        | 34.01 | 32.76        | 31.25 | 33.48 | 33.31        | 30.16 | 33.48 | 33.31        |  |  |
| HRnCl      | HCl+Rn                                                                        | 37.17 | 36.17        | 34.66 | 37.53 | 36.59        | 35.06 | 37.53 | 36.59        |  |  |
| HArBr      | HBr+Ar                                                                        | 21.00 | 19.76        | 18.42 | 19.76 | 19.98        | 18.65 | 19.76 | 19.98        |  |  |
| HKrBr      | HBr+Kr                                                                        | 26.84 | 26.69        | 24.68 | 26.52 | 26.13        | 24.68 | 26.52 | 26.13        |  |  |
| HXeBr      | HBr+Xe                                                                        | 32.11 | 31.03        | 29.52 | 31.71 | 30.93        | 29.42 | 31.71 | 30.93        |  |  |
| HRnBr      | HBr+Rn                                                                        | 35.38 | 34.47        | 32.94 | 35.81 | 35.76        | 33.75 | 35.81 | 35.76        |  |  |



Fig. S26 Comparison of energy barrier of HNgX→HX+Ng along F-Cl-Br and Ar-Kr-Xe-Rn

### **Cartesian coordinates**

Optimized coordinates at MP2/ def2-TZVP level

| BeCl                 | 3                 |              |               | BeCl <sub>3</sub> -       |                       |             |               |  |
|----------------------|-------------------|--------------|---------------|---------------------------|-----------------------|-------------|---------------|--|
| Cl                   | 0.00000000        | 1.89714100   | 0.00000000    | Cl                        | 0.00000000            | 1.94541300  | 0.00000000    |  |
| Cl                   | 1.64297200        | -0.94857000  | 0.00000000    | Cl                        | 1.68477700            | -0.97270600 | 0.00000000    |  |
| Cl                   | -1.64297200       | -0.94857000  | 0.00000000    | Cl                        | -1.68477700           | -0.97270600 | 0.00000000    |  |
| Be                   | 0.00000000        | 0.00000000   | 0.00000000    | Be                        | 0.00000000            | 0.00000000  | 0.00000000    |  |
| HArl                 | BeCl <sub>3</sub> |              |               | HArB                      | eCl <sub>3</sub> (TS) |             |               |  |
| Cl                   | -0.27780400       | 2.80157000   | 0.00000000    | Cl                        | -0.10650800           | 2.80188700  | 0.00000000    |  |
| Cl                   | 1.74741400        | 0.06921500   | 0.00000000    | Cl                        | 1.71988500            | -0.04611300 | 0.00000000    |  |
| Cl                   | -1.57206200       | -0.30211000  | 0.00000000    | Cl                        | -1.64432000           | -0.19732500 | 0.00000000    |  |
| Be                   | 0.00000000        | 0.94160100   | 0.00000000    | Be                        | 0.00000000            | 0.92359800  | 0.00000000    |  |
| Ar                   | 0.04275900        | -2.45001200  | 0.00000000    | Ar                        | -0.03279300           | -2.45423400 | 0.00000000    |  |
| Н                    | 0.97202700        | -3.33367700  | 0.00000000    | Н                         | 1.11629600            | -3.01181600 | 0.00000000    |  |
| HKrBeCl <sub>3</sub> |                   |              |               | HKrB                      | eCl <sub>3</sub> (TS) |             |               |  |
| Cl                   | -0.39754500       | 3.32616800   | 0.00000000    | Cl                        | -0.03688400           | 3.33906700  | 0.00000000    |  |
| Cl                   | 1.75748100        | 0.67724400   | 0.00000000    | Cl                        | 1.71396500            | 0.45603300  | 0.00000000    |  |
| Cl                   | -1.52870600       | 0.16920100   | 0.00000000    | Cl                        | -1.67017100           | 0.39102800  | 0.00000000    |  |
| Be                   | 0.00000000        | 1.49039400   | 0.00000000 Kr | Be                        | 0.00000000            | 1.45633700  | 0.00000000 Kr |  |
| 0.054                | 20500 -2.0472     | .8000 0.0000 | 0000          | -0.040                    | 67600 -2.0728         | 9000 0.0000 | 0000          |  |
| Н                    | 0.91770600        | -3.19393100  | 0.00000000    | Н                         | 1.34687900            | -2.36548600 | 0.00000000    |  |
| HXel                 | BeCl <sub>3</sub> |              |               | HXeBeCl <sub>3</sub> (TS) |                       |             |               |  |
| Cl                   | 3.34584200        | 1.71761300   | 0.00000000    | Cl                        | -0.06844300           | -3.78271000 | 0.00000000    |  |
| Cl                   | 1.66128100        | -1.26213200  | 0.00000000    | Cl                        | 1.68427200            | -0.90925700 | 0.00000000    |  |
| Cl                   | 0.00000000        | 1.60936700   | 0.00000000    | Cl                        | -1.70015900           | -0.83227800 | 0.00000000    |  |
| Be                   | 1.79530600        | 0.66065500   | 0.00000000    | Be                        | -0.03892100           | -1.89890700 | 0.00000000    |  |
| Xe                   | -1.65994900       | -0.66322400  | 0.00000000    | Xe                        | 0.00000000            | 1.84563900  | 0.00000000    |  |
| Н                    | -2.66506500       | -1.93095800  | 0.00000000    | Н                         | 1.58929500            | 1.84329000  | 0.00000000    |  |
| HRn                  | BeCl <sub>3</sub> |              |               | HRnB                      | eCl <sub>3</sub> (TS) |             |               |  |
| Cl                   | -0.35919600       | -4.17137100  | 0.00000000    | Cl                        | -0.07695200           | -4.22933600 | 0.00000000    |  |
| Cl                   | 1.78735200        | -1.50029400  | 0.00000000    | Cl                        | 1.68872900            | -1.36606400 | 0.00000000    |  |
| Cl                   | -1.48869900       | -1.02014500  | 0.00000000    | Cl                        | -1.70069000           | -1.27685400 | 0.00000000    |  |
| Be                   | 0.05603000        | -2.34298100  | 0.00000000    | Be                        | -0.04019600           | -2.34560500 | 0.00000000    |  |
| Rn                   | 0.00000000        | 1.39790800   | 0.00000000    | Rn                        | 0.00000000            | 1.45238800  | 0.00000000    |  |
| Н                    | 0.80511700        | 2.91258000   | 0.00000000    | Н                         | 1.67230800            | 1.30538200  | 0.00000000    |  |

| BeBr <sub>3</sub> |                 |             |            | BeBr <sub>3</sub> -       |                       |             |             |  |
|-------------------|-----------------|-------------|------------|---------------------------|-----------------------|-------------|-------------|--|
| Br                | 0.00000000      | 2.04745300  | 0.00000000 | Br                        | 0.00000000            | 2.09962100  | 0.00000000  |  |
| Br                | -1.77314600     | -1.02372600 | 0.00000000 | Br                        | 1.81832500            | -1.04981000 | 0.00000000  |  |
| Br                | 1.77314600      | -1.02372600 | 0.00000000 | Br                        | -1.81832500           | -1.04981000 | 0.00000000  |  |
| Be                | 0.00000000      | 0.00000000  | 0.00000000 | Be                        | 0.00000000            | 0.00000000  | 0.00000000  |  |
| HArBe             | Br <sub>3</sub> |             |            | HArBe                     | eBr <sub>3</sub> (TS) |             |             |  |
| Be                | 0.00000000      | 0.59126600  | 0.00000000 | Br                        | -0.17171600           | 2.60360600  | 0.00000000  |  |
| Ar                | 0.12335500      | -2.92991300 | 0.00000000 | Br                        | 1.88474600            | -0.40785600 | 0.00000000  |  |
| Н                 | 1.14803700      | -3.70910800 | 0.00000000 | Br                        | -1.75968700           | -0.65546600 | 0.00000000  |  |
| Br                | 1.91137300      | -0.30772700 | 0.00000000 | Be                        | 0.00000000            | 0.57764500  | 0.00000000  |  |
| Br                | -0.31495800     | 2.59963600  | 0.00000000 | Ar                        | 0.02608000            | -2.92767200 | 0.00000000  |  |
| Br                | -1.69265600     | -0.74669500 | 0.00000000 | Н                         | 1.16358400            | -3.52245300 | 0.00000000  |  |
| HKrBe             | Br3             |             |            | HKrB                      | eBr3(TS)              |             |             |  |
| Be                | 0.00000000      | 1.00727600  | 0.00000000 | Br                        | -0.05123400           | 2.99279100  | 0.00000000  |  |
| Kr                | 0.15070300      | -2.66940100 | 0.00000000 | Br                        | 1.86758800            | -0.08688400 | 0.00000000  |  |
| Н                 | 1.11343600      | -3.74528400 | 0.00000000 | Br                        | -1.81502000           | -0.17451800 | 0.00000000  |  |
| Br                | -1.63206700     | -0.43304800 | 0.00000000 | Be                        | 0.00000000            | 0.95923800  | 0.00000000  |  |
| Br                | 1.92346900      | 0.18951200  | 0.00000000 | Kr                        | -0.03883100           | -2.67907500 | 0.00000000  |  |
| Br                | -0.47822300     | 2.98109600  | 0.00000000 | Н                         | 1.35122400            | -2.98889800 | 0.00000000  |  |
| HXeBe             | Br <sub>3</sub> |             |            | HXeBeBr <sub>3</sub> (TS) |                       |             |             |  |
| Br                | -0.54316300     | 3.32313500  | 0.00000000 | Br                        | 0.00553200            | 3.35767500  | 0.00000000  |  |
| Br                | 1.92070200      | 0.57113300  | 0.00000000 | Br                        | 1.85593500            | 0.24712700  | 0.00000000  |  |
| Br                | -1.61436300     | -0.10813500 | 0.00000000 | Br                        | -1.83166100           | 0.23112300  | 0.00000000  |  |
| Be                | 0.00000000      | 1.36811100  | 0.00000000 | Be                        | 0.00000000            | 1.32154900  | 0.00000000  |  |
| Xe                | 0.13342700      | -2.48486000 | 0.00000000 | Xe                        | -0.04795500           | -2.53620800 | 0.00000000  |  |
| Н                 | 1.08378900      | -3.80466400 | 0.00000000 | Н                         | 1.54636000            | -2.58832200 | 0.00000000  |  |
| HRnBe             | Br <sub>3</sub> |             |            | HRnB                      | eBr <sub>3</sub> (TS) |             |             |  |
| Be                | 1.76313900      | 0.35349700  | 0.00000000 | Br                        | 3.78932500            | -0.03715500 | 0.00055900  |  |
| Rn                | -2.04230600     | -0.50376800 | 0.00000000 | Br                        | 0.71182900            | 1.86339800  | -0.00045800 |  |
| Н                 | -3.26744200     | -1.71792500 | 0.00000000 | Br                        | 0.64119500            | -1.83132600 | -0.00110600 |  |
| Br                | 0.00000000      | 1.65599100  | 0.00000000 | Be                        | 1.75348600            | -0.01112800 | -0.00031900 |  |
| Br                | 1.33806900      | -1.67880700 | 0.00000000 | Rn                        | -2.15046900           | -0.01679600 | 0.00041200  |  |
| Br                | 3.57202200      | 1.26933000  | 0.00000000 | Н                         | -2.05585000           | 1.66684800  | 0.00096000  |  |

| MgCl <sub>3</sub>    |                  |             |            | MgCl <sub>3</sub> | 3                      |             |            |
|----------------------|------------------|-------------|------------|-------------------|------------------------|-------------|------------|
| Cl                   | 0.00000000       | 2.25757000  | 0.00000000 | Cl                | 0.00000000             | 2.27991100  | 0.00000000 |
| Cl                   | -1.95511300      | -1.12878500 | 0.00000000 | Cl                | 1.97446100             | -1.13995600 | 0.00000000 |
| Cl                   | 1.95511300       | -1.12878500 | 0.00000000 | Cl                | -1.97446100            | -1.13995600 | 0.00000000 |
| Mg                   | 0.00000000       | 0.00000000  | 0.00000000 | Mg                | 0.00000000             | 0.00000000  | 0.00000000 |
| HKrMgCl <sub>3</sub> |                  |             |            |                   | IgCl <sub>3</sub> (TS) |             |            |
| Cl                   | 0.48883100       | -3.69274400 | 0.00000000 | Cl                | -0.09105900            | 3.69820200  | 0.00000000 |
| Cl                   | -1.96175400      | -0.36294600 | 0.00000000 | Cl                | 1.91484300             | 0.16414100  | 0.00000000 |
| Cl                   | 1.67176800       | 0.13854200  | 0.00000000 | Cl                | -1.83845700            | 0.04359800  | 0.00000000 |
| Mg                   | 0.00000000       | -1.52959300 | 0.00000000 | Mg                | 0.00000000             | 1.48125700  | 0.00000000 |
| Kr                   | -0.06523100      | 2.26728500  | 0.00000000 | Kr                | -0.03040800            | -2.26531800 | 0.00000000 |
| Н                    | -1.03205200      | 3.32436000  | 0.00000000 | Н                 | 1.34413600             | -2.62465100 | 0.00000000 |
| HXeMgCl <sub>3</sub> |                  |             |            | HXeM              | IgCl <sub>3</sub> (TS) |             |            |
| Cl                   | 3.97267300       | 1.20630600  | 0.00000000 | Cl                | -0.01317600            | 4.13958500  | 0.00000000 |
| Cl                   | 1.12361400       | -1.81375600 | 0.00000000 | Cl                | 1.90169300             | 0.57647500  | 0.00000000 |
| Cl                   | 0.00000000       | 1.65593400  | 0.00000000 | Cl                | -1.86512400            | 0.53413500  | 0.00000000 |
| Mg                   | 1.94857800       | 0.30364500  | 0.00000000 | Mg                | 0.00000000             | 1.91966100  | 0.00000000 |
| Xe                   | -1.97927900      | -0.36989200 | 0.00000000 | Xe                | -0.03614500            | -2.04005300 | 0.00000000 |
| Н                    | -3.13874800      | -1.49382500 | 0.00000000 | Н                 | 1.55417500             | -2.12641900 | 0.00000000 |
| HRnM                 | gCl <sub>3</sub> |             |            | HRnM              | IgCl <sub>3</sub> (TS) |             |            |
| Cl                   | -0.47497500      | -4.58217700 | 0.00000000 | Cl                | -0.09444400            | -4.60158200 | 0.00000000 |
| Cl                   | 1.98935600       | -1.22951800 | 0.00000000 | Cl                | 1.89874400             | -1.08478600 | 0.00000000 |
| Cl                   | -1.61306000      | -0.75240900 | 0.00000000 | Cl                | -1.87806800            | -0.96573300 | 0.00000000 |
| Mg                   | 0.06535000       | -2.43410500 | 0.00000000 | Mg                | -0.03560300            | -2.38251900 | 0.00000000 |
| Rn                   | 0.00000000       | 1.60158800  | 0.00000000 | Rn                | 0.00000000             | 1.62945400  | 0.00000000 |
| Н                    | 0.89333200       | 3.06242400  | 0.00000000 | Н                 | 1.68128700             | 1.54289200  | 0.00000000 |

|                      |                  |             |            | 1                         |                       |             |             |  |
|----------------------|------------------|-------------|------------|---------------------------|-----------------------|-------------|-------------|--|
| MgBr <sub>3</sub>    |                  |             |            | MgBr <sub>3</sub>         | 3                     |             |             |  |
| Br                   | 0.00000000       | 2.40499800  | 0.00000000 | Br                        | 0.00000000            | 2.43506100  | 0.00000000  |  |
| Br                   | 2.08278900       | -1.20249900 | 0.00000000 | Br                        | -2.10882500           | -1.21753000 | 0.00000000  |  |
| Br                   | -2.08278900      | -1.20249900 | 0.00000000 | Br                        | 2.10882500            | -1.21753000 | 0.00000000  |  |
| Mg                   | 0.00000000       | 0.00000000  | 0.00000000 | Mg                        | 0.00000000            | 0.00000000  | 0.00000000  |  |
| HKrMg                | gBr <sub>3</sub> |             |            | HKrMgBr <sub>3</sub> (TS) |                       |             |             |  |
| Mg                   | 0.00000000       | 1.09364300  | 0.00000000 | Br                        | -0.12388700           | 3.40174600  | 0.00000000  |  |
| Kr                   | 0.16789800       | -2.82053000 | 0.00000000 | Br                        | 2.08493100            | -0.31021800 | 0.00000000  |  |
| Н                    | 1.22006300       | -3.80204400 | 0.00000000 | Br                        | -1.98575100           | -0.47298900 | 0.00000000  |  |
| Br                   | 2.14355900       | -0.06908400 | 0.00000000 | Mg                        | 0.00000000            | 1.03706300  | 0.00000000  |  |
| Br                   | -1.78216300      | -0.68785200 | 0.00000000 | Kr                        | -0.01382800           | -2.80319500 | 0.00000000  |  |
| Br                   | -0.56895000      | 3.39171900  | 0.00000000 | Н                         | 1.36253000            | -3.17858900 | 0.00000000  |  |
| HXeMgBr <sub>3</sub> |                  |             |            | HXeM                      | gBr <sub>3</sub> (TS) |             |             |  |
| Br                   | -0.68974500      | 3.72871100  | 0.00000000 | Br                        | -0.02525800           | 3.75571100  | 0.00000000  |  |
| Br                   | 2.14570200       | 0.33470400  | 0.00000000 | Br                        | 2.07131900            | 0.00762900  | 0.00000000  |  |
| Br                   | -1.74477800      | -0.37030600 | 0.00000000 | Br                        | -2.02578400           | -0.05202100 | 0.00000000  |  |
| Mg                   | 0.00000000       | 1.46524900  | 0.00000000 | Mg                        | 0.00000000            | 1.38643400  | 0.00000000  |  |
| Xe                   | 0.16494300       | -2.64716900 | 0.00000000 | Xe                        | -0.04191400           | -2.66231200 | 0.00000000  |  |
| Н                    | 1.20179800       | -3.89468800 | 0.00000000 | Н                         | 1.55367700            | -2.76851100 | 0.00000000  |  |
| HRnMg                | gBr <sub>3</sub> |             |            | HRnMgBr <sub>3</sub> (TS) |                       |             |             |  |
| Mg                   | 1.90742300       | 0.08025000  | 0.00000000 | Br                        | -4.18631300           | -0.05553100 | -0.00011000 |  |
| Rn                   | -2.25117000      | -0.21431300 | 0.00000000 | Br                        | -0.46768100           | 2.08664300  | -0.00000400 |  |
| Н                    | -3.57917000      | -1.30804800 | 0.00000000 | Br                        | -0.36921500           | -2.02648500 | -0.00014400 |  |
| Br                   | 0.84607900       | -2.09629100 | 0.00000000 | Mg                        | -1.81786000           | -0.00522400 | -0.00008800 |  |
| Br                   | 0.00000000       | 1.75435300  | 0.00000000 | Rn                        | 2.27195900            | -0.02057800 | 0.00011500  |  |
| Br                   | 4.13365500       | 0.87839500  | 0.00000000 | Н                         | 2.23816000            | 1.67049100  | 0.00021500  |  |

| CaCl <sub>3</sub>    |                  |             |            | CaCl <sub>3</sub> -       |                           |             |             |  |  |  |
|----------------------|------------------|-------------|------------|---------------------------|---------------------------|-------------|-------------|--|--|--|
| Cl                   | 0.00000000       | 2.59367400  | 0.00000000 | Cl                        | 0.00000000                | 2.59793400  | 0.00000000  |  |  |  |
| Cl                   | 2.24618700       | -1.29683700 | 0.00000000 | Cl                        | 2.24987700                | -1.29896700 | 0.00000000  |  |  |  |
| Cl                   | -2.24618700      | -1.29683700 | 0.00000000 | Cl                        | -2.24987700               | -1.29896700 | 0.00000000  |  |  |  |
| Ca                   | 0.00000000       | 0.00000000  | 0.00000000 | Са                        | 0.00000000                | 0.00000000  | 0.00000000  |  |  |  |
| HKrCaCl <sub>3</sub> |                  |             |            |                           | HKrCaCl <sub>3</sub> (TS) |             |             |  |  |  |
| Cl                   | -0.41914500      | 4.07300800  | 0.00000000 | Cl                        | -4.05276100               | -0.08334300 | 0.00000200  |  |  |  |
| Cl                   | 2.08170200       | -0.00208200 | 0.00000000 | Cl                        | 0.17296600                | 2.06079900  | 0.00012600  |  |  |  |
| Cl                   | -1.79683400      | -0.43758900 | 0.00000000 | Cl                        | 0.28648800                | -1.95157900 | -0.00010000 |  |  |  |
| Ca                   | 0.00000000       | 1.57813800  | 0.00000000 | Са                        | -1.52830600               | 0.02245500  | 0.00003700  |  |  |  |
| Kr                   | 0.03324000       | -2.49625300 | 0.00000000 | Kr                        | 2.46491800                | -0.06051600 | -0.00003400 |  |  |  |
| Н                    | 1.08609100       | -3.46439300 | 0.00000000 | Н                         | 2.91527000                | 1.28957800  | 0.00003000  |  |  |  |
| HXeCaCl <sub>3</sub> |                  |             |            |                           | aCl <sub>3</sub> (TS)     |             |             |  |  |  |
| Cl                   | 4.51776600       | 0.41859700  | 0.00000000 | Cl                        | 4.47976000                | -0.04758800 | -0.00002700 |  |  |  |
| Cl                   | 0.42978900       | -2.10252400 | 0.00000000 | Cl                        | 0.25853000                | 2.06022000  | -0.00015600 |  |  |  |
| Cl                   | 0.00000000       | 1.73937300  | 0.00000000 | Cl                        | 0.18178400                | -1.99420300 | 0.00013200  |  |  |  |
| Ca                   | 2.03294700       | -0.05753900 | 0.00000000 | Ca                        | 1.95265600                | 0.00298600  | -0.00003900 |  |  |  |
| Xe                   | -2.24506900      | 0.02148200  | 0.00000000 | Xe                        | -2.22828800               | -0.03572800 | 0.00003200  |  |  |  |
| Н                    | -3.53366200      | -0.95182900 | 0.00000000 | Н                         | -2.36683900               | 1.55630900  | -0.00007600 |  |  |  |
| HRnCa                | ıCl <sub>3</sub> |             |            | HRnCaCl <sub>3</sub> (TS) |                           |             |             |  |  |  |
| Cl                   | 4.71030900       | 1.74844400  | 0.00000000 | Cl                        | 4.95076700                | -0.06197100 | -0.00001800 |  |  |  |
| Cl                   | 1.44327300       | -1.78365200 | 0.00000000 | Cl                        | 0.74959300                | 2.07917000  | -0.00019000 |  |  |  |
| Cl                   | 0.00000000       | 1.77734200  | 0.00000000 | Cl                        | 0.65333100                | -1.99675800 | 0.00011100  |  |  |  |
| Ca                   | 2.45411600       | 0.60581900  | 0.00000000 | Ca                        | 2.42507                   | 0.00        | - 325400    |  |  |  |
| Rn                   | -1.75387900      | -0.46464900 | 0.00000000 | 0.0001                    | 1500                      |             |             |  |  |  |
| H                    | -2.85962300      | -1.77283000 | 0.00000000 | Rn                        | -1.79900000               | -0.02417200 | 0.00004700  |  |  |  |
|                      |                  |             |            | Н                         | -1.80031100               | 1.66620500  | -0.00010400 |  |  |  |

| CaBr <sub>3</sub>    |                 |             |            | CaBr <sub>3</sub>         |                        |             |             |  |
|----------------------|-----------------|-------------|------------|---------------------------|------------------------|-------------|-------------|--|
| Br                   | 0.00000000      | 2.74168500  | 0.00000000 | Br                        | 0.00000000             | 2.75433700  | 0.00000000  |  |
| Br                   | 2.37436900      | -1.37084200 | 0.00000000 | Br                        | 2.38532600             | -1.37716900 | 0.00000000  |  |
| Br                   | -2.37436900     | -1.37084200 | 0.00000000 | Br                        | -2.38532600            | -1.37716900 | 0.00000000  |  |
| Ca                   | 0.00000000      | 0.00000000  | 0.00000000 | Ca                        | 0.00000000             | 0.00000000  | 0.00000000  |  |
| HKrCa                | Br <sub>3</sub> |             |            | HKrCaBr <sub>3</sub> (TS) |                        |             |             |  |
| Ca                   | 0.00000000      | 1.19620700  | 0.00000000 | Br                        | -3.82189600            | -0.07765700 | 0.00001000  |  |
| Kr                   | 0.11617300      | -2.99624900 | 0.00000000 | Br                        | 0.62370300             | 2.22300800  | 0.00010400  |  |
| Н                    | 1.23235900      | -3.89918400 | 0.00000000 | Br                        | 0.71789200             | -2.11121100 | -0.00010100 |  |
| Br                   | -1.91629200     | -0.92231400 | 0.00000000 | Ca                        | -1.14577900            | 0.03605300  | 0.00001000  |  |
| Br                   | 2.26832700      | -0.39795000 | 0.00000000 | Kr                        | 2.95234100             | -0.08807000 | -0.00001800 |  |
| Br                   | -0.50673800     | 3.82997800  | 0.00000000 | Н                         | 3.44182100             | 1.25458600  | 0.00004200  |  |
| HXeCaBr <sub>3</sub> |                 |             |            | HXeC                      | aBr <sub>3</sub> (TS)  |             |             |  |
| Br                   | -0.67672200     | 4.17007900  | 0.00000000 | Br                        | -4.15556800            | -0.05707700 | -0.00000800 |  |
| Br                   | 2.27970100      | 0.02767300  | 0.00000000 | Br                        | 0.26095700             | 2.23726500  | 0.00001700  |  |
| Br                   | -1.85240100     | -0.61909300 | 0.00000000 | Br                        | 0.34821200             | -2.15959800 | -0.00000400 |  |
| Ca                   | 0.00000000      | 1.57430400  | 0.00000000 | Ca                        | -1.47746800            | 0.00770700  | 0.00001600  |  |
| Xe                   | 0.13875800      | -2.82812400 | 0.00000000 | Xe                        | 2.79108800             | -0.04493100 | -0.00000900 |  |
| Н                    | 1.23684600      | -4.02045200 | 0.00000000 | Н                         | 2.95457200             | 1.55148600  | -0.00000400 |  |
| HRnCa                | Br <sub>3</sub> |             |            | HRnC                      | CaBr <sub>3</sub> (TS) |             |             |  |
| Ca                   | 2.02611200      | -0.18535200 | 0.00000000 | Br                        | -4.58327300            | -0.07330000 | 0.00005600  |  |
| Rn                   | -2.43296600     | 0.11873900  | 0.00000000 | Br                        | -0.19877700            | 2.26039200  | 0.00015500  |  |
| Н                    | -3.85209900     | -0.85212700 | 0.00000000 | Br                        | -0.08782300            | -2.16345800 | -0.00014500 |  |
| Br                   | 0.26264000      | -2.29524500 | 0.00000000 | Ca                        | -1.90806400            | 0.00875200  | 0.00002600  |  |
| Br                   | 0.00000000      | 1.85795700  | 0.00000000 | Rn                        | 2.39740500             | -0.03103400 | -0.00003400 |  |
| Br                   | 4.66778700      | 0.27579100  | 0.00000000 | Н                         | 2.43002000             | 1.66665100  | 0.00008100  |  |

| BeF3                |                 |             |             | BeF <sub>3</sub> - |                      |             |             |
|---------------------|-----------------|-------------|-------------|--------------------|----------------------|-------------|-------------|
| Be                  | 0.00000000      | 0.00000000  | 0.00000000  | Be                 | 0.00000000           | 0.00000000  | 0.00000000  |
| F                   | 0.00000000      | 1.46002700  | 0.00000000  | F                  | 0.00000000           | 1.48534400  | 0.00000000  |
| F                   | 1.26442000      | -0.73001300 | 0.00000000  | F                  | -1.28634500          | -0.74267200 | 0.00000000  |
| F                   | -1.26442000     | -0.73001300 | 0.00000000  | F                  | 1.28634500           | -0.74267200 | 0.00000000  |
| HRnB                | eF <sub>3</sub> |             |             | HRnBe              | eF <sub>3</sub> (TS) |             |             |
| Be                  | 0.              | 01189900    | -2.43643100 | Be                 | 2.48305300           | -0.00639700 | -0.00023700 |
| 0.0000000           |                 |             | Rn          | -0.85790700        | -0.01853400          | 0.00008700  |             |
| Rn                  | 0.00000000      | 0.80900100  | 0.00000000  | Н                  | -0.78795400          | 1.64876500  | -0.00039500 |
| Н                   | 0.50841300      | 2.42727200  | 0.00000000  | F                  | 1.63250200           | -1.25330100 | 0.00012300  |
| F                   | 1.30516200      | -1.70956200 | 0.00000000  | F                  | 1.62891300           | 1.24600300  | -0.00017300 |
| F                   | -1.10863800     | -1.36820700 | 0.00000000  | F                  | 3.92033700           | 0.00404500  | -0.00063500 |
| F                   | -0.25830300     | -3.83952200 | 0.00000000  |                    |                      |             |             |
| MgF <sub>3</sub>    |                 |             |             | MgF <sub>3</sub> - |                      |             |             |
| Mg                  | 0.00000000      | 0.00000000  | 0.00000000  | Mg                 | 0.00000000           | 0.00000000  | 0.00000000  |
| F                   | 0.00000000      | 1.82847200  | 0.00000000  | F                  | 0.00000000           | 1.82847200  | 0.00000000  |
| F                   | 1.58350300      | -0.91423600 | 0.00000000  | F                  | -1.58350400          | -0.91423600 | 0.00000000  |
| F                   | -1.58350300     | -0.91423600 | 0.00000000  | F                  | 1.58350400           | -0.91423600 | 0.00000000  |
| HRnMgF <sub>3</sub> |                 |             |             | HRnM               | gF <sub>3</sub> (TS) |             |             |
| Mg                  | 0.01398700      | -2.52964500 | 0.00000000  | Mg                 | -2.52049300          | -0.00640600 | -0.00012000 |
| Rn                  | 0.00000000      | 1.03137600  | 0.00000000  | Rn                 | 1.06792600           | -0.01872800 | 0.00004600  |
| Н                   | 0.61650700      | 2.61429200  | 0.00000000  | Н                  | 1.00840900           | 1.65107500  | 0.00033800  |
| F                   | -1.19910800     | -1.07245100 | 0.00000000  | F                  | -1.31242200          | -1.41800300 | -0.00031900 |
| F                   | 1.47888500      | -1.43103700 | 0.00000000  | F                  | -1.33814000          | 1.43097200  | 0.00016300  |
| F                   | -0.36692800     | -4.26950100 | 0.00000000  | F                  | -4.30545500          | -0.00892200 | -0.00015700 |
| CaF <sub>3</sub>    |                 |             |             | CaF <sub>3</sub> - |                      |             |             |
| Ca                  | 0.00000000      | 0.00000000  | 0.00000000  | Ca                 | 0.00000000           | 0.00000000  | 0.00000000  |
| F                   | 0.00000000      | 2.16277100  | 0.00000000  | F                  | 0.00000000           | 2.14423400  | 0.00000000  |
| F                   | -1.87301400     | -1.08138500 | 0.00000000  | F                  | 1.85696100           | -1.07211700 | 0.00000000  |
| F                   | 1.87301400      | -1.08138500 | 0.00000000  | F                  | -1.85696100          | -1.07211700 | 0.00000000  |
| HRnC                | aF <sub>3</sub> |             |             | HRnCa              | aF <sub>3</sub> (TS) |             |             |
| Ca                  | 0.00885100      | -2.60892100 | 0.00000000  | Ca                 | 2.53277700           | -0.00244700 | -0.00009400 |
| Rn                  | 0.00000000      | 1.25845800  | 0.00000000  | Rn                 | -1.26248200          | -0.02060200 | 0.00000900  |
| H                   | 0.67653800      | 2.82141000  | 0.00000000  | Н                  | -1.23959300          | 1.65675500  | -0.00014600 |
| F                   | 1.55634300      | -1.11010900 | 0.00000000  | F                  | 1.00622400           | 1.58547300  | 0.00001000  |
| F                   | -1.27250200     | -0.77244700 | 0.00000000  | F                  | 0.94735400           | -1.53535000 | -0.00001000 |
| F                   | -0.37868000     | -4.65859300 | 0.00000000  | F                  | 4.61948200           | -0.03190700 | 0.00013400  |