CO₂ reutilization for methane production via catalytic process promoted by

hydrides

María L. Grasso^a, Julián Puszkiel^{a,b}, Luisa Fernández Albanesi^a, Martin Dornheim^b, Claudio Pistidda^b and Fabiana C. Gennari^{*a}

¹Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET - Instituto Balseiro (UNCuyo and CNEA). Departamento Fisicoquímica de Materiales, Gerencia de Investigación Aplicada, Centro Atómico Bariloche (CNEA), R8402AGP, S. C. de Bariloche, Río Negro, Argentina

² Department of Nanotechnology, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany.

Figure S1: XRPD patterns of the 2MgH₂-Fe (A) and 2MgH₂-Ni (B) after milling for 5 h under 10 bar of hydrogen pressure

(curve a); sintering at 450°C and 150 bars for 5 h (curve b).

Figure S2: SEM photographs of as-synthesized Mg_2FeH_6 (A) and Mg_2NiH_4 (B) powders.

Figure S3: XRPD patterns of Mg_2FeH_6 (A) and Mg_2NiH_4 (B) after heating in He flow up to 500°C.

Ramp: 3 °C/min; flow of 50 cm³/min.

Figure S4: FTIR spectra of the gas products for the reaction between CO₂ and: A) Mg_2FeH_6 ; B) Mg_2NiH_4 at 400 °C for 5 h using different H_2 :CO₂ mol ratio (4:1 and 2:1).

Figure S5: Detail of the faceted particles observed in the solid products after reaction between CO₂ and Mg₂FeH₆ at 400 °C

for 10 h and EDS elemental mapping.

Figure S6: Detail of the spherical particles observed in the solid products after reaction between CO₂ and Mg₂NiH₄ at 400 °C

for 10 h and EDS elemental mapping.

Fig. S7: Equilibrium composition of the CO_2 -4H₂ system.