Supporting Information

$\mathrm{CH}_{3} \mathrm{NO}$ as a Potential Intermediate for Early Atmospheric HCN: A Quantum Chemical Insight

Sourav Ghoshal, Anup Pramanik, Santu Biswas, and Pranab Sarkar*

Department of Chemistry, Visva-Bharati University, Santiniketan731235, India

E-mail: pranab.sarkar@visva-bharati.ac.in

Table of Contents:

1. Methodology for CBS extrapolation.
2. Table S1-S3: Tables of electronic energies.
3. Table S4-S11: Tables of rate constants.
4. Figures S1-S3.
5. Cartesian coordinates of optimized geometries.
6. References.

Supporting Note 1:

Methodology for CBS Extrapolation: We have used the method proposed by Varandas and Pansini for CBS extrapolation. ${ }^{1}$ For this, single point energy calculations have been carried out at $\operatorname{CCSD}(\mathrm{T})$ level of theory using aug-cc-pVDZ ($\equiv \mathrm{DZ}$), aug-cc-pVTZ ($\equiv \mathrm{TZ}$) basis sets and with HF/aug-cc-pVQZ ($\equiv \mathrm{HF} / \mathrm{QZ}$) level of theory. In this method, energy extrapolation to CBS limit is done by separately extrapolating the correlation energy (Corr) and Hartree-Fock energy (HF) as shown below:

$$
\begin{equation*}
\operatorname{CBS}(\text { Corr })=\frac{x_{1}^{3} E_{x+1}-\mathrm{x}_{2}^{3} E_{x}}{x_{1}^{3}-\mathrm{x}_{2}^{3}} \tag{1}
\end{equation*}
$$

In Equation-1, E_{X} is the correlation energy at $\operatorname{CCSD}(\mathrm{T})$ level of theory employing a basis set whose cardinality is X , i.e., $\mathrm{X}=2$ for DZ basis and $\mathrm{X}=3$ for TZ basis. To extrapolate correlation energy, we have used DZ and TZ basis. Recommended values for x_{1} and x_{2} at DZ basis are 2.71 and 1.91 respectively. ${ }^{1}$ Similarly, extrapolation of Hartree-Fock energy follows the following equation:

$$
\begin{equation*}
\mathrm{CBS}(\mathrm{HF})=\frac{x_{1}^{5} E_{x+1}-\mathrm{x}_{2}^{5} E_{x}}{x_{1}^{5}-\mathrm{x}_{2}^{5}} \tag{2}
\end{equation*}
$$

In Equation-2, recommended values for x_{1} and x_{2} at TZ basis are 4 and 3 respectively. In the present study, HF energies of all molecular species were extrapolated by using energies obtain at TZ and QZ basis sets, on the other hand, correlation energys of all molecular species were extrapolated by using energies obtained at DZ and TZ basis sets. Potential energy diagram (see Figure 1) have been drawn on the basis of $\operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS} / / \mathrm{MP} 2 /$ aug-cc-pVTZ level of calculation. That means single point $\operatorname{CCSD}(\mathrm{T})$ calculations have been carried out by using MP2/aug-cc-pVTZ level optimized geometries and ZPE corrections are taken from MP2/aug-cc-pVTZ level of calculations. The similar method has recently been employed successfully by Sarkar et al. ${ }^{2-4}$ Total electronic energies of various species could be found in Table S2.

Table S1. Calculated zero point vibrational energy (zpe) corrected electronic energies ($\mathrm{E}_{\text {zpe }}$), zero point vibrational energies, total electronic energies without zpe correction (E) of various molecules, complexes, intermediates and transitions States at the M06-2X level in conjunction with 6$311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ basis set as well as at the $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level of theory.

Molecules/Complexes/ Intermediates/	$\begin{gathered} \text { M06-2X/ } \\ 6-311++G(3 d f, 3 p d) \end{gathered}$	$\begin{gathered} \text { M06-2X/ } \\ 6-311++\mathbf{G}(\mathbf{3 d f}, 3 \mathrm{pd}) \end{gathered}$	$\begin{gathered} \text { CCSD(T)/ } \\ 6-311++G(3 d f, 3 p d) \end{gathered}$
Transitions States	$\mathbf{E}_{\text {zpe }}$	zpe	E
$\mathrm{CH}_{3} \mathrm{NO}$	-169.740352	0.043781	-169.5458242
$\left(\mathrm{CH}_{2} \mathrm{NOH}\right)$-I	-169.754162	0.044818	-169.5580378
$\left(\mathrm{CH}_{2} \mathrm{NOH}\right)$-II	-169.761269	0.045249	-169.5660905
HCN	-93.404403	0.016589	-93.2752787
$\mathrm{CH}_{3} \mathrm{~N}(\mathrm{OH})_{2}$	-246.129539	0.073533	-245.8677976
$\mathrm{H}_{2} \mathrm{O}$	-76.405308	0.021732	-76.3374378
NH_{3}	-56.516498	0.034474	-56.4766835
HCl	-460.794798	0.006857	-460.3306738
HCOOH	-189.729164	0.034447	-189.5061268
HNO_{3}	-280.859627	0.027611	-280.5236721
$\mathrm{H}_{2} \mathrm{SO}_{4}$	-700.248532	0.040294	-699.4493013
$\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{CH}_{3} \mathrm{NO}$	-339.484427	0.089577	-339.0969075
$\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{H}_{2} \mathrm{O}$	-246.150710	0.068093	-245.8906795
$\mathrm{CH}_{3} \mathrm{NO} \cdots{ }^{-} \mathrm{NH}_{3}$	-226.260515	0.080424	-226.0276478
$\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{HCl}$	-630.539479	0.052902	-629.8832355
$\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{HCOOH}$	-359.478644	0.080345	-359.0626254
$\mathrm{CH}_{3} \mathrm{NO} \cdots{ }^{-} \mathrm{HNO}_{3}$	-450.610561	0.073517	-450.081448
$\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{H}_{2} \mathrm{SO}_{4}$	-870.002118	0.086301	-869.0107673
$\mathrm{HCN} \cdots \mathrm{H}_{2} \mathrm{O}$	-169.816264	0.040315	-169.6213481
$\mathrm{HCN}^{\cdots} \mathrm{CH}_{3} \mathrm{~N}(\mathrm{OH})_{2}$	-339.544071	0.091432	-339.1531996
$\mathrm{HCN} \cdots \mathrm{CH}_{3} \mathrm{NO}^{\cdots} \mathrm{H}_{2} \mathrm{O}$	-339.563344	0.086277	-339.1745839
$\left(\mathrm{CH}_{2} \mathrm{NOH}{ }^{\cdots} \mathrm{H}_{2} \mathrm{O}\right)$-I	-246.167255	0.069511	-245.9061365
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{H}_{2} \mathrm{O}\right)$-II	-246.171701	0.069821	-245.9114833
$\mathrm{HCN} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}$	-246.232061	0.065714	-245.9712746
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{NH}_{3}\right)$-I	-226.280523	0.082189	-226.0473938
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{NH}_{3}\right)$-II	-226.281084	0.081997	-226.0487893
$\mathrm{HCN}^{\cdots} \mathrm{NH}_{3} \cdots{ }^{\text {H }} \mathrm{H}_{2} \mathrm{O}$	-226.33537	0.077845	-226.1043033
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{HCl}\right)-\mathrm{I}$	-630.554066	0.053861	-629.896596
$\left(\mathrm{CH}_{2} \mathrm{NOH} \cdots \mathrm{HCl}\right)$-II	-630.562414	0.053955	-629.9051793
$\mathrm{HCN} \cdots \mathrm{HCl}^{\cdots} \mathrm{H}_{2} \mathrm{O}$	-630.620020	0.049994	-629.962238
($\left.\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{HCOOH}\right)$-I	-359.498500	0.082241	-359.0817471
$\left(\mathrm{CH}_{2} \mathrm{NOH} \cdots \mathrm{HCOOH}\right)$-II	-359.500976	0.081535	-359.0854534
HCN $\cdots{ }^{\text {HCOOH }}{ }^{*} \mathrm{H}_{2} \mathrm{O}$	-359.558909	0.077893	-359.1422755
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{HNO}_{3}\right)$-I	-450.628872	0.074809	-450.098462
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{HNO}_{3}\right)$-II	-450.633190	0.074473	-450.1040995
$\mathrm{HCN}^{\cdots} \mathrm{HNO}_{3} \cdots \mathrm{H}_{2} \mathrm{O}$	-450.694985	0.071175	-450.1637793
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$-I	-870.019298	0.087200	-869.0253297
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$-II	-870.024704	0.087289	-869.0337387
$\mathrm{HCN}^{\cdots} \mathrm{H}_{2} \mathrm{SO}_{4} \cdots \mathrm{H}_{2} \mathrm{O}$	-870.090298	0.083209	-869.0955588
(INT)-I	-339.491065	0.093739	-339.1010638
(INT)-II	-339.495504	0.094186	-339.1065761
TS-1	-169.645762	0.038355	-169.446604
TS-2	-169.749088	0.043957	-169.5527627
TS-3	-169.666266	0.037441	-169.4672161

TS-4	-339.429149	0.086941	-339.0376247
TS-5	-339.486688	0.092958	-339.0966273
TS-6	-339.414894	0.086237	-339.0420736
TS-7	-339.481284	0.085589	-339.088887
TS-8	-246.098087	0.064875	-245.8280954
TS-9	-246.161387	0.068868	-245.9000344
TS-10	-246.103709	0.062094	-245.8347973
TS-11	-226.221171	0.078341	-225.9816623
TS-12	-226.270197	0.080648	-226.0362718
TS-13	-226.211714	0.076490	-225.9751494
TS-14	-630.497003	0.051682	-629.8329928
TS-15	-630.550203	0.052917	-629.892372
TS-16	-630.509290	0.050176	-629.8484644
TS-17	-359.448437	0.074861	-359.021406
TS-18	-359.491616	0.080469	-359.0745194
TS-19	-359.446559	0.073444	-359.0216143
TS-20	-450.574458	0.067860	-450.03383
TS-21	-450.624311	0.073408	-450.0932029
TS-22	-450.578826	0.066411	-450.0411191
TS-23	-869.971973	0.081089	-868.9705058
TS-24	-870.016852	0.086390	-869.0236269
TS-25	-869.974588	0.078997	-868.976314

Table S2. Calculated electronic energies by using $\operatorname{CCSD}(\mathrm{T})$ and HF methods in conjunction with aug-cc-pVDZ ($\equiv \mathrm{DZ}$), aug-cc-pVTZ ($\equiv \mathrm{TZ}$) and aug-cc-pVQZ ($\equiv \mathrm{QZ}$) basis sets. Single point $\operatorname{CCSD}(T)$ calculations have been carried out by using MP2/aug-cc-pVTZ level optimized geometries MP2/aug-cc-pVTZ level calculated zero point vibrational energies (zpe) of various species have also been tabulated in the last column.

Species	$\mathbf{D Z}$		$\mathbf{T Z}$		$\mathbf{Q Z}$	$\mathbf{C C S D}(\mathbf{T}) /$	$\mathbf{M P 2}$
	$\mathbf{E}_{\mathbf{H F}}$	$\mathbf{E}_{\mathbf{C C S D}(\mathbf{T})}$	$\mathbf{E}_{\mathbf{H F}}$	$\mathbf{E}_{\mathbf{C C S D}(\mathbf{T})}$	$\mathbf{E}_{\mathbf{H F}}$	$\mathbf{C B S}$	$\mathbf{Z P E}$
$\mathrm{CH}_{3} \mathrm{NO}$	-168.855438	-169.413779	-168.893845	-169.557747	-168.904449	-169.628515	0.043495
$\mathrm{TS}-1$	-168.725698	-169.314391	-168.763194	-169.458631	-168.773519	-169.529671	0.038210
$\left(\mathrm{CH}_{2} \mathrm{NOH}\right)-\mathrm{I}$	-168.864413	-169.423825	-168.903948	-169.569709	-168.914609	-169.640976	0.044034
$\mathrm{TS}-2$	-168.860390	-169.419135	-168.899709	-169.564652	-168.910225	-169.635648	0.043150
$\left(\mathrm{CH}_{2} \mathrm{NOH}\right)-\mathrm{II}$	-168.873568	-169.432021	-168.912850	-169.577668	-168.923468	-169.648889	0.044497
$\mathrm{TS}-3$	-168.750787	-169.336650	-168.788402	-169.480336	-168.798550	-169.550781	0.036334
$\mathrm{HCN}^{\cdots} \mathrm{H}_{2} \mathrm{O}$	-168.934632	-169.487277	-168.974442	-169.632117	-168.985071	-169.702633	0.038984
HCN	-92.885650	-93.204347	-92.906678	-93.281062	-92.912064	-93.318124	0.015774
$\mathrm{H}_{2} \mathrm{O}$	-76.041141	-76.273855	-76.060282	-76.342325	-76.065648	-76.3759358	0.02141

Table S3. Calculated total electronic energies without zpe correction (E), zero point vibrational energies of various molecules and transitions States at the CASSCF level in conjunction with 6$311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ basis set as well as at the CASPT2/6-311++G(3df,3pd) level of theory. Active space of 10 electrons in 10 orbital's have been used for CASSCF and CASPT2 calculations.

Molecules/Complexes/	CASSCF $(\mathbf{1 0}, \mathbf{1 0}) /$ Intermediates/ T-311++G(3df,3pd)	CASSCF $(10, \mathbf{1 0}) /$ $\mathbf{6 - 3 1 1 + + G (3 d f , 3 p d)}$	CASPT2 $(\mathbf{1 0}, \mathbf{1 0}) /$ $\mathbf{6 - 3 1 1 + + G (3 d f , 3 p d)}$
Transitions States	\mathbf{E}	$\mathbf{z p e}$	\mathbf{E}
$\mathrm{CH}_{3} \mathrm{NO}$	-169.061856	0.044287	-169.498478
$\left(\mathrm{CH}_{2} \mathrm{NOH}\right)-\mathrm{I}$	-169.073712	0.045214	-169.512148
$\left(\mathrm{CH}_{2} \mathrm{NOH}\right)-\mathrm{II}$	-169.082894	0.045622	-169.520669
HCN	-93.0285531	0.016422	-93.249493
$\mathrm{H}_{2} \mathrm{O}$	-76.1104646	0.02163	-76.3202899
$\mathrm{HCN} \cdots \mathrm{H}_{2} \mathrm{O}$	-169.1415188	0.039388	-169.57819
TS-1	-168.943643	0.038797	-169.400876
TS-2	-169.069786	0.044389	-169.506733
TS-3	-168.961592	0.038191	-169.417195

Table S4. TST/Eckart and CVT/SCT methods computed rate constants ($k, \sec ^{-1}$) of each unimoleulcar steps and overall rate constants for the unimolecular rearrangement of isolated decomposition of $\mathrm{CH}_{3} \mathrm{NO}$ at the $\mathrm{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level of calculation. The values given in the first bracket correspond to CVT/SCT computed rate constants.

T (K)	$\boldsymbol{k}_{T S-1}$	$\boldsymbol{k}_{T S-2}$	$\boldsymbol{k}_{T S-3}$	$\boldsymbol{k}_{\text {inni }}^{\text {iso }}$
298.15	7.10×10^{-23}	6.54×10^{10}	6.23×10^{-24}	6.23×10^{-24}
	$\left(9.34 \times 10^{-21}\right)$		$\left(9.08 \times 10^{-26}\right)$	$\left(9.08 \times 10^{-26}\right)$
318	1.49×10^{-21}	8.99×10^{10}	1.94×10^{-22}	1.94×10^{-22}
	$\left(5.51 \times 10^{-20}\right)$		$\left(6.19 \times 10^{-24}\right)$	$\left(6.19 \times 10^{-24}\right)$
343	$\left.4.50 \times 10^{-20}\right)$	1.28×10^{11}	9.89×10^{-21}	9.89×10^{-21}
	$\left(5.47 \times 10^{-19}\right)$		$\left(9.14 \times 10^{-22}\right)$	$\left(9.14 \times 10^{-22}\right)$
358	2.99×10^{-19}	1.54×10^{11}	9.36×10^{-20}	9.36×10^{-20}
	$\left(2.22 \times 10^{-18}\right)$		$\left(1.52 \times 10^{-20}\right)$	$\left(1.52 \times 10^{-20}\right)$

Table S5. The $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level calculated equilibrium constants ($K_{\text {eq }}$, cm^{3} molecule ${ }^{-1} \mathrm{sec}^{-1}$) for the formation of $\mathrm{CH}_{3} \mathrm{NO}^{\cdots} \mathrm{CH}_{3} \mathrm{NO}$ complex. TST/Eckart and CVT/SCT methods computed rate constants (k, sec^{-1}) of each unimoleulcar steps and overall rate constants for unimolecular rearrangement for the bimolecular decomposition of $\mathrm{CH}_{3} \mathrm{NO}$ at the $\operatorname{CCSD}(\mathrm{T}) / 6-$ $311++G(3 \mathrm{df}, 3 \mathrm{pd})$ level of calculation. The values given in the first bracket correspond to CVT/SCT computed rate constants.

$\mathbf{T}(\mathbf{K})$	$K_{\text {eq }}^{\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{CH}_{3} \mathrm{NO}}$	$\boldsymbol{k}_{T S-4}$	$\boldsymbol{k}_{T S-5}$	$\boldsymbol{k}_{T S-6}$	$k_{\mathrm{uni}}^{\mathrm{bi}}{ }^{\text {bi }}$
298.15	1.78×10^{-25}	4.09×10^{-15}	1.55×10^{11}	3.09×10^{-13}	4.04×10^{-15}
		$\left(2.34 \times 10^{-15}\right)$		$\left(4.55 \times 10^{-14}\right)$	$\left(2.23 \times 10^{-15}\right)$
318	1.57×10^{-25}	9.32×10^{-14}	2.02×10^{11}	1.39×10^{-11}	9.26×10^{-14}
		$\left(6.51 \times 10^{-14}\right)$		$\left(2.24 \times 10^{-12}\right)$	$\left(6.33 \times 10^{-14}\right)$
343	1.39×10^{-25}	3.21×10^{-12}	2.70×10^{11}	9.10×10^{-10}	3.20×10^{-12}
		$\left(2.57 \times 10^{-12}\right)$		$\left(1.62 \times 10^{-10}\right)$	$\left(2.53 \times 10^{-12}\right)$
358	1.31×10^{-25}	2.20×10^{-11}	3.16×10^{11}	8.50×10^{-9}	2.20×10^{-11}
		$\left(1.85 \times 10^{-11}\right)$		$\left(1.59 \times 10^{-9}\right)$	$\left(1.83 \times 10^{-11}\right)$

Table S6. The $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level calculated equilibrium constants ($K_{e q}$, cm^{3} molecule ${ }^{-1} \mathrm{sec}^{-1}$) for the formation of $\mathrm{CH}_{3} \mathrm{NO}^{\cdots} \mathrm{H}_{2} \mathrm{O}$ complex. TST/Eckart and CVT/SCT methods computed rate constants $\left(k, \sec ^{-1}\right)$ of each unimoleulcar steps and overall rate constants for unimolecular rearrangement for the $\mathrm{H}_{2} \mathrm{O}$ assisted decomposition of $\mathrm{CH}_{3} \mathrm{NO}$ at the $\operatorname{CCSD}(\mathrm{T}) / 6-$ $311++G(3 \mathrm{df}, 3 \mathrm{pd})$ level of calculation. The values given in the first bracket correspond to CVT/SCT computed rate constants.

$\mathbf{T}(\mathbf{K})$	$K_{\text {eq }}^{\mathrm{CH}_{3} \mathrm{NO} \cdot \cdot \mathrm{H}_{2} O}$	$\boldsymbol{k}_{T S-8}$	$\boldsymbol{k}_{T S-9}$	$\boldsymbol{k}_{T S-10}$	$k_{\text {uni }}^{H O}$
298.15	7.80×10^{-23}	8.09×10^{-15}	6.36×10^{9}	2.90×10^{-18}	2.90×10^{-18}
		$\left(3.24 \times 10^{-13}\right)$		$\left(4.26 \times 10^{-19}\right)$	$\left(4.26 \times 10^{-19}\right)$
318	6.02×10^{-23}	8.71×10^{-14}	9.16×10^{9}	5.40×10^{-17}	5.40×10^{-17}
		$\left(2.02 \times 10^{-12}\right)$		$\left(1.67 \times 10^{-17}\right)$	$\left(1.67 \times 10^{-17}\right)$
343	4.60×10^{-23}	1.63×10^{-12}	1.37×10^{10}	1.95×10^{-15}	1.95×10^{-15}
		$\left(1.90 \times 10^{-11}\right)$		$\left(1.08 \times 10^{-15}\right)$	$\left(1.08 \times 10^{-15}\right)$
358	4.01×10^{-23}	8.82×10^{-12}	1.70×10^{10}	1.55×10^{-14}	1.55×10^{-14}
		$\left(7.09 \times 10^{-11}\right)$		$\left(1.06 \times 10^{-14}\right)$	$\left(1.06 \times 10^{-14}\right)$

Table S7. The $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level calculated equilibrium constants ($K_{\text {eq }}$, cm^{3} molecule ${ }^{-1} \mathrm{sec}^{-1}$) for the formation of $\mathrm{CH}_{3} \mathrm{NO}^{\cdots} \mathrm{NH}_{3}$ complex. TST/Eckart and CVT/SCT methods computed rate constants (k, sec^{-1}) of each unimoleulcar steps and overall rate constants for unimolecular rearrangement for the NH_{3} assisted decomposition of $\mathrm{CH}_{3} \mathrm{NO}$ at the $\mathrm{CCSD}(\mathrm{T}) / 6-$ $311++G(3 \mathrm{df}, 3 \mathrm{pd})$ level of calculation. The values given in the first bracket correspond to CVT/SCT computed rate constants.

T (K)	$K_{\text {eq }}^{\mathrm{CH}_{3} \mathrm{NO} \cdot \cdots \mathrm{NH}_{3}}$	$\boldsymbol{k}_{\text {TS-11 }}$	$\boldsymbol{k}_{\text {TS-12 }}$	$\boldsymbol{k}_{\text {TS-13 }}$	$\boldsymbol{k}_{\text {uni }}^{\mathrm{NH}_{3}}$
298.15	5.20×10^{-24}	3.24×10^{-9}	2.39×10^{8}	1.29×10^{-20}	1.29×10^{-20}
		$\left(1.93 \times 10^{-9}\right)$		$\left(1.04 \times 10^{-19}\right)$	$\left(1.04 \times 10^{-19}\right)$
318	4.59×10^{-24}	4.52×10^{-8}	4.67×10^{8}	1.00×10^{-18}	1.00×10^{-18}
		$\left(2.63 \times 10^{-8}\right)$		$\left(4.98 \times 10^{-18}\right)$	$\left(4.98 \times 10^{-18}\right)$
343	4.08×10^{-24}	8.28×10^{-7}	9.79×10^{8}	1.20×10^{-16}	1.20×10^{-16}
		$\left(4.72 \times 10^{-7}\right)$		$\left(4.02 \times 10^{-16}\right)$	$\left(4.02 \times 10^{-16}\right)$
358	3.85×10^{-24}	3.93×10^{-6}	1.46×10^{9}	1.54×10^{-15}	1.54×10^{-15}
		$\left(2.22 \times 10^{-6}\right)$		$\left(4.38 \times 10^{-15}\right)$	$\left(4.38 \times 10^{-15}\right)$

Table S8. The $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level calculated equilibrium constants ($K_{e q}$, cm^{3} molecule ${ }^{-1} \mathrm{sec}^{-1}$) for the formation of $\mathrm{CH}_{3} \mathrm{NO}{ }^{\cdots} \mathrm{HCl}$ complex. TST/Eckart and CVT/SCT methods computed rate constants $\left(k, \sec ^{-1}\right)$ of each unimoleulcar steps and overall rate constants for unimolecular rearrangement for the HCl assisted decomposition of $\mathrm{CH}_{3} \mathrm{NO}$ at the $\mathrm{CCSD}(\mathrm{T}) / 6-$ $311++G(3 \mathrm{df}, 3 \mathrm{pd})$ level of calculation. The values given in the first bracket correspond to CVT/SCT computed rate constants.

T (K)	$K_{\text {eq }}^{\mathrm{CH} \mathrm{NO} \cdot \cdot \mathrm{HCl}}$	$\boldsymbol{k}_{T S-14}$	$\boldsymbol{k}_{T S-15}$	$\boldsymbol{k}_{T S-16}$	$\boldsymbol{k}_{\text {uni }}^{\mathrm{HCl}}$
298.15	2.60×10^{-23}	1.94×10^{-11}	1.29×10^{11}	3.93×10^{-13}	3.93×10^{-13}
		$\left(1.72 \times 10^{-10}\right)$		$\left(2.27 \times 10^{-13}\right)$	$\left(2.27 \times 10^{-13}\right)$
318	2.00×10^{-23}	3.59×10^{-10}	1.65×10^{11}	1.17×10^{-11}	1.17×10^{-11}
		$\left(1.68 \times 10^{-9}\right)$		$\left(6.85 \times 10^{-12}\right)$	$\left(6.82 \times 10^{-12}\right)$
343	1.52×10^{-23}	9.01×10^{-9}	2.15×10^{11}	4.85×10^{-10}	4.85×10^{-10}
		$\left(2.63 \times 10^{-8}\right)$		$\left(2.88 \times 10^{-10}\right)$	$\left(2.88 \times 10^{-10}\right)$
358	1.32×10^{-23}	5.07×10^{-8}	2.49×10^{11}	3.55×10^{-9}	3.55×10^{-9}
		$\left(1.23 \times 10^{-7}\right)$		$\left(2.12 \times 10^{-9}\right)$	$\left(2.12 \times 10^{-9}\right)$

Table S9. The $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level calculated equilibrium constants ($K_{e q}$, cm^{3} molecule ${ }^{-1} \mathrm{sec}^{-1}$) for the formation of $\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{HCOOH}$ complex. TST/Eckart and CVT/SCT methods computed rate constants $\left(k, \sec ^{-1}\right)$ of each unimoleulcar steps and overall rate constants for unimolecular rearrangement for the HCOOH assisted decomposition of $\mathrm{CH}_{3} \mathrm{NO}$ at the $\mathrm{CCSD}(\mathrm{T}) / 6-$ $311++G(3 \mathrm{df}, 3 \mathrm{pd})$ level of calculation. The values given in the first bracket correspond to CVT/SCT computed rate constants.

T (K)	$K_{\text {eq }} \mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{HCOOH}$	$k_{\text {TS-17 }}$	$k_{\text {TS-18 }}$	$k_{\text {TS-19 }}$	$k_{\text {uni }}^{\mathrm{HCOOH}}$
298.15	3.02×10^{-23}	2.80×10^{-4}	3.32×10^{10}	6.06×10^{-14}	6.06×10^{-14}
		$\left(6.98 \times 10^{-4}\right)$		$\left(2.49 \times 10^{-14}\right)$	$\left(2.49 \times 10^{-14}\right)$
318	1.87×10^{-23}	1.23×10^{-3}	5.00×10^{10}	1.59×10^{-12}	1.59×10^{-12}
		$\left(3.03 \times 10^{-3}\right)$		$\left(7.02 \times 10^{-13}\right)$	$\left(7.02 \times 10^{-13}\right)$
343	1.11×10^{-23}	7.30×10^{-3}	7.86×10^{10}	6.25×10^{-11}	6.25×10^{-11}
		$\left(1.67 \times 10^{-2}\right)$		$\left(2.89 \times 10^{-11}\right)$	$\left(2.89 \times 10^{-11}\right)$
358	8.48×10^{-24}	2.00×10^{-2}	1.00×10^{11}	4.55×10^{-10}	4.55×10^{-10}
		$\left(4.32 \times 10^{-2}\right)$		$\left(2.14 \times 10^{-10}\right)$	$\left(2.14 \times 10^{-10}\right)$

Table S10. The $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level calculated equilibrium constants ($K_{e q}$, cm^{3} molecule ${ }^{-1} \mathrm{sec}^{-1}$) for the formation of $\mathrm{CH}_{3} \mathrm{NO}{ }^{\cdots} \mathrm{HNO}_{3}$ complex. TST/Eckart and CVT/SCT methods computed rate constants (k, sec^{-1}) of each unimoleulcar steps and overall rate constants for unimolecular rearrangement for the HNO_{3} assisted decomposition of $\mathrm{CH}_{3} \mathrm{NO}$ at the $\mathrm{CCSD}(\mathrm{T}) / 6-$ $311++G(3 \mathrm{df}, 3 \mathrm{pd})$ level of calculation. The values given in the first bracket correspond to CVT/SCT computed rate constants.

T (K)	$K_{\text {eq }}^{\mathrm{CH}_{3} \mathrm{NO} \cdot \mathrm{HNO}_{3}}$	$\boldsymbol{k}_{T S-20}$	$\boldsymbol{k}_{T S}-21$	$\boldsymbol{k}_{T S-22}$	$\boldsymbol{k}_{\text {uni }}^{\mathrm{HNO}_{3}}$
298.15	5.81×10^{-23}	3.87×10^{-7}	1.24×10^{11}	3.27×10^{-13}	3.27×10^{-13}
		$\left(3.10 \times 10^{-6}\right)$		$\left(1.85 \times 10^{-13}\right)$	$\left(1.85 \times 10^{-13}\right)$
318	3.28×10^{-23}	2.73×10^{-6}	1.66×10^{11}	7.58×10^{-12}	7.58×10^{-12}
		$\left(1.61 \times 10^{-5}\right)$		$\left(5.20 \times 10^{-12}\right)$	$\left(5.20 \times 10^{-12}\right)$
343	1.77×10^{-23}	2.75×10^{-5}	2.30×10^{11}	2.68×10^{-10}	2.68×10^{-10}
		$\left(1.13 \times 10^{-4}\right)$		$\left(2.10 \times 10^{-10}\right)$	$\left(2.10 \times 10^{-10}\right)$
358	1.28×10^{-23}	9.99×10^{-5}	2.74×10^{11}	1.87×10^{-9}	1.87×10^{-9}
		$\left(3.44 \times 10^{-4}\right)$		$\left(1.53 \times 10^{-9}\right)$	$\left(1.53 \times 10^{-9}\right)$

Table S11. The $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level calculated equilibrium constants ($K_{e q}$, cm^{3} molecule ${ }^{-1} \mathrm{sec}^{-1}$) for the formation of $\mathrm{CH}_{3} \mathrm{NO}^{\cdots} \mathrm{H}_{2} \mathrm{SO}_{4}$ complex. TST/Eckart and CVT/SCT methods computed rate constants (k, sec^{-1}) of each unimoleulcar steps and overall rate constants for unimolecular rearrangement for the $\mathrm{H}_{2} \mathrm{SO}_{4}$ assisted decomposition of $\mathrm{CH}_{3} \mathrm{NO}$ at the $\mathrm{CCSD}(\mathrm{T}) / 6-$ $311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level of calculation. The values given in the first bracket correspond to CVT/SCT computed rate constants.

T (K)	$K_{\text {eq }}^{\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{H}_{2} \mathrm{SO}_{4}}$	$\boldsymbol{k}_{T S-23}$	$\boldsymbol{k}_{T S}-24$	$\boldsymbol{k}_{T S-25}$	$\boldsymbol{k}_{\mathrm{uni}}^{\mathrm{H}_{2} \mathrm{SO}_{4}}$
298.15	2.19×10^{-21}	1.84×10^{-4}	2.55×10^{12}	1.35×10^{-10}	1.35×10^{-10}
		$\left(9.09 \times 10^{-4}\right)$		$\left(1.94 \times 10^{-11}\right)$	$\left(1.94 \times 10^{-11}\right)$
318	9.70×10^{-22}	1.20×10^{-3}	2.76×10^{12}	2.53×10^{-9}	2.53×10^{-9}
		$\left(4.28 \times 10^{-3}\right)$		$\left(4.41 \times 10^{-10}\right)$	$\left(4.41 \times 10^{-10}\right)$
343	4.02×10^{-22}	9.99×10^{-3}	3.00×10^{12}	6.80×10^{-8}	6.80×10^{-8}
		$\left(2.63 \times 10^{-2}\right)$		$\left(1.39 \times 10^{-8}\right)$	$\left(1.39 \times 10^{-8}\right)$
358	2.50×10^{-22}	3.17×10^{-2}	3.14×10^{12}	4.04×10^{-7}	4.04×10^{-7}
		$\left(7.26 \times 10^{-2}\right)$		$\left(8.78 \times 10^{-8}\right)$	$\left(8.78 \times 10^{-8}\right)$

Figure S1. Images of $\operatorname{CASSCF}(10,10) / 6-311++G(3 \mathrm{df}, 3 \mathrm{pd})$ level optimized active space orbital's of $\mathrm{CH}_{3} \mathrm{NO}$ molecule.

Figure S2. Temperature and pressure dependent Bartis-Widom phenomenological rate coefficients for $\mathrm{CH}_{3} \mathrm{NO}$ to HCN conversion via (A) unimolecular, (B) bimolecular decomposition pathways and via (C) $\mathrm{H}_{2} \mathrm{O}$, (D) NH_{3}, (E) HCl , (F) HCOOH , (G) HNO_{3}, (H) $\mathrm{H}_{2} \mathrm{SO}_{4}$ assistance.

Figure S3. CVT/SCT computed rate coefficients for $\mathrm{CH}_{3} \mathrm{NO}$ to $\left(\mathrm{CH}_{2} \mathrm{NOH}\right)$-I conversion via (A) $\mathrm{H}_{2} \mathrm{O}$, (B) NH_{3}, (C) HCl , (D) HCOOH , (E) HNO_{3} and (F) $\mathrm{H}_{2} \mathrm{SO}_{4}$ assisted decomposition pathways.

Cartesian coordinates of M06-2X/6-311++G(3df,3pd) level's optimized geometries.

$\mathrm{CH}_{3} \mathrm{NO}$	C,0,0.002560313,-0.000343391,-0.0017985589
	H, 0,-0.0015829687,-0.0032534197,1.0875808997
	H, 0, 1.0125428579,0.0038854942,-0.4057504818
	H,0,-0.5731338009, $0.8639665295,-0.331203362$
	O,0,-0.1084552154,-1.927520701,-1.1289316784
	$\mathrm{N}, 0,-0.7414462536,-1.1986670779,-0.4338140011$
($\mathrm{CH}_{2} \mathbf{N O H}$)-I	C, $0,-0.0645849987,0.9022005774,0.7431025338$
	H,0,-0.564132294,1.209859854,1.6497250101
	H,0,0.8877503907,0.0813038858,-1.1447495676
	H,0,0.625220221,1.5861640421,0.2459834718
	O,0,0.3172396337,-0.6389712895,-0.835151099
	$\mathrm{N}, 0,-0.3166149529,-0.2551010698,0.3102646508$
$\left(\mathrm{CH}_{2} \mathbf{N O H}\right)-\mathrm{II}$	C, $0,-0.0672132757,0.8781114469,0.7311735756$
	H,0,-0.5555471524, $1.2074801793,1.6362407668$
	$\mathrm{H}, 0,0.0446615246,-1.4870240068,-1.0366527139$
	H,0,0.6252383894,1.5248791091,0.2004696558
	O, $0,0.3374487845,-0.5964464451,-0.8319145306$
	$\mathrm{N}, 0,-0.3425411904,-0.2844711434,0.3286676262$
HCN	C, $0,0 ., 0 .,-0.0002368384$
	H,0,0.,0., 1.0657278922
	N,0,0.,0.,-1.1420910538
$\mathrm{CH}_{3} \mathrm{~N}(\mathrm{OH})_{2}$	O,0,0.022187099,-0.6349551521,-1.3350954985
	H,0,0.5893203574,-0.148068526,-1.954935511
	H,0,-0.0904240751, $1.1812067267,0.5314009456$
	O,0,0.7406626566,0.9112956469,0.1302633632
	$\mathrm{N}, 0,0.5857520631,-0.4731061348,-0.070443865$
	C, $0,1.9436425036,-0.994362503,-0.1007391072$
	H, 0, 2.3814077826,-0.8621993184, 0.8837180188
	$\mathrm{H}, 0,1.8857687075,-2.0490213811,-0.348860661$
	$\mathrm{H}, 0,2.5464479053,-0.4614393581,-0.845103685$
$\mathrm{H}_{2} \mathrm{O}$	H,0,3.5570575294,0.136514371,-0.9314714521
	$\mathrm{H}, 0,3.0079175243,-0.1598070934,-2.3185225289$
	O,0,2.7410569464,-0.0220772776,-1.408463019
$\mathbf{N H}_{3}$	$\mathrm{N}, 0,-0.0161871708,0.0282959422,-0.0113732791$
	H,0,0.0058122228,-0.0105204612,1.0004515514
	H,0,0.9451709677, -0.0105589485,-0.3280288621
	H, $0,-0.4633914289,-0.8237132348,-0.3277158788$
HCl	H,0,0.,0.,0.0207330095
	Cl,0,0.,0., 1.2973990905
HCOOH	$\mathrm{H}, 0,0.3141193059,-0.6541984014,-0.4392162473$
	O,0,1.9452166723, $0.3133577541,0.8854556155$
	C, $0,1.7404730528,0.5480221777,-0.2642022199$

	$\begin{aligned} & \mathrm{O}, 0,0.7879822176,-0.0280637538,-1.0035108062 \\ & \mathrm{H}, 0,2.3024937514,1.2672062233,-0.8687993421 \end{aligned}$
HNO_{3}	O,0,0.838059596,0.7036362107,-0.6661995475
	$\mathrm{N}, 0,1.5115735716,-0.1929135149,-0.2397518849$
	O,0,0.9681908254,-0.9058235916,0.8039528014
	H,0,0.1106685203,-0.4795375584,0.9519198915
	O,0,2.5832684867,-0.5662585458,-0.5796242606
$\mathrm{H}_{2} \mathrm{SO}_{4}$	O,0,3.1193249909,-0.5559319147,-0.3565766031
	S,0,4.1058418679,-0.0398509533,0.5127787692
	O,0,3.3887530062,0.6901794206,1.7097114658
	H,0,2.5175985994,0.2976104161,1.8553452047
	O,0,5.1429147942,0.8245710705, 0.0974388141
	O,0,4.7483657465,-1.2881518037,1.226118996
	H,0,5.6051579949,-1.0429052355, 1.5996403532
$\mathrm{CH}_{3} \mathrm{NO} \cdots \mathrm{CH}_{3} \mathrm{NO}$	C, $0,0.0618593761,0.1073900223,0.0073816641$
	$\mathrm{N}, 0,0.4250871023,-0.4313533674,1.3275325473$
	O,0,1.3800800303,-1.143910859,1.3091584804
	H, $0,-0.9841137773,-0.146827138,-0.1600341073$
	H,0,0.1360564601,1.1918827502,0.0887354765
	H, $, 0.7159552093,-0.2778936905,-0.7712067392$
	O,0,2.7816430883, $1.413395081,0.3832289443$
	$\mathrm{N}, 0,3.5842368816,1.0603629423,1.1904423796$
	C, $0,4.2311798549,-0.2199952456,0.8636966406$
	H,0,5.3045183589,-0.0332839862,0.8506015788
	H,0,4.0167768523,-0.8937341258,1.6929026786
	H, $0,3.8652193574,-0.6192276201,-0.0793119366$
$\mathrm{CH}_{3} \mathrm{NO}{ }^{\cdots} \mathrm{H}_{2} \mathrm{O}$	C, $0,0.0192372228,-0.0078770387,-0.0156083378$
	H, $0,0.0256334863,-0.013661194,1.0742717676$
	H, $, 1.0245357154,-0.0029304574,-0.4309945618$
	H,0,3.2035306489,-1.6476787792,-2.3051855832
	$\mathrm{H}, 0,-0.5611491688,0.8590803128,-0.3306728952$
	O,0,2.6081536174,-1.1359166098,-1.7557916843
	H,0,1.7833332922,-1.6330559362,-1.7211283464
	O,0,-0.1542901019,-1.9471567616,-1.1300497246
	$\mathrm{N}, 0,-0.7520061694,-1.1913621925,-0.4267726405$
$\mathrm{CH}_{3} \mathrm{NO}{ }^{\cdots} \mathrm{NH}_{3}$	C,0,-1.0931088618,1.0089510295,-0.0159488538
	H,, ,-1.5027027152,0.6540227335,0.9274862882
	H,0,-0.2891815232,1.7260131457,0.1467247057
	H,0,2.213968247,-0.0177875622,-0.0274698441
	H,0,-1.8489518183, 1.4665166326,-0.6525204102
	H, $0,1.5656139769,-0.422652806,1.4014652317$
	O, $0,-0.4846731219,-1.1355548654,-0.2005882142$
	$\mathrm{N}, 0,-0.4931398376,-0.0946430396,-0.7810823504$
	$\mathrm{N}, 0,1.9764930615,0.3484890909,0.8874100901$
	H, $0,2.8475335926,0.5823566409,1.347687357$
$\mathrm{CH}_{3} \mathrm{NO}{ }^{\cdots} \mathrm{HCl}$	C, $0,0.0342298531,0.0090173554,-0.0257529924$

	$\mathrm{H}, 0,0.0435779471,0.0151131958,1.0638063216$
	$\mathrm{H}, 0,2.5260785949,-0.0187570568,-1.80804741$
	H,0,-0.9866683882, $0.2171697447,-0.3446856344$
	O, $0,1.2805416864,-1.484259416,-1.1407183447$
	$\mathrm{N}, 0,0.3253367089,-1.3730246892,-0.4358444712$
	H,0,0.7450884592,0.7189423908,-0.4430395494
	Cl,0,3.1762831767,1.052628777,-2.1012154509
$\mathrm{CH}_{3} \mathrm{NO}{ }^{\cdots} \mathrm{HCOOH}$	C, $0,-1.719622515,0.1532681227,-0.9469367247$
	N,0,-1.8571666565,-0.577292627,0.3160595926
	O,0,-1.103666069,-0.2297250063,1.1743905022
	H, $0,-1.0604535839,1.0133567242,-0.8517843408$
	H, $0,-1.3123806895,-0.5630191025,-1.6614393575$
	H, $0,-2.7242297413,0.4269214462,-1.2639938803$
	O,0,1.2351136237,-0.5666907816,-0.9724755484
	C, $0,1.8888495706,0.2229125264,-0.3542892351$
	O,0,1.4692276707, $0.8996809318,0.7055541446$
	H,0,0.5547609697,0.6231935746,0.9102443458
	H, 0, 2.9236644206,0.4861071914,-0.5977344982
$\mathrm{CH}_{3} \mathrm{NO}{ }^{\cdots} \mathrm{HNO}_{3}$	C, $0,-2.0953451839,-0.072558805,-0.8559563382$
	$\mathrm{N}, 0,-2.2605628923,0.6420126291,0.4130268207$
	O,0,-1.4622177628,0.3558130719,1.2539098366
	H, $0,-3.0850108402,-0.403604662,-1.1638843602$
	$\mathrm{H}, 0,-1.7469233943,0.6728095454,-1.5726750924$
	H,0,-1.386224178,-0.8940183994,-0.7779865
	O, $0,0.8431266243,0.7046008353,-0.6732359972$
	$\mathrm{N}, 0,1.5114631156,-0.1979603203,-0.233554197$
	O,0,0.9712308354,-0.9051247181,0.7937576346
	H,0,0.0998158286,-0.4802365297,0.9660657938
	O, $0,2.5861238476,-0.5621756472,-0.5827366007$
$\mathrm{CH}_{3} \mathrm{NO}{ }^{\cdots} \mathrm{H}_{2} \mathrm{SO}_{4}$	C, $0,0.2419199742,0.2072397963,0.1368420006$
	$\mathrm{N}, 0,0.2074136669,-0.8006249639,1.1966833715$
	O,0,1.0762630521,-0.7033607798,2.01191356
	H, $0,-0.7718390762,0.5915085333,0.0392244946$
	H, $0,0.9725132208,0.9896616711,0.3284645768$
	H, $0,0.4925942405,-0.3338225362,-0.7766375914$
	O,0,3.1236172709,-0.5488873089,-0.3653917263
	S,0,4.1055460028,-0.0281146626,0.5150081492
	O,0,3.3951241025,0.700474885,1.6941336704
	H,0,2.5294982055,0.2661559577,1.8809748327
	O,0,5.1476442414, $0.8216255577,0.0775312106$
	O,0,4.7430243587,-1.2868806646,1.2178666209
	H,0,5.5835035624,-1.0388533088,1.6243343605
HCN ${ }^{\cdots} \mathrm{H}_{2} \mathrm{O}$	C, $0,-0.1576694317,-0.0045726035,-0.2742668974$
	H, $0,0.8462567065,-0.0117687596,-0.6580089212$
	H,0,3.5572071953,0.1372469248,-0.9274280494
	H,0,3.0052659823,-0.1605903601,-2.3215767069
	O,0,2.743559001,-0.0220269153,-1.4094517902
	$\mathrm{N}, 0,-1.2252192136,0.0038451083,0.1328393333$

HCN $\cdots \mathrm{CH}_{3} \mathrm{~N}(\mathrm{OH})_{2}$	C,0,-2.1999635872,-0.0817473859,0.4345095887 N,0,-2.2436884898,0.8890880917,1.036038239 O, $, 0,0.0297679544,-0.6518483242,-1.346593414$ H,0,0.5553838463,-0.1128508093,-1.9591520291 H,0,-2.1252178332,-0.9740955247,-0.1469039175 H,0,-0.085349744,1.1801581005,0.5383607333 O,0,0.7386164141,0.9066279882,0.1123442097 $\mathrm{N}, 0,0.5921670743,-0.4699893557,-0.0734662197$ C,0,1.9484604545,-0.9980837657,-0.0958792784 H,0,2.379130306,-0.8600233049,0.8908755032 Н, $0,1.890460419,-2.0542074279,-0.3376321382$ H,0,2.5561301854,-0.4704342823,-0.838655277
$\mathrm{HCN}^{\cdots} \mathrm{CH}_{3} \mathrm{NO}^{\cdots} \mathrm{H}_{2} \mathrm{O}$	C, $0,0.0035741176,-0.0025768262,0.008880155$ $\mathrm{N}, 0,-0.0058157163,0.0050656492,1.1516720958$ O,0,1.8434993343,0.0267818099,-2.3774403297 H,0,3.261149957,1.1506883594,1.6033701195 H,0,0.0513883347,0.0050230565,-1.0615565058 $\mathrm{H}, 0,2.2792365142,0.0871916342,1.1350718118$ O,0,3.1732019617,0.4162859034,0.9932093852 $\mathrm{N}, 0,2.3743338143,-0.7125597237,-1.6046796558$ C, $0,3.812568915,-0.8820870846,-1.821356602$ H,0,4.2834453953,-0.5388177103,-0.9002137138 H,0,3.9933900217,-1.9521362299,-1.9161108465 H,0,4.1474803504,-0.3263058378,-2.6941349137
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{H}_{2} \mathrm{O}\right)$-I	C,0,0.0089570657,-0.0088864252,-0.0025533272 H,0,0.0008450315,0.0040855913,1.0865043745 H,0,2.4851490994,-0.0202107011,3.2886145321 H,0,1.9022674272,-1.4332856717,3.3433610766 H,0,-0.8678756333, $0.2960552061,-0.555110906$ O,0,1.8142167314,-0.5863591672,2.9001466471 H,0,1.9446240597,-0.6871355579,0.9737204945 O,0,2.1188075705,-0.7559845812,0.0181638672 $\mathrm{N}, 0,1.0121950083,-0.369387039,-0.6814510814$
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{H}_{2} \mathrm{O}\right)$-II	C, $0,0.0323154339,0.0004881155,0.0145319547$ H,0,0.0912660974,0.0771834054,1.0961647227 H,0,2.2844839707,0.00684981,1.6927589949 H,0,2.7592316438,0.6565551409,3.0000269942 H, $0,-0.7797183014,0.4568878994,-0.5327710856$ O,0,2.0466772942,0.66117188,2.35987846 $\mathrm{H}, 0,2.4918055433,-1.5607266607,-0.5181575854$ O,0,1.898303984,-1.152408204,0.1158936351 $\mathrm{N}, 0,0.8968399527,-0.600567538,-0.6787338737$
$\mathrm{HCN}^{\cdots} \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}$	C, $0,0.022076037,0.0141777982,0.0479248914$ $\mathrm{H}, 0,0.0135573208,0.0212772689,2.8893860325$ $\mathrm{H}, 0,1.9752396547,-0.0596106639,1.5957464131$ H,0,-1.3133359005,-0.4342449893,3.5300670853 $\mathrm{H}, 0,-0.850309772,0.0138941227,0.67530478$

	O,0,-0.9505531108,0.0390854854,2.7807166477
	$\mathrm{H}, 0,2.4065678931,0.7603800588,2.8149213397$
	O,0,1.8676978039,0.0119503898,2.5510083997
	$\mathrm{N}, 0,1.0015002382,0.009436454,-0.5418989014$
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{NH}_{3}\right)$-I	C, $0,-0.0066436147,-0.0380445561,0.0029036893$
	$\mathrm{N}, 0,-0.0012254438,0.0383255894,1.265143389$
	O,0,1.2135204439,0.1065330279,1.8737121278
	$\mathrm{N}, 0,3.6624532565,0.0316189346,0.3102445998$
	H,0,0.9030230272,-0.0492396815,-0.595083351
	H,0,3.849463526,-0.7216453143,-0.34063247
	H,0,4.2880796503,-0.0948150756,1.0975618286
	H,, ,-0.971448999,-0.0934682071,-0.4798289991
	H,0,1.9352718994,0.0763495418,1.2097723436
	H,0,3.9286669589,0.8968730727,-0.1442481383
$\left(\mathrm{CH}_{2} \mathbf{N O H}^{\cdots} \mathrm{NH}_{3}\right)$-II	C,0,0.0000465028,0.001418544,0.0002900359
	H,0,-0.001802874,-0.0238457755,1.0872198907
	H,0,1.9311677141,-0.0436987673,2.3840597309
	H,0,1.5287194138,-0.6674077691,3.8393574887
	H,, ,-0.9188763339, $0.0857064628,-0.5620962993$
	H, $0,2.9088142066,-0.2092434805,-0.5020956763$
	O,0,2.1843586018,-0.1688863729,0.1255486175
	N, 0, 1.0589159073,-0.0611437455,-0.682500238
	$\mathrm{N}, 0,1.3111507535,0.0685725891,3.1790812203$
	H, $0,1.5519107519,0.9450641587,3.625149822$
$\mathbf{H C N} \cdots{ }^{-} \mathrm{NH}_{3}{ }^{-} \mathrm{H}_{\mathbf{2}} \mathrm{O}$	C, $0,0.0156320316,-0.0351818319,-0.0131153567$
	$\mathrm{N}, 0,-0.1040115224,0.0036440612,1.1206282516$
	O,0,0.8328903996,0.0843160826,4.1363987667
	$\mathrm{N}, 0,-1.2310591419,0.617915064,6.2079029717$
	H,0,-1.0562975073,1.5327658392,6.6047303653
	H,0,0.0911079912,0.2710922255,4.7294287359
	H,0,-2.2243802357,0.5491475743,6.0265846188
	H, $, 0.129560148,-0.0716213081,-1.0728189045$
	H,0,0.4581855316,0.063694422,3.2523137263
	H,, ,-1.0038908758,-0.0676051154,6.917608544
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{HCl}\right)-\mathrm{I}$	C, $0,0.0143573324,0.0152565136,-0.0078109275$
	$\mathrm{H}, 0,0.0173051947,0.0289579773,1.0718903214$
	$\mathrm{H}, 0,0.2016804918,-0.0153896415,-2.2730237783$
	Н, $0,-0.926977969,0.1199805962,-0.5484759293$
	O,0,1.1095671906,-0.1402066958,-1.9546612113
	$\mathrm{N}, 0,1.1276403957,-0.1245853754,-0.5812219922$
	$\mathrm{H}, 0,2.2287869139,1.4434133615,-2.4213450731$
	$\mathrm{Cl}, 0,2.6252009501,2.6138981674,-2.7790821045$
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{*} \mathrm{HCl}\right)$-II	C, $0,0.0052020734,-0.0238109838,-0.026510126$
	H, $0,-0.0215570127,-0.0379570752,1.0529162333$
	H,0,1.972097815,0.0521551685,-2.2385754878
	H, $0,-0.9120901316,-0.0396424167,-0.6076927745$
	O,0,1.0567870166,0.0180731639,-1.9482973511

$\mathrm{HCN}^{\cdots} \mathrm{HCl}^{\cdots} \mathrm{H}_{2} \mathrm{O}$
C,0,0.063897819,0.0091552355,-0.0337330948 H, $0,0.1562728999,0.0306346289,1.0294276187$ H,0,1.7459959546,-0.0371840664,-2.2457038759 H,0,3.073671379,0.1682047953,-0.5598600358
O,0,2.7120246099,-0.02578604,-2.2207806205 $\mathrm{N}, 0,-0.0195603501,-0.0129721867,-1.1719450734$ H,0,2.985829446,0.7091699718,-2.7741516124 Cl,0,3.2744149293,0.3195960388,0.7340698307
($\left.\mathrm{CH}_{\mathbf{2}} \mathrm{NOH}^{\cdots}{ }^{-} \mathrm{HCOOH}\right)-\mathrm{I}$

($\left.\mathrm{CH}_{2} \mathrm{NOH}^{\cdots}{ }^{-} \mathbf{H C O O H}\right)$-II

$\mathbf{H C N}^{\cdots}{ }^{-} \mathrm{HCOOH}^{\cdots} \mathrm{H}_{2} \mathrm{O}$

$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots}{ }^{-} \mathrm{HNO}_{3}\right)$-I

C,0,-1.8773748075,0.514179581,-0.8245858318
$\mathrm{N}, 0,-1.6987248494,-0.6038928019,-0.2664096429$
O, $0,-0.8796064151,-0.5956727642,0.8443588792$
H,0,-1.4255266,1.4393328415,-0.470799224
H,0,0.7324441962,-1.1867075523,0.090975837
H,0,-2.514653483,0.5209208307,-1.6972307888
O, $0,1.5990165526,-1.0573227421,-0.3467791505$
C,0,1.8828115019,0.2295161844,-0.3830801886
O,0,1.1981350337,1.112783885,0.0627619185
H,0,-0.4712713375,0.2858515263,0.9288419607
Н, $0,2.8419652079,0.4061350116,-0.8794677688$
C, $0,-1.8575699026,0.4181639903,-0.5527546904$ $\mathrm{N}, 0,-2.0413420147,-0.236390093,0.5091263875$
O,0,-0.970171631,-1.0983048717,0.7639645177
$\mathrm{H}, 0,-0.9653964356,0.3142243923,-1.1643857795$
H, $0,0.693720636,-0.3590154775,0.7364567157$
H,0,-2.6443123992,1.1095337506,-0.8188358294
O,0,1.5998251051,0.0033027642,0.8213632244
C,0,1.9962078718,0.5034945226,-0.3377662125
O,0,1.3445817624,0.5343202708,-1.3420082642
H,0,-1.2262572052,-1.546433976,1.574010861
H,0,3.0159522131,0.8962547273,-0.2606159303
C, $0,-2.096471794,0.9005760886,-0.6946153781$
$\mathrm{N}, 0,-2.433865937,0.3926982297,0.2703683716$
O,0,-0.2446178352,-1.5383608313,0.898848994
H,0,0.3076274515,-0.6705398656,-0.428966346
H,0,0.4093898797,-1.1208910511,1.4753407115
H,0,-1.7652088099,1.3645055967,-1.5967293106
O,0,1.9459275574,0.3165896395,0.8833004053
C, $0,1.7334270085,0.5474023578,-0.2759739049$
O,0,0.789308137,-0.0171904744,-1.0080726357
H,0,-1.0975774122,-1.1637830669,1.1456512614
H, $, 2.2 .3139947541,1.2700623771,-0.8605601687$
C, $0,-2.3235775091,-0.425349323,-0.6787462243$
N,0,-2.0438242423,0.6899010531,-0.1616416482
O,0,-1.2745485773,0.6407471185,0.9888608381
$\mathrm{H}, 0,-2.9220426287,-0.4050676074,-1.5780454874$
$\mathrm{H}, 0,0.2881908265,1.0509272422,0.3194472659$
$\mathrm{H}, 0,-1.9910009902,-1.3777269494,-0.2680001074$
$\mathrm{O}, 0,1.166138587,1.0944538616,-0.1325198853$
$\mathrm{~N}, 0,1.5220837708,-0.1885828279,-0.3655120973$
$\mathrm{O}, 0,0.7664441832,-1.0493614186,0.0302079846$
$\mathrm{H}, 0,-1.0475885223,-0.2845211892,1.1823525699$
$\mathrm{O}, 0,2.5509281025,-0.33201996,-0.9378252087$

($\mathrm{CH}_{2} \mathrm{NOH}^{\left.-\cdots \mathrm{HNO}_{3}\right) \text {-II }}$

$\mathrm{HCN}^{\cdots} \mathrm{HNO}_{3}{ }^{\cdots} \mathrm{H}_{2} \mathrm{O}$

C,0,-2.3623424859,-0.4875515745,-0.397931501 N,0,-2.4601952506,0.0696505078,0.7282326096 O,0,-1.4239615197,0.9894548565,0.9294124975 H,0,-3.124387455,-1.2171535018,-0.6306621931 $\mathrm{H}, 0,0.1761555335,0.3347254809,0.7768288382$ $\mathrm{H}, 0,-1.5660375078,-0.2587065382,-1.0996959558$ O,0,1.0837460659,-0.0458694907,0.8600291084 $\mathrm{N}, 0,1.5514908638,-0.1803098662,-0.4057061909$ O,0,0.7985473088,0.1300704651,-1.2950671962 $\mathrm{H}, 0,-1.6263251419,1.3782575366,1.784876247$ O,0,2.6613135889,-0.5958878757,-0.4892862636

C,0,-1.8950164235,-1.2124449708,-0.7629408922 N,0,-2.1262689326,-0.43349679,0.0378032374 O,0,-0.7739695141,1.7940587473,1.3778717548 $\mathrm{H}, 0,-1.6582592987,-1.9358424492,-1.5122489151$ H,0,-0.3415237695,1.4146275011,2.1487286148 H,0,0.1708687478,1.3934615611,0.1481659264 O,0,0.9451065,-0.5272805917,0.853749557 $\mathrm{N}, 0,0.8988813663,-0.2747199247,-0.3234967191$ O,0,0.590276647,0.9837171412,-0.6740164035 H,0,-1.5050398549,1.1899528231,1.1797623693 O,0,1.0884695322,-1.0288780475,-1.2344575297
$\left(\mathrm{CH}_{2} \mathbf{N O H}^{\cdots} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$-I
$\left(\mathrm{CH}_{2} \mathrm{NOH}^{\cdots} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$-II

C -2.70597 $0.42397-0.42503$
N -2.09941 -0.66086 -0.20897
O $-1.56109-0.836961 .04154$
H -2.82699 1.193350 .33444
H -0.43575 -0.90207 -1.00094
H $-3.10687 \quad 0.57322-1.41739$
O $0.49613-0.70775-1.24945$
S $1.16039 \quad 0.31766-0.28636$
$\begin{array}{lllll}\text { O } & 0.19155 & 1.23758 & 0.19578\end{array}$
H $-1.41428 \quad 0.03391 .44315$
O $2.348640 .74712-0.92036$
O $1.542-0.56416 \quad 0.96214$
H $2.35615-1.051090 .77918$
C,0,-2.9063751923,0.2623166406,-0.4385458711
$\mathrm{N}, 0,-2.9884515218,-0.9371784068,-0.06065312$
O,0,-1.8736882512,-1.2984304732,0.7138514904
H,0,-2.0716542196,0.908805391,-0.1817943513
H,0,-0.4014318336,-1.0333007054,-0.0217416436

H,0,-3.7269968048,0.6182548404,-1.0448534956 O, $0,0.4628617793,-0.8849966518,-0.4863696981$ S,0,1.1216007861,0.4524919735,-0.0531764067 O,0,0.1153956962,1.4231230893,0.1826470643 H,0,-2.0626602461,-2.2019971922,0.9816352176 O,0,2.2027889751,0.6819573886,-0.9360991495 O,0,1.7071097933,0.1051244595,1.3727068899 H,0,2.5746600392,-0.3065943536,1.2676620739
$\mathbf{H C N} \cdots \mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}{ }^{\cdots} \mathbf{H}_{\mathbf{2}} \mathbf{O} \quad \mathrm{C}, 0,-2.3732190004,1.0806163655,-0.7720063399$ N,0,-2.9167065708,0.1580479121,-0.3770365038 O,0,-1.4141145901,-1.8718184432,1.0266669501 H,0,-0.5605027109,-0.6755011775,1.3495980969 H,0,-0.9498223992,-2.1954081127,0.244257406 H,0,-1.8264198697,1.9302688606,-1.1219548178 O, $0,0.5341726141,-0.7208107404,-0.7819403109$ S, $0,0.7670466728,0.3873253678,0.0791074384$ O,0,0.0243414397,0.1719731229,1.4046188107 H,0,-2.2264092168,-1.4747107564,0.6778032436 O, $0,0.5286481214,1.7158712235,-0.378718009$ O,0,2.2776859694,0.2999208082,0.5103837381 H,0,2.5890725405,1.1724855694,0.7824182977
(INT)-I
C,0,-2.4127310985,-0.2939227287,-0.4903528575 N,0,-1.3699087122,0.1795096995,0.0380057325 O, $0,-0.2404127553,-0.4111857231,-0.4909968808$ $\mathrm{H}, 0,-2.3853737382,-1.0558300202,-1.2638365368$ H,0,-3.3531433664,0.0972590034,-0.1316680108 H,0,1.2880388133,0.9759931817,-1.661228757 O,0,1.1714184447,1.3124498968,-0.75786515 $\mathrm{N}, 0,0.8919251597,0.2210520014,0.0533540087$ C,0,1.9499048801,-0.7681926467,-0.1007437409 H,0,2.8720961517,-0.3055373628,0.2340382717 H,0,1.710237234,-1.6233819369,0.5231161496 H,0,2.0465229873,-1.0871963645,-1.1449642284
(INT)-II C,0,-2.4556881866,-0.2836082968,-0.0667142923 $\mathrm{N}, 0,-1.3532726295,0.240848967,0.2520505689$
O,0,-0.2961367881,-0.5655534264,-0.0905021748
Н, $,-2.5238398231,-1.2542487676,-0.548400422$
H,0,-3.3452673169,0.2822391241,0.1662187982
H,0,0.778999627,1.8275811508,-0.4112354928 O,0,1.182309244,1.0100310937,-0.7183606856 N,0,0.8889479992,0.0998010595,0.3047725768 C,0,1.9080791982,-0.9359000754,0.2002171531 H, $0,2.8582133656,-0.4734152483,0.444651776$ $\mathrm{H}, 0,1.6715633793,-1.7104925775,0.9222535525$ H, $0,1.940641931,-1.348736003,-0.8095123579$

TS-1 C,0,-0.1144040202,-0.0436622883,0.2451853079 H,0,-0.2701260224,0.2230953466,1.28135072 $\mathrm{H}, 0,0.7761371336,-0.4341561444,-0.8132117309$
$\mathrm{H}, 0,-0.3842445129,0.7359413293,-0.4684869579$
$\mathrm{O}, 0,0.0966087653,-1.4950087613,-1.227226171$
$\mathrm{~N}, 0,-0.5920223434,-1.2409464818,-0.2042961681$

TS-2
C,0,-0.0367041132,0.9126378209,0.7953922878 H,0,-0.7046224793,1.2656956696,1.5700135183 H,0,0.4813380877,-0.0091980423,-1.4636328928 $\mathrm{H}, 0,0.8312250346,1.5002956822,0.5043399724$ O,0,0.6268439329,-0.586073148,-0.7064794408 $\mathrm{N}, 0,-0.3132014625,-0.1979019823,0.269541555$

TS-3 C,0,-0.1100307075,0.8550628465,0.8750812926 H,0,-0.4234041,1.3022200599,1.8145615779 H,0,0.6061465949,-1.1240010869,-0.8645534648 H,0,0.6159492404,0.6165260085,-0.3152013851 O, $0,0.118939557,-0.2915212774,-0.9484251143$ $\mathrm{N}, 0,-0.765553505,-0.1157574106,0.4665214736$

TS-4 $\mathrm{C}, 0,0.4174577029,0.144283636,0.1684544837$
$\mathrm{~N}, 0,0.5052298229,0.1684030254,1.50963344$
$\mathrm{O}, 0,1.5531113581,-0.3788746643,1.9490093848$
$\mathrm{H}, 0,0.9198039857,-0.652297754,-0.3746738688$
$\mathrm{H}, 0,-0.4816183279,0.5725638731,-0.2493359546$
$\mathrm{H}, 0,1.5053543242,0.9974702748,0.0380378146$
$\mathrm{O}, 0,2.5568609476,1.406182199,0.4475342781$
$\mathrm{~N}, 0,3.0514739596,0.5877212744,1.2686833952$
$\mathrm{C}, 0,3.7305097808,-0.5247406197,0.6007760489$
$\mathrm{H}, 0,4.7295681304,-0.1502228324,0.3719508529$
$\mathrm{H}, 0,3.7975110467,-1.3526872338,1.2971632456$
$\mathrm{H}, 0,3.2332352692,-0.8109951786,-0.3241061203$

TS-5 C,0,-2.3026073802,-0.2232604242,0.0915577154 $\mathrm{N}, 0,-1.3342933601,0.294860992,-0.5292085791$ O,0,-0.1560215987,-0.3755705295,-0.2432965527 H,0,-2.1856986333,-1.0729305037,0.7575346304 H,0,-3.2713254978, $0.2261754318,-0.0682466039$ H,0,0.2967959775,-1.0129694092,-2.2084890203 O, $0,1.0619070087,-0.4309812449,-2.1458059613$ $\mathrm{N}, 0,0.8946443874,0.2647020547,-0.9135084345$
C, $0,2.0753007188,-0.0601019174,-0.1208735776$ H, $, 2.23345319929,0.3040482795,-0.6743381045$ H,0,1.9933712525,0.4639419397,0.8265790113 H,0,2.1619691325,-1.1368976689,0.0349534769

TS-6 C -1.43003 -0.67353 -0.69452 $\mathrm{N}-1.15919 \quad 0.04874 \quad 0.22795$ O $0.83025-0.36686-0.5875$ H - $0.42256-0.99141-1.27058$ H -2.38697 -1.04537 -1.04975 H $2.147131 .5842-1.3575$ O $2.50586 \quad 0.72308-1.59752$ N $2.07369-0.1269-0.56251$

C $2.96139-1.27998-0.51221$
H $3.97536-0.93203-0.35039$
H $2.63116-1.901530 .31265$
H $2.89768-1.83261-1.45328$
TS-7 C,0,-2.1726098514,-0.0832595747,0.3297154185 $\mathrm{N}, 0,-2.1403087781,0.9231208113,0.8712385958$ O, $0,0.0347320746,-0.7833467064,-1.2873013561$ $\mathrm{H}, 0,0.2647851764,0.5376977511,-1.1324017503$ H,0,-2.1392364041,-1.0054506849,-0.2107027985 Н,0,-0.0591061305,1.2126826244,0.3843394669 O,0,0.698708358,0.9173542646,-0.1537852156 N,0,0.5910837774,-0.7016873627,-0.0643556883 C,0,1.9992016559,-1.0886611381,-0.1214785992 H,0,2.4908716104,-0.7870173067,0.7982312827 H,0,1.9856033916,-2.1741678249,-0.198568446 H,0,2.4821701198,-0.6646698533,-1.0010829098

TS-8 C,0,-0.0003350063,0.0003130727,-0.0029933692 H, $0,-0.0062096056,0.0009096341,1.088080103$ Н,0,1.4387018139,-0.0074132477,0.0834928748 H,0,3.0761463939,-0.7249151979,-0.1834635019 H,0,-0.5369088318,0.7851428369,-0.5126024874 O,0,2.4106541816,-0.6120888617,0.5045593553 H,0,1.7852093271,-1.4682734351,0.4816764862 O, $0,0.5931706085,-2.1269254401,-0.0294990441$ $\mathrm{N}, 0,-0.0065049263,-1.192087901,-0.626664217$

TS-9 C,0,0.0021948515, 0.0000413917,0.0044923757 H,, ,-0.0073524583,-0.0161101862, 1.0916960673
H, $, 2.250073124,-0.0071316004,1.660930929$
H,0,2.6899697333,0.9423482724,2.7877022181
H,0,-0.7745443919,0.5151623818,-0.5459732381 O,0,1.9397477247,0.449705452,2.4527844378 H,0,1.4770297025,-1.953797588,0.4928424128 O,0,1.894747848,-1.1746983759,0.1090394302 $\mathrm{N}, 0,0.9031074809,-0.5444168588,-0.6886733515$

TS-10 C,0,0.0029557179,0.0044344673, 0.0123580107 H,0,-0.0017567814,0.0029207304,1.4424301653 H,0,1.5898725656,-0.008086917,1.7739008351 Н, $0,0.4185836855,-0.8265838387,2.9283604686$ H,0,-0.751261034,-0.0643563263,-0.7720466673 O, $0,0.5820535899,-0.0031603021,2.460605392$ H,0,2.8668895776,-0.5574159744,0.6081855844 O,0,2.2488275426,0.1510535057,0.8083572415 $\mathrm{N}, 0,1.1322048188,-0.0045710092,-0.4775969025$

TS-11 C,0,-0.086832047,-0.000541086,-0.0229276557 Н, $0,-0.3445239684,-0.1255993304,1.0306399713$ H,0,1.4121831138,-0.0679383059,0.2622847117 H,0,3.1601481691,-0.6426460446,-0.0350528776
$\mathrm{H}, 0,-0.4563894103,0.864986655,-0.5526584612$
$\mathrm{H}, 0,2.0235793141,-1.5614927803,0.7716195138$
$\mathrm{O}, 0,0.3888458141,-2.1510187445,-0.140931158$
$\mathrm{~N}, 0,0.0857797967,-1.1076732006,-0.7641769538$
$\mathrm{~N}, 0,2.4260108807,-0.62186074,0.6629354742$
$\mathrm{H}, 0,2.7669313346,-0.2448780097,1.5374281709$

TS-12 | $\mathrm{C}, 0,-0.1377388911,-0.2130014867,-0.0134229138$ | |
| :---: | :---: |
| | $\mathrm{H}, 0,-0.1152918149,-0.3899652442,1.0591539608$ |
| $\mathrm{H}, 0,2.1253875545,0.2435037745,1.7289960182$ | |
| $\mathrm{H}, 0,2.2667601886,0.5699418876,3.3229548527$ | |
| | $\mathrm{H}, 0,-1.0009233115,0.2425938535,-0.4820493829$ |
| $\mathrm{H}, 0,1.6617145994,-1.9588261405,0.1321095777$ | |
| $\mathrm{O}, 0,1.9216969201,-1.0556956314,-0.0772766746$ | |
| $\mathrm{~N}, 0,0.8264690083,-0.4891377633,-0.7773447192$ | |
| $\mathrm{~N}, 0,1.6888118022,0.7291819961,2.5068549093$ | |
| | $\mathrm{H}, 0,1.7431690246,1.7199498942,2.3031941617$ |

TS-13 C,0,-1.2839279397,0.2437109646,-0.3844827177
H,0,-0.5031094775,0.8311415283,1.013264297
H,0,0.9716399919,0.2095638887,0.8133625469
H,0,0.3318925686,0.3629419575,2.4951320126 H,0,-2.2957485007,0.1600181408,-0.7905931802 H,0,1.405805643,-1.1706864507,-0.7334145704 O, $0,1.0745746478,-0.3041265455,-0.490334347$ $\mathrm{N}, 0,-0.5367966647,-0.4427290408,-1.0782960283$ $\mathrm{N}, 0,0.4381819296,0.8180132454,1.5964843173$ $\mathrm{H}, 0,0.830754802,1.7452103116,1.70965467$

TS-14 C,0,0.006762351,0.008025673,0.0017993366 H,0,-0.0083708988,-0.0093422235,1.0806013177 H,0,0.6105195522,-0.0734213216,-2.1743627089 H,0,-0.9342870854,0.2571413543,-0.4890094816 O,0,0.7739999501,-1.0467371907,-1.7861201424 $\mathrm{N}, 0,0.6977751584,-1.0396514463,-0.5269418059$ $\mathrm{H}, 0,0.611928011,0.940731308,-0.557480213$ $\mathrm{Cl}, 0,0.9472076209,1.7044279639,-2.1511165764$

TS-15 C,0,-0.0091313072,0.0166151195,0.032912305 N,0,0.1057933639,-0.18504758,1.2699891484 O,0,1.452872351,-0.1212774624,1.7043604456 Cl,0,0.922447382,-0.6085572773,4.8482623262 H, $0,-1.0095402329,-0.0383291815,-0.3754268842$ H,0,1.7054491919,0.8092034716,1.6783528564 H,0,0.8407655687,0.2302017486,-0.6108035446 H,0,1.1332218066,-0.5637378456,3.5769976252

TS-16 C,0,-0.0048119637,-0.0035224401,0.0095335743 Н, $0,-0.0094780537,0.0062056616,1.0982284622$ H,0,1.4202027644,0.0080311505,-2.650081437 H,0,-0.8237339802,-0.6335451884,-0.6386319481 O,0,0.6068532406,0.4493328159,-2.382448438
$\mathrm{N}, 0,0.897108397,0.6000592064,-0.5286370853$ H,0,-0.1447659192,-0.2153121417,-2.4807624473 Cl, $,,-1.5769665148,-1.4018607304,-1.9867463778$

TS-17
C,0,0.4953764028,-0.0002277895,0.0837003668 N, $, 0,0.3028405544,-0.6535652564,1.2473877094$ O, $0,0.9360657181,-0.2219252557,2.2405740536$ $\mathrm{H}, 0,0.7845347945,1.0497785567,0.134607612$
H,0,1.7405139833,-0.5027184637,-0.108175852
H,0,-0.1729811592,-0.3034610338,-0.7083451576
O,0,3.0068572265,-0.6650979655,-0.1390329141
C,0,3.619635086,0.0477089072,0.6761915237
O,0,3.1269297134,0.6341895257,1.6817585092 H,0,2.0741891485,0.3523372616,1.932754822 H,0,4.689909532,0.1985455135,0.5210393271

TS-18 C,0,-1.8433516477,0.4151934062,-0.8130862473
$\mathrm{N}, 0,-2.1178610053,-0.6106908615,-0.1338586289$
O,0,-1.0608982394,-0.9482648385,0.7629798239
H,0,-0.9193384803, 0.9768700154,-0.6934305538
Н,0,0.5673322256,-0.9698201047,0.0620647961
H,0,-2.5931398879,0.7159015805,-1.5340116665
O,0,1.4784020925,-0.9351823924,-0.3071157548 C, $0,1.8912972735,0.3179323703,-0.3430610718$ O,0,1.2479333355,1.2736818238,-0.0058305942 H,0,-1.1376204996,-0.3410790039, 1.5077896365 H,0,2.9141922031,0.3829363247,-0.7298900492

TS-19 C,0,-1.5189520483,0.5142717138,-0.8551302993
$\mathrm{N}, 0,-1.9751556646,-0.1488931788,0.0713106587$
O,0,-0.718285795,-1.1813796582,0.616777369
H,0,-0.1968485905,0.5949687632,-1.2877007134
H,0,0.1963835081,-0.6215542595,0.6000245147
H,0,-2.3166021413,1.1619190155,-1.2308812458
O,0,1.411895155,0.0320915498,0.5067223787
С, $0,1.7345877056,0.5204789679,-0.5863664754$
O, $, 0.0 .9633843109,0.7528913702,-1.5612216664$
H,, ,-0.9799684581,-1.3458483546, 1.5286109412
Н, $0,2.7867780182,0.7861780709,-0.7435594619$
TS-20 C,0,0.4907623454,-0.0318218895,0.1215349369 $\mathrm{N}, 0,0.254557367,0.6210662402,1.2882602603$ O,0,1.0221747902,0.3564450933,2.2427448843 H,0,-0.2507830468,0.175805865,-0.6341947297 H,0,1.628778814,0.5052559664,-0.0820357828 H,0,0.8618082242,-1.0546759052,0.1930941964 O,0,2.9703265287,0.8173748468,0.0234249867 $\mathrm{N}, 0,3.6294280303,-0.1056679668,0.5990137701$ O,0,3.0420947037,-0.7751181394,1.5124024016 H,0,1.9264384781,-0.2306244252,1.9281385914 O,0,4.7542307653,-0.3425616855,0.2988184848

C,0,-2.2999456039,-0.2626521039,-0.7216783615 $\mathrm{N}, 0,-2.507295807,0.6657841798,0.1045909199$ O,0,-1.3567165212,0.9326393422,0.9049977266 H,0,-3.1235924677,-0.504660337,-1.3805560455 H,0,0.0919298072,0.9587837793,0.0929036644 H,0,-1.3619953805,-0.8095303915,-0.7820728651 O, $0,0.9564404674,0.9588315991,-0.403805971$ $\mathrm{N}, 0,1.4849525353,-0.2700924125,-0.2146580767$ O,0,0.8274520062,-1.0507031136,0.4369088365 H,0,-1.3165889104,0.2316852223,1.5674967265 O,0,2.5443724745,-0.4513936643,-0.7194362641

TS-22 C,0,-1.7627175193,-0.568900917,-0.6153755791 $\mathrm{N}, 0,-2.2790369576,-0.0541154799,0.359806229$ O,0,-1.0685542563,1.1060585186,0.9900360728 H, $0,-2.4447348103,-1.2862275813,-1.078661114$ H,0,-0.1853857817,0.5969051078,0.9118068551 H, $0,-0.5223159847,-0.3511543197,-1.0467542035$ O,0,1.0703748775,-0.2168156986,0.6971219316 $\mathrm{N}, 0,1.5011058949,-0.2944287847,-0.4750928965$ O,0,0.6538637724,-0.1579216535,-1.4381820264 H,0,-1.3115093358,1.1610579825,1.9208610387 O,0,2.6479647909,-0.4885424141,-0.7285742477

TS-23
C,0,0.5690690371,0.1320433009,0.0714442864 N,0,0.339872925,-0.819498678,1.0118970205 O,0,1.0530859902,-0.793118145,2.0423709214 H,0,0.9153355525,1.1039433843,0.4228783967
H,0,1.6993699811,-0.2889194828,-0.312517688
$\mathrm{H}, 0,-0.1671115974,0.1151014558,-0.717975908$ O,0,3.06727892,-0.5466010781,-0.3809331021 S,0,3.8896560824,0.1060297725,0.6487026388 O,0,3.0127505082,0.6194769198,1.7216963228 H,0,1.8974936051,-0.0906237203,1.9760784285 O,0,4.8463625354,1.0497416738,0.1948816035 O,0,4.669902947,-1.1162861541,1.2771795667 H,0,5.5433392534,-0.8171531288,1.5590724626

TS-24 C,0,-2.8862765842,0.3025737475,-0.5652639074 $\mathrm{N}, 0,-3.0685212098,-0.5748296338,0.3204013829$ O,0,-1.8469832209,-0.9356770566,0.9694459437 $\mathrm{H}, 0,-1.9201601517,0.7531906356,-0.7755716856$ H,0,-0.5029576073,-0.949281258,0.0597169316 H,0,-3.7673047335,0.6053915581,-1.1163535708 O,0,0.3456751544,-0.7729385029,-0.4448611883 S,0,1.0490499825,0.4684750374,0.159723465 O,0,0.0703514464,1.2951211531,0.7780684077 $\mathrm{H}, 0,-1.6965700105,-0.2573669938,1.6424842774$ О, $0,1.9514034996,0.9648491867,-0.8092839568$ O,0,1.8798615589,-0.1413497712,1.3542596171 H,0,2.7105714964,-0.5042629821,1.0198625333

TS-25

$$
\begin{aligned}
& \mathrm{C}, 0,-2.3409542699,0.6468519142,-0.3514982042 \\
& \mathrm{~N}, 0,-2.8583234058,-0.3842142571,0.0305377851 \\
& \mathrm{O}, 0,-1.5490658679,-1.6342526679,0.2994530337 \\
& \mathrm{H}, 0,-1.0846789945,0.9996007415,-0.5237090056 \\
& \mathrm{H}, 0,-0.7544158853,-1.4358365374,-0.2895610847 \\
& \mathrm{H}, 0,-3.1302189223,1.386805672,-0.5303191044 \\
& \mathrm{O}, 0,0.5304882317,-0.9730186125,-1.0711689719 \\
& \mathrm{~S}, 0,1.0923072735,0.2411641325,-0.5221464828 \\
& \mathrm{O}, 0,0.1204266297,1.3634539998,-0.6494795452 \\
& \mathrm{H}, 0,-1.2554835579,-1.4873954124,1.2072983669 \\
& \mathrm{O}, 0,2.4057403695,0.6128625499,-0.8988668614 \\
& \mathrm{O}, 0,1.0963083682,-0.0806574018,1.0479466826 \\
& \mathrm{H}, 0,1.6723680312,0.5485628792,1.4992383921
\end{aligned}
$$

References:

1. A. Varandas and F. Pansini, J. Chem. Phys., 2014, 141, 224113.
2. S. Sarkar, S. Mallick, Deepak, P. Kumar and B. Bandyopadhyay, Phys. Chem. Chem. Phys., 2017, 19, 27848.
3. S. Sarkar, S. Mallick, P. Kumar and B. Bandyopadhyay, Phys. Chem. Chem. Phys., 2018, 20, 13437.
4. S. Sarkar, B. K. Oram and B. Bandyopadhyay, Phys. Chem. Chem. Phys., 2019, 21, 16170.
