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Supplementary Information: On Short-ranged Pair-
Potentials for Long-range Electrostatics

Björn Stenqvist,∗a and Mikael Lundb

Cutoff-effects
In this section we will evaluate effects due to primarily R∗c , but
also l and P. In Table. 1 we see that no potential recover the
reference energy, albeit the standard deviation (i.e. a measure of
the heat capacity) for q0 is similar. The energy for R∗c ∈ {4,5} are
maximized for some intermediate value of P, whereas for R∗c = 6
at least q0 gives the same energy (within the standard deviation)
for all tested P≥ 4. By assuming that the maximized energy cor-
responds to the most accurate parameterization of P, which also
can be expected by observing the mean squared dipole moments
using q0, we conclude that the closed interval for valid P val-
ues using R∗c ∈ {4,5} becomes half-open as the cut-off increases
to R∗c = 6. We also acknowledge that q0 are far more accurate
than q2 with regard to the mean squared dipole moments. The
mean squared dipole moments can trivially be converted to static
dielectric constants by the procedure in Sec. S3.

In Fig. S1 we present the radial distribution functions for the
tested parameters and note that q2 is fairly independent of P and
R∗c . At first glance q2 does seem to give accurate results though by
inspecting the ratio to the reference we see a large difference, pri-
marily compared to q0 but also other pair-potentials1. For the q0

results we see that a single higher-order cancellation substantially
reduce the difference to the reference whereas even higher-order
cancellation does not notably decrease it further. By moving on
to the angular correlations in Fig. S2 we can confirm many of
our previous observations, although we now notice that a cancel-
lation of two higher-order moments seem to give most accurate
results compared to the reference (note the negative values of
〈µ̂(0) · µ̂(r∗)〉 for q0 using R∗c ∈ {5,6} and P = 4). For larger can-
cellation it is clear to see that the results eventually (i.e. P = ∞)
gives among the most erroneous angular-correlations.

We conclude this examination by recommending using l = 0
and P = 4 for the short cut-off R∗c = 4, and for larger cut-offs such
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as R∗c ∈ {5,6} then l = 0 and P = 5. For l = 2 we do not give any
recommendations since the potential itself seems erroneous.

Self-energy

Long-ranged interactions other than ion-ion, ion-dipole, dipole-
dipole, and ion-quadrupole, does absolutely converge and thus
no special summation technique is needed. Therefore the issue of
the self-energy for such cases is not relevant and will not be dis-
cussed. For ion-dipole-interactions there is no need to specifically
evaluate the self-energy since the ion and dipole self-energies are
explicitly included in the ion-ion- or dipole-dipole-energies which
we will later address. Similar arguments holds for the self-energy
of the ion-quadrupole-interaction. The derivation of the self-
energy follows the derivation of the Coulomb q-potential2 and
culminates into Eq. S1 for any valid k, l, or P.
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Yet there are some discrepancies from the Coulomb q-potential
since angular dependencies are present in higher order interac-
tions, and hence we address this now. Following the Coulomb
q-potential derivation2, the order k + l self-energy is shown in
Eq. S2 (see Eq. B7 in reference).
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Here the normalized tensor T̃k,l(Ω) is related to ∇kTl(r) as

∇
kTl(r) =

T̃k,l(Ω)

|r|k+l+1 (S3)
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R∗c = 4 R∗c = 5 R∗c = 6
E∗Tot 〈M∗2〉 E∗Tot 〈M∗2〉 E∗Tot 〈M∗2〉

P
l

0 2 0 2 0 2 0 2 0 2 0 2

1 — -6.226 — 3 — -6.278 — 3 — -6.304 — 3
2 — -6.192 — 3 — -6.257 — 3 — -6.291 — 3
3 -6.573 -6.185 10 3 -6.550 -6.253 10 3 -6.541 -6.288 10 3
4 -6.509 -6.183 130 3 -6.465 -6.253 140 3 -6.438 -6.289 130 3
5 -6.509 -6.184 130 3 -6.465 -6.254 130 3 -6.438 -6.290 130 3
6 -6.512 -6.185 130 3 -6.465 -6.255 140 3 -6.438 -6.291 130 3
7 -6.514 -6.186 140 3 -6.465 -6.256 140 3 -6.438 -6.292 130 3
8 -6.516 — 140 — -6.466 — 130 — -6.438 — 130 3
9 -6.519 — 150 — -6.466 — 140 — -6.438 — 140 3
∞ -6.531 -6.188 160 3 -6.469 -6.258 140 3 -6.439 -6.294 140 3

Ref. -6.383 130 -6.383 130 -6.383 130

Table 1 Table for total particle energies, E∗ (standard deviation ∼ 10−4), mean squared dipole moment of the simulation box 〈M∗2〉 (standard deviations
∼ 101 for q0 and ∼ 10−1 for q2). We want to acknowledge that all values related to mean squared dipole moments are scaled by 10−3.

where Ω index the angular dependence. By reshuffling the terms
in Eq. S2 we then get Eq. S4.
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We now let q→ 0 to get the self-energy, which comes from the
following argument: Though we can not mirror the particle in
the origin (since division by q = 0 is not possible) we choose to
mirror an identical particle infinitesimally close (q→ 0) to the
same. The right denominator in Eq. S4 is a polynomial with only
non-negative powers. Thus if q→ 0 only the constant term 1 will
be none-vanishing. In the same limit the numerator will be zero
for every p > 1 and thus the entire far right sum will equal one.
The final expression for the far right sum in the limit q→ 0 is thus
1 (as p = 1 gives the only non-vanishing term in the sum) as is
shown in Eq. S5, and independent of P.
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Finally we will approach the question of angular-dependence. For
k+ l = 0 there is no angular dependence and therefore T̃0,0(Ω) =

1. The only other case we have to cover is k+ l = 2, see earlier
discussion in this section. Instead of using point image moments
we will now use a uniform distribution in line with a previous
work for dipoles1 (see Appendix A in reference). The final result
for the k+ l = {0,2} self-energies is thus the previously presented
Eq. S1.

Dielectric constant

By following an established scheme to retrieve an expression for
the dielectric constant εr of the system3 we get

εr−1
εr +2

[
1− εr−1

εr +2
T̃ (0)

]−1
=

1
3ε0

〈M2〉
3V kBT

(S6)

where ε0 is the vacuum permittivity, 〈M2〉 is the fluctuation of the
total dipole moment squared in the system, V the volume of the

simulating cell, kB the Boltzmann constant, and T the tempera-
ture. By then using Eq. 7 in the main text we, similar to an earlier
work2, get that T̃ (0) = 1 for l = 0 whereas T̃ (0) = 0 for l = 2 (see
appendix in reference). Note that the dielectric constant obtained
by using T̃ (0) = 1 is the same as for the Ewald summation method
with conducting boundary conditions, and T̃ (0) = 0 gives an ex-
pression for the dielectric constant which represent high dielectric
medium poorly4.

Notes and references
1 B. Stenqvist, M. Trulsson, A.I. Abrikosov and M. Lund, The

Journal of chemical physics 143 (1), 014109 (2015).
2 B. Stenqvist, V. Aspelin and M. Lund (2019).
3 M. Neumann, Molecular Physics 57 (1), 97–121 (1986).
4 D. Adams and I. McDonald, Molecular Physics 32 (4), 931–947

(1976).
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Fig. S1 The logarithm of the ratio between pair-potential and reference radial distribution functions using q0 (left)/q2 (right) and R∗c equal to 4 (top) / 5
(middle) / 6 (bottom). The insets show the radial distribution functions. Black lines are Ewald results.
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Fig. S2 Dipole-dipole correlation differences to the reference result using q0 (left)/q2 (right) and R∗c equal to 4 (top) / 5 (middle) / 6 (bottom). The insets
show the dipole-dipole correlation 〈µ̂(0) · µ̂(r∗)〉. Black lines are Ewald results.
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