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Cutoff-effects

In this section we will evaluate effects due to primarily R}, but
also / and P. In Table. [1| we see that no potential recover the
reference energy, albeit the standard deviation (i.e. a measure of
the heat capacity) for g is similar. The energy for Rf € {4,5} are
maximized for some intermediate value of P, whereas for R} =6
at least g gives the same energy (within the standard deviation)
for all tested P > 4. By assuming that the maximized energy cor-
responds to the most accurate parameterization of P, which also
can be expected by observing the mean squared dipole moments
using ¢g, we conclude that the closed interval for valid P val-
ues using R} € {4,5} becomes half-open as the cut-off increases
to RX = 6. We also acknowledge that g are far more accurate
than ¢, with regard to the mean squared dipole moments. The
mean squared dipole moments can trivially be converted to static
dielectric constants by the procedure in Sec.

In Fig. [S1| we present the radial distribution functions for the
tested parameters and note that ¢, is fairly independent of P and
R. At first glance ¢, does seem to give accurate results though by
inspecting the ratio to the reference we see a large difference, pri-
marily compared to g but also other pair-potentialsm. For the ¢
results we see that a single higher-order cancellation substantially
reduce the difference to the reference whereas even higher-order
cancellation does not notably decrease it further. By moving on
to the angular correlations in Fig. we can confirm many of
our previous observations, although we now notice that a cancel-
lation of two higher-order moments seem to give most accurate
results compared to the reference (note the negative values of
(f1(0) - fu(r*)) for go using R € {5,6} and P =4). For larger can-
cellation it is clear to see that the results eventually (i.e. P = )
gives among the most erroneous angular-correlations.

We conclude this examination by recommending using / = 0
and P = 4 for the short cut-off R} =4, and for larger cut-offs such
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as R € {5,6} then / =0 and P = 5. For [ =2 we do not give any
recommendations since the potential itself seems erroneous.

Self-energy

Long-ranged interactions other than ion-ion, ion-dipole, dipole-
dipole, and ion-quadrupole, does absolutely converge and thus
no special summation technique is needed. Therefore the issue of
the self-energy for such cases is not relevant and will not be dis-
cussed. For ion-dipole-interactions there is no need to specifically
evaluate the self-energy since the ion and dipole self-energies are
explicitly included in the ion-ion- or dipole-dipole-energies which
we will later address. Similar arguments holds for the self-energy
of the ion-quadrupole-interaction. The derivation of the self-
energy follows the derivation of the Coulomb g-potential? and
culminates into Eq. [S1|for any valid %, [, or P.
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Yet there are some discrepancies from the Coulomb g¢-potential
since angular dependencies are present in higher order interac-
tions, and hence we address this now. Following the Coulomb
g-potential derivation?, the order k +/ self-energy is shown in
Eq.[S2] (see Eq. B7 in reference).
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Here the normalized tensor Ty () is related to V¥T;(r) as
Ti(Q)
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R:=4 R:=5 R:=6

Efy (M) Efy (M) Efy (M)
» ! 0 2 ) 0 2 ) 0 2 0 2
] — 6226 — 3| — 6278 — 3| — 6304 — 3
2 — 6192 — 3| — 6257 — 3| — 6201 — 3
3 | -6573 618 10 3 |-6550 -6253 10 3 |-6541 -6.288 10 3
4 | -65509 -6.183 130 3 | -6.465 -6.253 140 3 | -6.438 -6.289 130 3
5 | -6509 -6.184 130 3 | -6.465 -6254 130 3 | -6.438 -6.290 130 3
6 |-6512 -6185 130 3 | -6.465 -6.255 140 3 | -6.438 -6.291 130 3
7 | -6514 -6.186 140 3 | -6.465 -6.256 140 3 | -6.438 -6.292 130 3
8 |-6516 — 140 — | -6466 — 130 — |-6438 — 130 3
9 [-6519 — 150 — | -6466 — 140 — | -6438 — 140 3
o |-6531 -6188 160 3 | -6.469 -6.258 140 3 | -6.439 -6.294 140 3

Ref. "6.383 130 "6.383 130 ~6.383 130

Table 1 Table for total particle energies, E* (standard deviation ~ 10~#), mean squared dipole moment of the simulation box (M*?) (standard deviations
~ 10! for go and ~ 10~! for ¢5). We want to acknowledge that all values related to mean squared dipole moments are scaled by 103,

where Q index the angular dependence. By reshuffling the terms

in Eq.[S2|we then get Eq.
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(54
We now let ¢ — 0 to get the self-energy, which comes from the
following argument: Though we can not mirror the particle in
the origin (since division by ¢ = 0 is not possible) we choose to
mirror an identical particle infinitesimally close (¢ — 0) to the
same. The right denominator in Eq.[S4]is a polynomial with only
non-negative powers. Thus if ¢ — 0 only the constant term 1 will
be none-vanishing. In the same limit the numerator will be zero
for every p > 1 and thus the entire far right sum will equal one.
The final expression for the far right sum in the limit g — 0 is thus
1 (as p =1 gives the only non-vanishing term in the sum) as is
shown in Eq. and independent of P.
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Finally we will approach the question of angular-dependence. For
k+1 = 0 there is no angular dependence and therefore T (Q) =
1. The only other case we have to cover is k+1 = 2, see earlier
discussion in this section. Instead of using point image moments
we will now use a uniform distribution in line with a previous
work for dipoles'!! (see Appendix A in reference). The final result
for the k+1 = {0,2} self-energies is thus the previously presented

Eq.[ST}
Dielectric constant

By following an established scheme to retrieve an expression for
the dielectric constant &, of the system* we get
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where g is the vacuum permittivity, (M?) is the fluctuation of the
total dipole moment squared in the system, V the volume of the
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simulating cell, kg the Boltzmann constant, and 7 the tempera-
ture. By then using Eq. 7 in the main text we, similar to an earlier
work2, get that 7'(0) = 1 for I = 0 whereas T'(0) =0 for [ =2 (see
appendix in reference). Note that the dielectric constant obtained
by using 7(0) = 1 is the same as for the Ewald summation method
with conducting boundary conditions, and 7(0) = 0 gives an ex-
pression for the dielectric constant which represent high dielectric
medium poorly“.
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Fig. S1 The logarithm of the ratio between pair-potential and reference radial distribution functions using qo (left)/q> (right) and R} equal to 4 (top) / 5
(middle) / 6 (bottom). The insets show the radial distribution functions. Black lines are Ewald results.
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Fig. S2 Dipole-dipole correlation differences to the reference result using ¢ (left)/g2 (right) and R equal to 4 (top) / 5 (middle) / 6 (bottom). The insets
show the dipole-dipole correlation (f1(0) - f1(r*)). Black lines are Ewald results.
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