Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Conformational preference determined by inequivalent n-pairs:

rotational studies on acetophenone and its monohydrate

Juncheng Lei,^a Jiaqi Zhang,^a Gang Feng,^{a*} Jens-Uwe Grabow^b and Qian Gou^{a*}

^a School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.

^b Institut für Physikalische Chemie & Elektrochemie, Leibniz-Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany.

Email: qian.gou@cqu.edu.cn; fengg@cqu.edu.cn

- 1. Experimental rotational transition frequencies and semiexperimental rotational constants with vibrational corrections of the 9 isotopologues of AP (Tables S1-S9)
- Molecular structures of AP and semiexperimental rotational constants with vibrational corrections calculated at B3LYP(GD3BJ)/6-31+G(d,p) anharmonic force field (Table S10-S12).
- 3. Experimental rotational transition frequencies of AP- H₂O (Tables S13-S17).
- 4. Natural Bond Orbital (NBO) analysis of AP- H₂O (Tables S18 and S19).
- 5. The AP-H₂O II to I isomerization pathway (Fig. S1).
- 6. Geometries of AP-H₂O (Table S20 & Fig. S2).

1. Experimental rotational transition frequencies of AP (Tables S1-S9)

Trans	itions				Transitions				
ľ, K, K,	וייג ייג יי	state	v _{obs} /MHz	V _{diff} /KH	J' K _a ' K _c '	J'' K _a ''	state	v _{obs} /MHz	V _{diff} /KH
	J Ka Kc			2	К	°''			2
3 0 3	2 0 2	A	6306.5628	-3.0	6 1 5	5 1 4	Е	13458.5263	-0.1
3 0 3	2 0 2	Е	6306.5628	1.5	6 2 5	5 2 4	A	12698.4088	3.9
3 1 3	2 1 2	Α	5947.2545	-3.1	6 2 5	5 2 4	Е	12698.3945	-1.3
3 1 3	2 1 2	Е	5947.2545	-0.7	6 2 4	5 2 3	A	13421.6468	0.0
3 1 2	2 1 1	А	6831.3333	2.7	6 2 4	5 2 3	Е	13421.6319	0.0
3 1 2	2 1 1	Е	6831.3177	-5.1	6 3 4	5 3 3	А	12912.7016	3.1
3 2 2	2 2 1	А	6404.8986	8.2	6 3 4	5 3 3	Е	12912.7209	-3.5
3 2 2	2 2 1	Е	6404.9136	-0.8	6 3 3	5 3 2	A	12983.9711	0.0
3 2 1	2 2 0	A	6503.2231	8.0	6 3 3	5 3 2	Е	12983.9211	-1.4
3 2 1	2 2 0	Е	6503.1806	0.6	7 0 7	6 0 6	A	13908.9084	-1.2
4 0 4	3 0 3	Α	8301.1204	2.5	7 0 7	6 0 6	Е	13908.9084	4.2
4 0 4	3 0 3	Е	8301.1104	-2.2	7 1 7	6 1 6	A	13658.5346	-3.4
4 1 4	3 1 3	Α	7903.5597	-3.1	7 1 7	6 1 6	Е	13658.5346	1.0
4 1 4	3 1 3	Е	7903.5597	0.0	7 1 6	6 1 5	Α	15568.8961	-2.7
4 1 3	3 1 2	А	9076.2197	-3.7	7 1 6	6 1 5	Е	15568.8840	0.6
4 1 3	3 1 2	Е	9076.2197	6.4	7 2 6	6 2 5	А	14753.6146	-6.0
4 2 3	3 2 2	А	8520.4732	-0.3	7 2 6	6 2 5	Е	14753.6126	2.6
4 2 3	3 2 2	Е	8520.4732	1.6	7 2 5	6 2 4	А	15782.6180	0.2
4 2 2	3 2 1	А	8759.1427	-5.7	7 2 5	6 2 4	Е	15782.5986	-1.5
4 2 2	3 2 1	Е	8759.1328	-2.3	7 3 5	6 3 4	A	15077.8777	-1.8
4 3 2	3 3 1	A	8585.8817	2.2	7 3 5	6 3 4	Е	15077.8777	0.0
4 3 2	3 3 1	Е	8586.5708	-1.2	7 3 4	6 3 3	A	15233.2838	1.1
5 0 5	4 0 4	А	10223.1260	2.3	7 3 4	6 3 3	Е	15233.2547	-2.8
5 0 5	4 0 4	Е	10223.1153	-2.7	8 0 8	7 0 7	A	15719.5789	-5.3
5 1 5	4 1 4	А	9841.0775	-3.3	8 0 8	7 0 7	Е	15719.5789	0.0
5 1 5	4 1 4	Е	9841.0775	0.4	8 1 8	7 1 7	A	15541.8063	-2.4
5 1 4	4 1 3	A	11289.4975	0.4	8 1 8	7 1 7	Е	15541.8063	2.1
5 1 4	4 1 3	Е	11289.4882	3.3	8 1 7	7 1 6	А	17606.7509	-0.2
5 2 4	4 2 3	А	10619.5804	4.4	8 1 7	7 1 6	Е	17606.7381	3.2
5 2 4	4 2 3	Е	10619.5653	-3.8	8 2 7	7 2 6	A	16782.6125	-2.8
5 2 3	4 2 2	A	11070.7993	-0.5	8 2 7	7 2 6	Е	16782.6125	9.0
5 2 3	4 2 2	Е	11070.7909	3.8	8 2 6	7 2 5	A	18124.2356	2.6
5 3 3	4 3 2	A	10747.3264	2.8	8 2 6	7 2 5	Е	18124.2099	-2.7
5 3 3	4 3 2	Е	10747.4746	-1.6	8 3 6	7 3 5	A	17237.4560	-4.5
5 3 2	4 3 1	А	10774.5480	0.5	8 3 6	7 3 5	Е	17237.4521	2.4

Table S1. Experimental transition frequencies of the parent species of AP

5 3 2	4 3 1	Е	10774.3748	-1.7	8 3 5	7 3 4	А	17533.0310	1.4
6 0 6	5 0 5	A	12084.4585	-1.3	8 3 5	7 3 4	Е	17533.0048	-3.7
6 0 6	5 0 5	Е	12084.4520	-2.2	909	8 0 8	Α	17530.7519	-3.3
6 1 6	5 1 5	A	11759.0655	-3.4	909	8 0 8	Е	17530.7519	1.8
6 1 6	5 1 5	Е	11759.0655	0.6	9 1 9	8 1 8	А	17411.8989	-3.9
6 1 5	5 1 4	A	13458.5341	-6.3	9 1 9	8 1 8	Е	17411.8989	0.8
9 1 8	8 1 7	A	19564.0519	0.3	3 3 0	2 2 1	Α	19523.8847	-11.1
9 1 8	8 1 7	Е	19564.0403	5.2	3 3 0	2 2 1	Е	19524.7740	-6.1
9 2 8	8 2 7	Α	18783.8115	-0.1	3 2 1	2 1 2	А	14832.4387	8.4
9 2 8	8 2 7	Е	18783.8062	7.2	3 2 1	2 1 2	Е	14832.3951	4.2
9 3 7	8 3 6	А	19385.4129	-0.7	3 2 2	2 1 1	А	13823.8550	8.5
9 3 7	8 3 6	Е	19385.4001	1.4	3 2 2	2 1 1	Е	13823.8019	3.9
936	8 3 5	А	19887.7905	2.4	4 0 4	3 1 3	А	6457.7021	0.9
9 3 6	8 3 5	Е	19887.7599	-6.2	4 0 4	3 1 3	Е	6457.7021	-2.2
10 0 10	909	A	19347.9848	-1.7	4 1 4	3 0 3	Α	9746.9899	10.4
10 0 10	909	Е	19347.9848	3.3	4 1 4	3 0 3	Е	9746.9658	-2.2
10 1 10	9 1 9	A	19271.9505	-1.7	4 2 2	3 1 3	Α	17644.3253	4.2
10 1 10	9 1 9	Е	19271.9505	3.0	4 2 2	3 1 3	Е	17644.2762	5.3
2 1 2	1 0 1	A	6447.7915	7.7	4 2 3	3 1 2	Α	15512.9967	7.4
2 1 2	1 0 1	Е	6447.7670	-2.9	4 2 3	3 1 2	Е	15512.9473	0.5
2 2 0	1 1 1	Α	12304.0137	0.1	5 1 5	4 0 4	Α	11286.9444	2.0
2 2 0	1 1 1	Е	12304.0137	5.6	5 1 5	4 0 4	Е	11286.9301	-2.4
2 2 1	1 1 0	А	11984.0140	-0.2	5 2 4	4 1 3	А	17056.3486	6.6
2 2 1	1 1 0	Е	11983.9380	2.0	5 2 4	4 1 3	Е	17056.3030	0.4
3 3 1	2 2 0	А	19497.6973	-13.6	6 0 6	5 1 5	А	11020.6392	-2.0
3 3 1	2 2 0	Е	19496.6817	-6.9	6 0 6	5 1 5	Е	11020.6392	-0.5
7 0 7	6 1 6	A	13170.4788	-3.1	6 1 6	5 0 5	А	12822.8793	-8.3
7 0 7	6 1 6	Е	13170.4788	-0.3	6 1 6	5 0 5	Е	12822.8793	-0.1
7 1 7	6 0 6	A	14396.9677	2.0	6 2 5	5 1 4	А	18465.2492	-0.6
7 1 7	6 0 6	Е	14396.9619	3.2	6 2 5	5 1 4	Е	18465.2147	1.2
8 0 8	7 1 7	A	15231.5252	-2.9	8 0 8	7 1 7	Е	15231.5252	0.8

Trans J' K _a ' K _c '	sitions J'' K _a ''	state	v _{obs} /MHz	v _{diff} /kH z	Trans J' Ka' Kc'	J'' Ka''	state	v _{obs} /MHz	v _{diff} /kH z
K	c''				K	c''			
3 0 3	2 0 2	А	6221.4779	0.2	5 1 4	4 1 3	А	11125.3980	-1.2
3 0 3	2 0 2	Е	6221.4779	4.7	5 1 4	4 1 3	Е	11125.3920	4.5
3 1 3	2 1 2	A	5869.4800	0.7	6 0 6	5 0 5	А	11939.3040	6.1
3 1 3	2 1 2	Е	5869.4800	2.9	6 0 6	5 0 5	Е	11939.2970	5.4
3 1 2	2 1 1	А	6729.1737	2.0	6 1 6	5 1 5	А	11610.7110	-0.8
3 1 2	2 1 1	Е	6729.1557	-8.4	6 1 6	5 1 5	Е	11610.7060	-1.9
4 0 4	3 0 3	A	8193.6273	-3.8	7 0 7	6 0 6	А	13744.6630	-3.7
4 0 4	3 0 3	Е	8193.6273	1.4	7 0 7	6 0 6	Е	13744.6630	1.7
4 1 4	3 1 3	A	7801.3363	0.1	2 2 0	1 1 1	А	12283.2980	-5.0
4 1 4	3 1 3	Е	7801.3363	3.1	2 2 0	1 1 1	Е	12283.2980	-1.9
4 1 3	3 1 2	A	8942.0399	-3.7	3 3 1	2 2 0	А	19483.1780	0.3
4 1 3	3 1 2	Е	8942.0346	0.8	3 3 1	2 2 0	Е	19482.1200	2.1
5 0 5	4 0 4	A	10096.2350	-2.6	3 3 0	2 2 1	А	19507.7550	1.4
5 0 5	4 0 4	Е	10096.2350	2.9	3 3 0	2 2 1	Е	19508.6770	1.1
5 1 5	4 1 4	Α	9715.3541	-2.9	4 0 4	3 1 3	А	6316.9878	1.5
5 1 5	4 1 4	Е	9715.3541	0.7	4 0 4	3 1 3	Е	6316.9878	-1.8
5 1 5	4 0 4	Α	11199.6980	-8.6	6 0 6	5 1 5	А	10835.8270	-1.2
5 1 5	4 0 4	Е	11199.6980	1.3	6 0 6	5 1 5	Е	10835.8270	0.0

Table S2. Experimental transition frequencies of the ¹³C1 isotopologue of AP

Trans	sitions				Trans	itions			
J' K _a ' K _c ' K	J" K _a "	state	$v_{\rm obs}/{ m MHz}$	V _{diff} /KH	J' K _a ' K _c ' K	J" K _a "	state	$v_{\rm obs}/{ m MHz}$	v _{diff} /kH Z
3 0 3	2 0 2	А	6251.3877	-6.8	606	5 0 5	А	11975.4610	-0.3
3 0 3	2 0 2	Е	6251.3877	-2.4	6 0 6	5 0 5	Е	11975.4610	5.3
3 1 3	2 1 2	Α	5894.7378	-5.2	6 1 6	5 1 5	А	11654.2280	-4.1
3 1 3	2 1 2	Е	5894.7378	-2.9	6 1 6	5 1 5	Е	11654.2280	-0.1
3 1 2	2 1 1	Α	6773.4571	6.3	2 2 0	1 1 1	А	12172.3560	2.0
3 1 2	2 1 1	Е	6773.4412	-2.0	2 2 0	1 1 1	Е	12172.3480	-0.8
4 0 4	3 0 3	Α	8227.6697	5.0	3 3 0	2 2 1	А	19312.0790	0.5
4 0 4	3 0 3	Е	8227.6609	1.5	3 3 0	2 2 1	Е	19312.9430	-2.5
4 1 4	3 1 3	Α	7833.5622	-1.4	4 0 4	3 1 3	А	6410.2350	-0.8
4 1 4	3 1 3	Е	7833.5622	1.6	4 0 4	3 1 3	Е	6410.2350	-3.7
4 1 3	3 1 2	Α	8999.0338	-1.3	5 1 5	4 0 4	А	11176.9580	-2.1
4 1 3	3 1 2	Е	8999.0338	8.6	5 1 5	4 0 4	Е	11176.9580	7.5
5 0 5	4 0 4	А	10131.6510	-5.6	6 0 6	5 1 5	А	10930.1590	1.7
5 0 5	4 0 4	Е	10131.6510	0.0	6 0 6	5 1 5	Е	10930.1590	3.1
5 1 5	4 1 4	А	9753.6321	-0.4	5 1 4	4 1 3	А	11192.9610	-3.5
5 1 5	4 1 4	Е	9753.6272	-1.8	5 1 4	4 1 3	Е	11192.9530	0.2

Table S3. Experimental transition frequencies of the ¹³C2 isotopologue of AP

Trans	itions				Trans	itions			
J' K _a ' K _c '	J'' K _a ''	state	$v_{\rm obs}/{ m MHz}$	V _{diff} /KH	J' K _a ' K _c '	J'' K _a ''	state	v _{obs} /MHz	V _{diff} /KH
K	;;			2	K,	;;			Z
3 0 3	2 0 2	A	6293.5133	0.3	5 1 4	4 1 3	A	11273.9426	4.3
3 0 3	2 0 2	Е	6293.5085	0.0	5 1 4	4 1 3	Е	11273.9273	1.2
3 1 3	2 1 2	A	5933.3483	-3.1	606	5 0 5	A	12047.6760	-1.8
3 1 3	2 1 2	Е	5933.3440	-5.0	606	5 0 5	Е	12047.6760	3.7
3 1 2	2 1 1	Α	6823.8491	-9.4	6 1 6	5 1 5	A	11727.9478	-1.1
3 1 2	2 1 1	Е	6823.8491	-1.6	6 1 6	5 1 5	Е	11727.9478	2.9
4 0 4	3 0 3	Α	8280.9203	-0.8	2 2 0	1 1 1	А	12187.6375	0.1
4 0 4	3 0 3	Е	8280.9203	4.4	2 2 0	1 1 1	Е	12187.6375	6.6
4 1 3	3 1 2	А	9065.2400	-4.9	3 3 0	2 2 1	А	19328.5337	1.6
4 1 3	3 1 2	Е	9065.2400	5.2	3 3 0	2 2 1	Е	19329.3761	-5.8
5 0 5	4 0 4	Α	10194.6375	4.0	4 0 4	3 1 3	А	6478.0022	-0.6
5 0 5	4 0 4	Е	10194.6286	0.6	4 0 4	3 1 3	Е	6478.0022	-3.4
5 1 5	4 1 4	А	9816.0708	-5.2	5 1 5	4 0 4	А	11222.3876	-5.5
5 1 5	4 1 4	Е	9816.0708	-1.5	5 1 5	4 0 4	Е	11222.3876	4.1
6 0 6	5 1 5	A	11019.9195	1.2	6 0 6	5 1 5	Е	11019.9195	2.7

Table S4. Experimental transition frequencies of the ¹³C3 isotopologue of AP

Trans	sitions				Trans	sitions			4.11
J' K _a ' K _c '	J'' K _a ''	state	v _{obs} /MHz	v _{diff} ∕kH z	J' K _a ' K _c '	J'' K _a ''	state	$v_{\rm obs}/{ m MHz}$	v _{diff} ∕kH z
K	°,			-	K	;;			-
3 0 3	2 0 2	A	6306.3510	5.1	5 1 4	4 1 3	A	11289.0400	7.2
3 0 3	2 0 2	Е	6306.3510	9.7	5 1 4	4 1 3	Е	11289.0300	10.3
3 1 3	2 1 2	A	5947.0650	-1.6	6 1 6	5 1 5	А	11758.7200	-0.3
3 1 3	2 1 2	Е	5947.0650	0.8	6 1 6	5 1 5	Е	11758.7200	3.7
4 0 4	3 0 3	A	8300.8500	-2.7	3 3 0	2 2 1	А	19524.2500	-6.6
4 0 4	3 0 3	Е	8300.8500	2.6	4 0 4	3 1 3	А	6457.2250	-10.7
4 1 3	3 1 2	А	9075.8390	-1.0	4 0 4	3 1 3	Е	6457.2250	-13.8
4 1 3	3 1 2	Е	9075.8390	9.1	6 0 6	5 1 5	A	11020.0900	-8.2
5 0 5	4 0 4	Α	10222.8300	1.4	6 0 6	5 1 5	Е	11020.0900	-6.8
5 0 5	4 0 4	Е	10222.8300	7.0	5 1 5	4 1 4	Е	9840.7770	0.2
5 1 5	4 1 4	A	9840.7770	-3.4					

Table S5. Experimental transition frequencies of the ¹³C4 isotopologue of AP

Trans	sitions				Trans	sitions			
J' K _a ' K _c ' K	J" K _a "	state	v _{obs} /MHz	v _{diff} /kn	J' K _a ' K _c ' K	J" K _a "	state	v _{obs} /MHz	v _{diff} /KH Z
3 0 3	2 0 2	A	6292.8337	2.5	5 1 5	4 1 4	А	9815.1349	0.8
3 0 3	2 0 2	Е	6292.8337	-0.1	5 1 5	4 1 4	Е	9815.1285	-5.6
3 1 3	2 1 2	Α	5932.7505	2.3	5 1 4	4 1 3	А	11272.5290	0.6
3 1 3	2 1 2	Е	5932.7505	4.2	5 1 4	4 1 3	Е	11272.5230	0.4
3 1 2	2 1 1	Α	6822.9648	-5.1	6 0 6	5 0 5	Α	12046.6710	-0.6
3 1 2	2 1 1	Е	6822.9477	0.7	6 0 6	5 0 5	Е	12046.6640	3.4
4 0 4	3 0 3	A	8280.1053	6.0	6 1 6	5 1 5	A	11726.8540	2.1
4 0 4	3 0 3	Е	8280.1053	-2.7	6 1 6	5 1 5	Е	11726.8490	-2.8
4 1 4	3 1 3	А	7883.5377	0.4	2 2 0	1 1 1	Α	12188.5630	3.6
4 1 4	3 1 3	Е	7883.5377	-2.9	2 2 0	1 1 1	Е	12188.5630	-6.0
4 1 3	3 1 2	А	9064.0753	2.0	3 3 0	2 2 1	Α	19330.2640	6.7
4 1 3	3 1 2	Е	9064.0702	-1.8	3 3 0	2 2 1	Е	19331.1270	1.4
5 0 5	4 0 4	А	10193.7150	3.8	4 0 4	3 1 3	Α	6476.4806	-1.4
5 0 5	4 0 4	Е	10193.7150	3.5	4 0 4	3 1 3	Е	6476.4806	-9.4
5 1 5	4 0 4	А	11222.1830	0.1	6 0 6	5 1 5	А	11018.1950	-2.5
5 1 5	4 0 4	Е	11222.1830	0.1	6 0 6	5 1 5	Е	11018.1910	0.0

Table S6. Experimental transition frequencies of the ¹³C5 isotopologue of AP

Trans	sitions				Trans	itions			
J' K _a ' K _c ' K	J" K _a "	state	v _{obs} /MHz	V _{diff} /KH	J' K _a ' K _c ' K	J" K _a "	state	$v_{\rm obs}/{ m MHz}$	v _{diff} /kH Z
3 0 3	2 0 2	Α	6249.9800	4.1	6 0 6	5 0 5	А	11974.7761	-2.2
3 0 3	2 0 2	Е	6249.9758	4.4	6 0 6	5 0 5	Е	11974.7761	3.3
3 1 3	2 1 2	Α	5893.6866	4.7	6 1 6	5 1 5	А	11652.7578	-1.2
3 1 3	2 1 2	Е	5893.6818	2.2	6 1 6	5 1 5	Е	11652.7536	-1.4
3 1 2	2 1 1	Α	6770.7749	9.3	2 2 0	1 1 1	А	12185.5122	-3.3
3 1 2	2 1 1	Е	6770.7535	-4.5	2 2 0	1 1 1	Е	12185.5082	-2.1
4 0 4	3 0 3	Α	8226.3179	1.1	3 3 0	2 2 1	А	19334.8210	-3.2
4 0 4	3 0 3	Е	8226.3109	-0.7	3 3 0	2 2 1	Е	19335.7052	8.5
4 1 4	3 1 3	Α	7832.2794	-5.3	4 0 4	3 1 3	А	6402.8935	2.3
4 1 4	3 1 3	Е	7832.2794	-2.2	4 0 4	3 1 3	Е	6402.8988	4.6
4 1 3	3 1 2	Α	8995.6385	-9.4	5 1 5	4 0 4	А	11181.6126	-1.0
4 1 3	3 1 2	Е	8995.6385	0.5	5 1 5	4 0 4	Е	11181.6032	-0.7
5 0 5	4 0 4	Α	10130.6173	-4.5	6 0 6	5 1 5	А	10923.7879	1.4
5 0 5	4 0 4	Е	10130.6173	1.0	6 0 6	5 1 5	Е	10923.7879	2.8
5 1 5	4 1 4	Α	9752.2230	2.9	5 1 4	4 1 3	A	11189.0692	-9.0
5 1 5	4 1 4	E	9752.2158	-0.7	5 1 4	4 1 3	Е	11189.0692	3.0

Table S7. Experimental transition frequencies of the ¹³C6 isotopologue of AP

Trans	sitions				Trans	itions			
J' K _a ' K _c ' K	J" K _a "	state	v _{obs} /MHz	V _{diff} /KH	J' K _a ' K _c ' K	J" K _a "	state	$v_{\rm obs}/{ m MHz}$	V _{diff} /KH
3 0 3	2 0 2	Α	6269.8945	4.4	5 1 4	4 1 3	А	11218.7554	-3.6
3 0 3	2 0 2	Е	6269.8945	8.9	5 1 4	4 1 3	Е	11218.7554	8.4
3 1 3	2 1 2	Α	5913.7178	-0.8	6 0 6	5 0 5	А	12021.9098	1.2
3 1 3	2 1 2	Е	5913.7178	1.5	6 0 6	5 0 5	Е	12021.8999	-3.2
3 1 2	2 1 1	Α	6787.2728	-3.1	6 1 6	5 1 5	А	11695.1099	-2.5
3 1 2	2 1 1	Е	6787.2586	-9.6	6 1 6	5 1 5	Е	11695.1099	1.6
4 0 4	3 0 3	Α	8254.8057	2.1	2 2 0	1 1 1	А	12294.5996	-1.7
4 0 4	3 0 3	Е	8254.7946	-3.7	2 2 0	1 1 1	Е	12294.5996	2.7
4 1 4	3 1 3	Α	7859.4850	-0.9	3 3 0	2 2 1	Α	19516.1308	0.2
4 1 4	3 1 3	Е	7859.4850	2.2	3 3 0	2 2 1	Е	19517.0313	0.2
4 1 3	3 1 2	А	9018.3665	-2.1	4 0 4	3 1 3	Α	6397.2388	4.5
4 1 3	3 1 2	Е	9018.3567	-2.0	4 0 4	3 1 3	Е	6397.2388	1.3
5 0 5	4 0 4	A	10168.4588	0.4	5 1 5	4 0 4	А	11249.1311	1.9
5 0 5	4 0 4	Е	10168.4495	-3.3	5 1 5	4 0 4	Е	11249.1179	-1.5
5 1 5	4 1 4	A	9786.8752	-2.5	6 0 6	5 1 5	A	10941.2392	1.3
5 1 5	4 1 4	Е	9786.8752	1.1	6 0 6	5 1 5	Е	10941.2353	-1.2

Table S8. Experimental transition frequencies of the ¹³C7 isotopologue of AP

Transitions				Trans	sitions			
J' K _a ' K _c ' J'' K _a ''	state	v _{obs} /MHz	V _{diff} /KH	J' K _a ' K _c '	J'' K _a ''	state	v _{obs} /MHz	V _{diff} /KH
K _c '			Z	К	, 			Z
3 0 3 2 0 2	A	6217.2735	-4.6	5 1 4	4 1 3	A	11125.9217	-0.3
3 0 3 2 0 2	Е	6217.2735	-0.2	5 1 4	4 1 3	Е	11125.9111	0.9
3 1 2 2 1 1	A	6731.4138	4.1	6 0 6	5 0 5	A	11919.1447	2.5
3 1 2 2 1 1	Е	6731.3963	-5.8	6 0 6	5 0 5	Е	11919.1357	-1.0
4 0 4 3 0 3	A	8185.0649	3.1	6 1 6	5 1 5	A	11595.8139	-1.8
4 0 4 3 0 3	Е	8185.0553	-1.3	6 1 6	5 1 5	Е	11595.8139	2.2
4 1 4 3 1 3	A	7793.0177	-2.5	2 2 0	1 1 1	A	12177.8524	-7.6
4 1 4 3 1 3	Е	7793.0177	0.5	2 2 0	1 1 1	Е	12177.8524	-3.3
4 1 3 3 1 2	A	8943.9690	-6.9	3 3 0	2 2 1	A	19329.1830	1.2
4 1 3 3 1 2	Е	8943.9690	2.8	3 3 0	2 2 1	Е	19330.0759	6.8
5 0 5 4 0 4	A	10081.9702	-0.1	4 0 4	3 1 3	A	6348.7065	4.9
5 0 5 4 0 4	Е	10081.9635	-1.3	4 0 4	3 1 3	Е	6348.7065	1.8
5 1 5 4 1 4	A	9703.9446	-3.3	5 1 5	4 0 4	A	11148.2681	1.5
5 1 5 4 1 4	Е	9703.9446	0.2	5 1 5	4 0 4	Е	11148.2552	-1.7
6 0 6 5 1 5	A	10852.8467	0.8	606	5 1 5	E	10852.8467	2.1

Table S9. Experimental transition frequencies of the ¹³C8 isotopologue of AP

2. Molecular structures of AP and semiexperimental rotational constants with vibrational corrections calculated at B3LYP(GD3BJ)/6-31+G(d,p) anharmonic force field (Table S10-S12)

	a/Å		b/Å				
	r _s	r _e	r _s	r _e			
C1	±2.5930(6) ^a	2.601	0ь	0.055			
C2	±1.8659(8)	1.870	±1.245(1)	1.248			
C3	±0.461(3)	0.471	±1.211(1)	1.214			
C4	±0.13(1)	-0.207	0	-0.017			
C5	±0.523(3)	0.533	±1.205(1)	-1.212			
C6	±1.9216(8)	1.928	$\pm 1.171(1)$	-1.175			
C7	±1.6951(9)	-1.706	±0.07(2)	-0.104			
C8	±2.5082(6)	-2.503	±1.175(1)	1.186			

Table S10. R_s and r_e coordinates of all carbon atoms in AP

^a Uncertainties are expressed in unit of the last digit.

^b Imaginary values, fixed at zero.

Table S11.	Semi-experimental	rotational	constants	of nine	isotopologues	of AP	with	vibrational
corrections	calculated from the	B3LYP(G	D3BJ)/6-3	1+G(d,p	o) anharmonic t	force fi	eld	

	Parent	C1	C2	C3	C4	C5	C6	C7	C8
A/MHz	3731.9757(5)	3688.0297(4) ^b	3690.2997(5)	3692.3966(5)	36731.879(1)	3692.3885(5)	3695.887(6)	3731.632(5)	3696.5375(5)
<i>B</i> /MHz	1222.6331(2)	1203.2305(2)	1212.5092(2)	1221.9894(3)	1222.5174(6)	1221.8064(2)	1211.7896(3)	1214.2255(2)	1204.3684(2)
C/MHz	926.4124(1)	915.2471(1)	918.0277(1)	923.5827(1)	926.3416(4)	923.4793(1)	917.9657(2)	921.5569(1)	913.7437(1)

	r _e	r _s	r ^{SE}
Bond lengths/Å			
C1C2	1.399	1.441(1) ^a	1.446(1)
C2C3	1.399	1.405(3)	1.389(3)
C3C4	1.405	1.351(5)	1.43(2)
C4C5	1.405	1.374(6)	1.36(2)
C5C6	1.396	1.399(3)	1.394(2)
C6C1	1.402	1.350(1)	1.338(1)
C4C7	1.502	1.56(1)	1.501(8)
C7C8	1.516	1.49(2)	1.50(1)
Valence angles/°			
C4C7C8	118.4	120(1)	120(1)
C3C4C7	122.1	119.1(8)	120(2)
C5C4C7	118.4	115.9(8)	120(2)

Table S12. $R_{\rm s}$, $r_{\rm e}$ and $r^{\rm SE}$ geometries of AP

^a Errors in parenthesis are expressed in units of the last digit.

3. Experimental rotational transition frequencies of AP- H₂O (Tables S13-S17)

Trans	sitions				Trans	sitions			4.11
J' K _a ' K _c '	J'' K _a ''	state	$v_{\rm obs}/{ m MHz}$	v _{diff} /kH	J' K _a ' K _c '	J'' K _a ''	state	v _{obs} /MHz	v _{diff} ∕kH
К	-c ''			z	К	;; c			z
5 0 5	4 0 4	A	5574.0095	-2.6	8 1 7	7 1 6	А	9288.9462	4.0
5 0 5	4 0 4	Е	5574.0095	1.1	8 1 7	7 1 6	Е	9288.9333	0.8
6 0 6	5 0 5	A	6667.6749	1.7	9 1 8	8 1 7	А	10434.7996	1.0
6 0 6	5 0 5	Е	6667.6749	5.7	9 1 8	8 1 7	Е	10434.7884	0.4
7 0 7	6 0 6	A	7750.7034	-3.8	10 1 9	9 1 8	А	11574.4590	-5.5
7 0 7	6 0 6	Е	7750.7034	0.5	10 1 9	9 1 8	Е	11574.4590	5.9
8 0 8	7 0 7	A	8822.4568	-4.0	11 1 10	10 1 9	А	12706.8442	0.5
8 0 8	7 0 7	Е	8822.4568	0.4	11 1 10	10 1 9	Е	12706.8369	5.3
9 0 9	8 0 8	A	9883.0143	-5.8	12 1 1 1	11 1 10	А	13830.7666	-1.1
9 0 9	8 0 8	Е	9883.0143	-1.5	12 1 1 1	11 1 10	Е	13830.7598	4.7
10 0 10	909	A	10933.2564	-4.7	13 1 12	12 1 1 1	А	14945.0390	-5.3
10 0 10	909	Е	10933.2564	-0.5	13 1 12	12 1 1 1	Е	14945.0349	3.6
11 0 11	10 0 10	A	11974.7378	-4.2	5 2 4	4 2 3	А	5609.0353	-1.1
11 0 11	10 0 10	Е	11974.7378	-0.3	5 2 4	4 2 3	Е	5609.0505	0.7
12 0 12	11 0 11	A	13009.4512	0.4	6 2 5	5 2 4	А	6727.1948	1.3
12 0 12	11 0 11	Е	13009.4449	-2.2	6 2 5	5 2 4	Е	6727.1948	-0.3
13 0 13	12 0 12	A	14039.4837	3.7	7 2 6	6 2 5	А	7843.3644	-1.1
13 0 13	12 0 12	Е	14039.4785	2.1	7 2 6	6 2 5	Е	7843.3644	1.8
5 1 5	4 1 4	A	5385.7931	-3.1	8 2 7	7 2 6	А	8957.2319	1.9
5 1 5	4 1 4	Е	5385.7931	-1.1	8 2 7	7 2 6	Е	8957.2247	-0.3
6 1 6	5 1 5	A	6457.9024	-2.6	9 2 8	8 2 7	А	10068.4777	5.4
6 1 6	5 1 5	Е	6457.9024	-0.3	9 2 8	8 2 7	Е	10068.4646	-1.4
7 1 7	6 1 6	A	7527.5102	8.4	10 2 9	9 2 8	А	11176.7979	8.9
7 1 7	6 1 6	Е	7527.4978	-1.4	10 2 9	928	Е	11176.7800	-1.6
8 1 8	7 1 7	A	8594.3578	-2.4	11 2 10	10 2 9	А	12281.9014	9.2
8 1 8	7 1 7	Е	8594.3578	0.4	11 2 10	10 2 9	Е	12281.8813	-2.8
9 1 9	8 1 8	A	9658.3260	-4.5	12 211	11 2 10	А	13383.5249	9.4
9 1 9	8 1 8	Е	9658.3260	-1.5	12 211	11 2 10	Е	13383.5064	-0.4
10 1 10	9 1 9	A	10719.3383	-3.0	6 2 4	5 2 3	А	6795.6581	-4.2
10 1 10	9 1 9	Е	10719.3383	0.2	6 2 4	5 2 3	Е	6795.6529	3.3
11 111	10 1 10	A	11777.3999	2.7	7 2 5	6 2 4	A	7951.4585	5.0
11 1 11	10 1 10	Е	11777.3940	0.2	7 2 5	6 2 4	Е	7951.4429	-0.1
12 1 12	11 111	A	12832.5698	-2.6	8 2 6	7 2 5	А	9116.1680	-2.7
12 1 12	11 111	Е	12832.5658	-3.1	8 2 6	7 2 5	Е	9116.1614	1.2
13 1 13	12 1 12	A	13884.9965	-5.1	927	8 2 6	А	10289.3711	0.2
13 1 13	12 1 12	Е	13884.9965	-1.6	927	8 2 6	Е	10289.3629	3.4

Table S13. Experimental transition frequencies of the normal species of AP-H $_2O$

5 1 4	4 1 3	А	5823.7342	5.1	10 2 8	927	А	11469.8005	-5.1
5 1 4	4 1 3	Е	5823.7211	-1.6	10 2 8	927	Е	11469.7929	0.1
6 1 5	5 1 4	A	6982.5635	5.9	11 2 9	10 2 8	А	12655.5161	-4.7
6 1 5	5 1 4	Е	6982.5465	-3.6	11 2 9	10 2 8	Е	12655.5061	-0.5
7 1 6	6 1 5	Α	8137.8998	4.1	12 2 10	11 2 9	Α	13844.0984	-4.5
7 1 6	6 1 5	Е	8137.8846	-2.5	12 2 10	11 2 9	Е	13844.0859	-1.3
6 3 4	5 3 3	A	6746.2743	-0.7	945	8 4 4	Е	10123.1818	-3.6
6 3 4	5 3 3	Е	6746.6864	-1.4	10 4 6	945	Α	11252.4624	2.7
7 3 5	6 3 4	A	7873.5826	-0.5	10 4 6	945	Е	11252.2199	2.0
7 3 5	6 3 4	Е	7873.9255	-0.1	3 2 1	2 1 2	А	12213.4886	-2.0
8 3 6	7 3 5	Α	9001.8778	-1.7	3 2 1	2 1 2	Е	12213.5586	6.0
8 3 6	7 3 5	Е	9002.0474	0.6	4 2 3	3 1 2	А	12931.2741	-1.7
937	8 3 6	A	10131.0657	2.2	4 2 3	3 1 2	Е	12931.2166	-0.1
937	8 3 6	Е	10131.1336	0.2	4 2 2	3 1 3	А	13487.2297	-3.5
10 3 8	937	Α	11260.9585	2.2	4 2 2	3 1 3	Е	13487.2297	-1.5
10 3 8	937	Е	11260.9828	-1.0	5 1 5	4 0 4	Α	7873.1979	-5.6
10 3 7	936	A	11282.8504	-1.6	5 1 5	4 0 4	Е	7873.1979	1.6
10 3 7	936	Е	11282.8039	-1.9	5 2 3	4 1 4	Α	14824.2551	5.1
11 3 9	10 3 8	Α	12391.3022	-1.0	5 2 3	4 1 4	Е	14824.2242	-2.7
11 3 9	10 3 8	Е	12391.3156	4.1	6 1 6	5 0 5	А	8757.0895	-6.9
12 3 10	11 3 9	A	13521.7836	3.5	6 1 6	5 0 5	Е	8757.0895	-1.1
12 3 10	11 3 9	Е	13521.7785	-0.4	7 1 7	6 0 6	Α	9616.9202	-4.8
6 3 3	5 3 2	A	6747.8503	1.1	7 1 7	6 0 6	Е	9616.9202	-0.5
6 3 3	5 3 2	Е	6747.4272	1.6	8 1 8	7 0 7	А	10460.5874	9.4
7 3 4	6 3 3	A	7877.1174	-0.3	8 1 8	7 0 7	Е	10460.5758	0.7
7 3 4	6 3 3	Е	7876.7639	1.3	919	8 0 8	Α	11296.4473	-0.5
8 3 5	7 3 4	А	9008.9273	1.3	9 1 9	8 0 8	Е	11296.4473	1.1
8 3 5	7 3 4	Е	9008.7422	-1.8	10 1 10	909	А	12132.7730	4.0
936	8 3 5	А	10143.9215	0.2	10 1 10	909	Е	12132.7730	4.4
936	8 3 5	Е	10143.8370	2.2	946	8 4 5	А	10123.0570	3.1
11 3 8	10 3 7	A	12426.5596	-1.2	946	8 4 5	Е	10123.1705	2.9
11 3 8	10 3 7	Е	12426.5273	-4.3	10 4 7	946	А	11251.8939	-0.6
12 3 9	11 3 8	A	13575.9581	-2.1	10 4 7	946	Е	11252.1159	-2.4
12 3 9	11 3 8	Е	13575.9362	-1.9	11 4 8	10 4 7	А	12381.9439	0.0
7 4 4	6 4 3	A	7868.6288	-6.7	11 4 8	10 4 7	Е	12382.2849	-4.0
7 4 4	6 4 3	Е	7868.6515	1.8	7 4 3	6 4 2	Α	7868.6712	-4.0
8 4 5	7 4 4	A	8995.3273	-7.9	7 4 3	6 4 2	Е	7868.6515	2.8
8 4 5	7 4 4	Е	8995.3808	-1.1	8 4 4	7 4 3	А	8995.4466	2.4
9 4 5	8 4 4	A	10123.3168	1.5	8 4 4	7 4 3	Е	8995.3806	-2.7

Trans	sitions		AGI		Trans	sitions		AGI	
J' Ka' Kc'	J'' Ka'' Kc''	state	V _{obs} /IVIFIZ	V _{diff} /KHZ	J' K _a ' K _c '	J'' K _a '' K _c ''	state	V _{obs} /IVIFIZ	V _{diff} /KHZ
5 0 5	4 0 4	A	5336.1960	-2.8	6 1 5	5 1 4	Е	6670.2277	-1.9
5 0 5	4 0 4	Е	5336.1960	0.9	7 1 6	6 1 5	A	7774.9864	4.2
6 0 6	5 0 5	A	6385.6975	-1.0	7 1 6	6 1 5	Е	7774.9734	-0.1
6 0 6	5 0 5	Е	6385.6975	3.1	8 1 7	7 1 6	A	8876.2092	2.4
7 0 7	6 0 6	A	7426.1526	-4.1	8 1 7	7 1 6	Е	8876.1949	-2.1
7 0 7	6 0 6	Е	7426.1526	0.3	9 1 8	8 1 7	A	9973.1927	2.8
8 0 8	7 0 7	A	8456.8635	-2.3	9 1 8	8 1 7	Е	9973.1799	0.7
8 0 8	7 0 7	Е	8456.8635	2.3	10 1 9	9 1 8	A	11065.1305	0.8
909	8 0 8	A	9477.6713	-2.6	10 1 9	9 1 8	Е	11065.1135	-4.6
909	8 0 8	Е	9477.6713	1.9	11 1 10	10 1 9	A	12151.1436	-1.1
10 010	909	A	10489.0547	-3.8	11 1 10	10 1 9	Е	12151.1368	4.4
10 010	909	Е	10489.0547	0.5	12 1 1 1	11 1 10	Α	13230.2858	0.7
11 011	10 0 10	A	11492.0943	1.1	12 1 1 1	11 1 10	Е	13230.2760	3.8
11 011	10 0 10	Е	11492.0882	-0.8	13 1 12	12 1 11	Α	14301.5564	-3.0
12 0 12	11 0 11	A	12488.2949	-3.9	13 1 12	12 1 11	Е	14301.5502	4.1
12 0 12	11 011	Е	12488.2949	0.0	5 2 4	4 2 3	Α	5365.4672	9.9
13 0 13	12 0 12	A	13479.4092	-2.8	5 2 4	4 2 3	Е	5365.4701	-3.6
13 0 13	12 0 12	Е	13479.4043	-4.1	6 2 5	5 2 4	Α	6435.5036	1.6
5 1 5	4 1 4	A	5161.1698	-1.5	6 2 5	5 2 4	Е	6435.5036	-1.1
5 1 5	4 1 4	Е	5161.1698	0.4	7 2 6	6 2 5	Α	7503.8882	-0.8
6 1 6	5 1 5	A	6189.1576	-2.6	726	6 2 5	Е	7503.8882	1.5
6 1 6	5 1 5	Е	6189.1576	-0.3	8 2 7	7 2 6	A	8570.3481	0.2
7 1 7	6 1 6	A	7215.0164	-2.4	8 2 7	7 2 6	Е	8570.3445	1.5
7 1 7	6 1 6	Е	7215.0164	0.2	928	8 2 7	Α	9634.6177	4.3
8 1 8	7 1 7	Α	8238.5378	-2.1	928	8 2 7	Е	9634.6070	-0.1
8 1 8	7 1 7	Е	8238.5378	0.8	10 2 9	9 2 8	Α	10696.4347	6.4
9 1 9	8 1 8	A	9259.5727	-3.4	10 2 9	9 2 8	Е	10696.4208	-0.2
9 1 9	8 1 8	Е	9259.5727	-0.3	11 2 10	10 2 9	Α	11755.5547	8.4
10 1 10	919	Α	10278.0390	-3.6	11 2 10	10 2 9	Е	11755.5377	-0.5
10 1 10	919	Е	10278.0390	-0.3	12 2 1 1	11 2 10	Α	12811.7416	5.6
11 111	10 1 10	Α	11293.9152	-0.5	12 2 1 1	11 2 10	Е	12811.7296	2.5
11 111	10 1 10	Е	11293.9152	3.0	6 2 4	5 2 3	Α	6492.7725	-3.2
12 1 12	11 1 11	A	12307.2277	-2.5	6 2 4	5 2 3	Е	6492.7640	2.2
12 1 12	11 111	Е	12307.2277	1.0	7 2 5	6 2 4	Α	7594.5065	2.4
13 1 13	12 1 12	A	13318.0768	3.9	7 2 5	6 2 4	Е	7594.4924	-0.8
13 1 13	12 1 12	Е	13318.0699	0.6	8 2 6	7 2 5	A	8704.0203	0.7
5 1 4	4 1 3	A	5562.6212	3.4	8 2 6	7 2 5	Е	8704.0082	-0.7
5 1 4	4 1 3	Е	5562.6097	-1.7	927	8 2 6	Α	9821.1770	-2.2

Table S14. Experimental transition frequencies of AP-H₂¹⁸O.

6 1 5	5 1 4	A	6670.2427	5.5	927	8 2 6	Е	9821.1690	1.3
10 2 8	927	A	10945.1953	-4.9	945	8 4 4	Е	9680.2471	-1.9
10 2 8	927	Е	10945.1876	0.2	5 1 5	4 0 4	A	7701.0734	-2.2
11 2 9	10 2 8	A	12074.6789	-8.9	5 1 5	4 0 4	Е	7701.0672	-1.9
11 2 9	10 2 8	Е	12074.6789	5.3	5 2 3	4 1 4	Α	14591.8816	-2.0
12 2 10	11 2 9	Α	13207.7719	-6.6	5 2 3	4 1 4	Е	14591.8667	1.8
12 2 10	11 2 9	Е	13207.7636	0.9	6 1 6	5 0 5	Α	8554.0320	-5.0
6 3 4	5 3 3	Α	6451.4719	-1.9	6 1 6	5 0 5	Е	8554.0320	0.1
6 3 4	5 3 3	Е	6451.8386	-0.3	7 1 7	6 0 6	Α	9383.3561	-1.2
7 3 5	6 3 4	Α	7529.2211	0.0	7 1 7	6 0 6	Е	9383.3561	2.4
7 3 5	6 3 4	Е	7529.5862	-0.6	8 1 8	7 0 7	Α	10195.7397	-0.7
8 3 6	7 3 5	A	8607.8434	-1.1	8 1 8	7 0 7	Е	10195.7397	1.3
8 3 6	7 3 5	Е	8608.0494	-0.1	919	8 0 8	A	10998.4515	0.7
937	8 3 6	A	9687.2821	0.0	919	8 0 8	Е	10998.4515	1.3
937	8 3 6	Е	9687.3724	-0.6	10 1 10	909	Α	11798.8227	3.3
10 3 8	937	Α	10767.4096	-0.5	10 1 10	909	Е	11798.8227	2.7
10 3 8	937	Е	10767.4485	0.6	936	8 3 5	Α	9697.0605	-5.4
10 3 7	936	Α	10784.0884	-2.1	936	8 3 5	Е	9696.9584	0.0
10 3 7	936	Е	10784.0328	-1.2	11 3 8	10 3 7	Α	11874.9460	-0.2
11 3 9	10 3 8	A	11848.0412	-1.7	11 3 8	10 3 7	Е	11874.9077	-4.1
11 3 9	10 3 8	Е	11848.0519	-4.5	12 3 9	11 3 8	Α	12970.3669	-3.2
12 3 10	11 3 9	A	12928.9397	2.6	12 3 9	11 3 8	Е	12970.3421	-3.2
12 3 10	11 3 9	Е	12928.9397	1.1	8 4 5	7 4 4	Α	8602.1347	-1.3
6 3 3	5 3 2	A	6452.6685	-1.1	8 4 5	7 4 4	Е	8602.1620	-4.6
6 3 3	5 3 2	Е	6452.2917	-2.0	946	8 4 5	Α	9680.1653	2.4
8 3 5	7 3 4	Α	8613.1987	-3.2	946	8 4 5	Е	9680.2471	5.8
8 3 5	7 3 4	Е	8612.9819	-0.3	7 4 3	6 4 2	Α	7524.9999	9.1
8 4 4	7 4 3	A	8602.2095	-1.9	7 4 3	6 4 2	Е	7524.9796	9.2
8 4 4	7 4 3	Е	8602.1620	-4.6	9 4 5	8 4 4	А	9680.3430	-0.6

Trans	sitions				Trans	itions			
J' K _a ' K _c '	J'' K _a ''	state	v _{obs} /MHz	$\nu_{diff}\!/kHz$	J' K _a ' K	, J'' K _a ''	state	v _{obs} /MHz	ν_{diff}/kHz
K	c''				К	;;			
5 0 5	4 0 4	А	5498.0510	3.9	9 1 8	8 1 7	Е	10288.3061	1.6
5 0 5	4 0 4	Е	5498.0452	1.7	6 2 5	5 2 4	А	6634.2389	-4.1
6 0 6	5 0 5	A	6577.4747	-4.2	6 2 5	5 2 4	Е	6634.2389	-6.1
6 0 6	5 0 5	Е	6577.4747	-0.1	7 2 6	6 2 5	А	7735.1562	-2.8
7 0 7	6 0 6	А	7646.7258	-4.4	7 2 6	6 2 5	Е	7735.1562	-0.2
7 0 7	6 0 6	Е	7646.7258	-0.1	8 2 7	7 2 6	А	8833.8729	-2.3
8 0 8	7 0 7	А	8705.1287	-0.9	8 2 7	7 2 6	Е	8833.8729	2.6
8 0 8	7 0 7	Е	8705.1287	3.4	7 2 5	6 2 4	А	7838.3022	7.8
909	8 0 8	А	9752.6951	1.7	7 2 5	6 2 4	Е	7838.2769	-7.1
909	8 0 8	Е	9752.6899	0.8	6 1 6	5 0 5	А	8681.3920	-4.7
10 0 10	909	А	10790.1845	1.2	6 1 6	5 0 5	Е	8681.3920	1.1
10 0 10	909	Е	10790.1769	-2.3	7 1 7	6 0 6	А	9531.0539	-1.1
11 0 11	10 0 10	А	11819.0243	1.7	7 1 7	6 0 6	Е	9531.0539	3.3
11 011	10 010	Е	11819.0192	0.5	8 1 8	7 0 7	А	10364.3501	-1.3
12 0 12	11 011	А	12841.0762	4.1	8 1 8	7 0 7	Е	10364.3501	1.6
12 0 12	11 011	Е	12841.0710	2.6	9 1 9	8 1 8	А	9530.1378	-3.9
13 0 13	12 0 12	Α	13858.3303	-1	9 1 9	8 1 8	Е	9530.1378	-0.9
13 0 13	12 0 12	Е	13858.3303	2.5	10 1 10	919	А	10577.4045	-2.5
5 1 5	4 1 4	А	5313.7029	-1	10 1 10	9 1 9	Е	10577.4045	0.7
5 1 5	4 1 4	Е	5313.7029	0.9	5 1 4	4 1 3	А	5741.0233	1.1
6 1 6	5 1 5	A	6371.6219	-0.6	5 1 4	4 1 3	Е	5741.0128	-3.2
6 1 6	5 1 5	Е	6371.6219	1.6	6 1 5	5 1 4	А	6883.6032	5.7
7 1 7	6 1 6	А	7427.1343	-2.8	6 1 5	5 1 4	Е	6883.5863	-3.8
7 1 7	6 1 6	Е	7427.1343	-0.3	7 1 6	6 1 5	А	8022.8647	6.9
8 1 8	7 1 7	А	8480.0235	-3.1	7 1 6	6 1 5	Е	8022.8455	-3.8
8 1 8	7 1 7	Е	8480.0235	-0.3	9 1 8	8 1 7	А	10288.3190	4.1
8 1 7	7 1 6	А	9158.0489	2.7	8 1 7	7 1 6	Е	9158.0319	-4.8

Table S15. Experimental transition frequencies of AP-DOH

Trans	sitions				Trans	sitions			
J' K _a ' K _c '	J'' K _a ''	state	v _{obs} /MHz	v _{diff} /kHz	I, V, V,	I, I	state	v _{obs} /MHz	$\nu_{diff}\!/kHz$
К	;; c				J K _a K _c	J K _a K _c			
5 0 5	4 0 4	А	5420.1298	-2.2	5 1 4	4 1 3	А	5656.1367	1.4
5 0 5	4 0 4	Е	5420.1298	1.4	5 1 4	4 1 3	Е	5656.1239	-5.3
6 0 6	5 0 5	A	6484.9545	-2.2	6 1 5	5 1 4	А	6782.0289	5.6
6 0 6	5 0 5	Е	6484.9545	1.7	6 1 5	5 1 4	Е	6782.0103	-5.8
7 0 7	6 0 6	A	7540.0510	-6.3	7 1 6	6 1 5	А	7904.7772	4.9
7 0 7	6 0 6	Е	7540.0510	-2.2	7 1 6	6 1 5	Е	7904.7623	-1.8
8 0 8	7 0 7	A	8584.7455	-2.8	8 1 7	7 1 6	А	9023.6707	0.7
8 0 8	7 0 7	Е	8584.7455	1.5	8 1 7	7 1 6	Е	9023.6585	-2.3
909	8 0 8	А	9618.9777	-2.4	9 1 8	8 1 7	А	10137.9247	5.8
909	8 0 8	Е	9618.9777	1.8	9 1 8	8 1 7	Е	10137.9094	0.6
10 010	909	А	10643.4045	0.8	6 2 5	5 2 4	А	6538.9348	1.2
10 010	909	Е	10643.4045	4.9	6 2 5	5 2 4	Е	6538.9348	-1.3
11 011	0 0 10	А	11659.3067	-0.1	7 2 6	6 2 5	А	7624.2001	-2.7
11 011	0 0 10	Е	11659.3067	3.8	7 2 6	6 2 5	Е	7624.2001	-0.4
12 0 12	1 0 1 1	А	12668.4199	0.0	8 2 7	7 2 6	А	8707.3842	3.4
12 0 12	1 0 1 1	Е	12668.4199	3.7	8 2 7	7 2 6	Е	8707.3747	-1.5
13 0 13	2 0 12	А	13672.6437	1.2	7 2 5	6 2 4	А	7722.3284	4.0
13 0 13	2 0 12	Е	13672.6437	4.7	7 2 5	6 2 4	Е	7722.3109	-3.2
6 1 6	5 1 5	А	6283.2384	-4.0	6 1 6	5 0 5	А	8603.1818	-5.5
6 1 6	5 1 5	Е	6283.2384	-1.8	6 1 6	5 0 5	Е	8603.1818	0.3
7 1 7	6 1 6	А	7324.3242	-5.3	7 1 7	6 0 6	А	9442.5623	2.2
7 1 7	6 1 6	Е	7324.3242	-2.9	7 1 7	6 0 6	Е	9442.5623	6.6
8 1 8	7 1 7	А	8362.9045	-2.5	8 1 8	7 0 7	А	10265.4036	-6.2
8 1 8	7 1 7	Е	8362.9045	0.2	8 1 8	7 0 7	Е	10265.4036	-3.2
9 1 9	8 1 8	А	9398.8230	-3.6	9 1 9	8 0 8	А	11079.4896	1.5
9 1 9	8 1 8	Е	9398.8230	-0.6	9 1 9	8 0 8	Е	11079.4896	3.2
10 1 10	9 1 9	А	10432.0063	-3.0	10 1 10	9 1 9	Е	10432.0063	0.1

Table S16. Experimental transition frequencies of AP-HOD

Trans	sitions				Trans	sitions			
J' K _a ' K _c '	J'' K _a ''	state	v _{obs} /MHz	$\nu_{diff}\!/kHz$	I, I, Y, V,	IV. IZ .V. IZ .V.	state	v _{obs} /MHz	v _{diff} /kHz
К	;; c				J K _a K _c	J K _a K _c			
5 0 5	4 0 4	А	5498.0510	3.9	9 1 8	8 1 7	Е	10288.3061	1.6
5 0 5	4 0 4	Е	5498.0452	1.7	6 2 5	5 2 4	А	6634.2389	-4.1
6 0 6	5 0 5	А	6577.4747	-4.2	6 2 5	5 2 4	Е	6634.2389	-6.1
6 0 6	5 0 5	Е	6577.4747	-0.1	7 2 6	6 2 5	А	7735.1562	-2.8
7 0 7	6 0 6	Α	7646.7258	-4.4	7 2 6	6 2 5	Е	7735.1562	-0.2
7 0 7	6 0 6	Е	7646.7258	-0.1	8 2 7	7 2 6	А	8833.8729	-2.3
8 0 8	7 0 7	А	8705.1287	-0.9	8 2 7	7 2 6	Е	8833.8729	2.6
8 0 8	7 0 7	Е	8705.1287	3.4	7 2 5	6 2 4	А	7838.3022	7.8
909	8 0 8	Α	9752.6951	1.7	7 2 5	6 2 4	Е	7838.2769	-7.1
909	8 0 8	Е	9752.6899	0.8	6 1 6	5 0 5	А	8681.3920	-4.7
10 0 10	909	А	10790.1845	1.2	6 1 6	5 0 5	Е	8681.3920	1.1
10 0 10	909	Е	10790.1769	-2.3	7 1 7	6 0 6	А	9531.0539	-1.1
11 011	10 010	А	11819.0243	1.7	7 1 7	6 0 6	Е	9531.0539	3.3
11 011	10 010	Е	11819.0192	0.5	8 1 8	7 0 7	А	10364.3501	-1.3
12 0 12	11 011	А	12841.0762	4.1	8 1 8	7 0 7	Е	10364.3501	1.6
12 0 12	11 011	Е	12841.0710	2.6	9 1 9	8 1 8	А	9530.1378	-3.9
13 0 13	12 0 12	А	13858.3303	-1	9 1 9	8 1 8	Е	9530.1378	-0.9
13 0 13	12 0 12	Е	13858.3303	2.5	10 1 10	9 1 9	А	10577.4045	-2.5
5 1 5	4 1 4	А	5313.7029	-1	10 1 10	9 1 9	Е	10577.4045	0.7
5 1 5	4 1 4	Е	5313.7029	0.9	5 1 4	4 1 3	А	5741.0233	1.1
6 1 6	5 1 5	А	6371.6219	-0.6	5 1 4	4 1 3	Е	5741.0128	-3.2
6 1 6	5 1 5	Е	6371.6219	1.6	6 1 5	5 1 4	А	6883.6032	5.7
7 1 7	6 1 6	А	7427.1343	-2.8	6 1 5	5 1 4	Е	6883.5863	-3.8
7 1 7	6 1 6	Е	7427.1343	-0.3	7 1 6	6 1 5	А	8022.8647	6.9
8 1 8	7 1 7	А	8480.0235	-3.1	7 1 6	6 1 5	Е	8022.8455	-3.8
8 1 8	7 1 7	Е	8480.0235	-0.3	9 1 8	8 1 7	А	10288.3190	4.1
8 1 7	7 1 6	А	9158.0489	2.7	8 1 7	7 1 6	Е	9158.0319	-4.8

Table S17. Experimental transition frequencies of AP- D_2O

4. Natural Bond Orbital (NBO) analysis of AP- H₂O (Tables S18 and S19)

Table S18. Second order perturbative stabilization energies for AP-H₂O obtained by Natural Bond Orbital (NBO) analysis at the B3LYP/6-311++G(2df,2pd) level of the theory. Stabilization energy contributions (≥ 0.10 kcal/mol) for AP-H₂O

AP-H ₂ O complex	AP	H ₂ O
-0.17135	-0.17611	
-0.20278	-0.20362	
-0.16588	-0.17201	
-0.15839	-0.15464	
-0.14414	-0.14730	
-0.19928	-0.19963	
0.59118	0.57018	
-0.67683	-0.66719	
-0.60361	-0.56783	
-0.95856		-0.91803
0.20661	0.20521	
0.20849	0.20627	
0.22864	0.22925	
0.20707	0.20603	
0.20613	0.20503	
0.22193	0.21959	
0.22356	0.21962	
0.24843	0.22716	
0.45514		0.45901
0.48366		0.45901
	AP-H ₂ O complex -0.17135 -0.20278 -0.16588 -0.15839 -0.15839 -0.1414 -0.19928 0.59118 -0.60361 -0.95856 0.20661 0.20849 0.22864 0.20707 0.20613 0.22193 0.22356 0.24843 0.45514 0.48366	AP-H ₂ O complex AP -0.17135 -0.17611 -0.20278 -0.20362 -0.16588 -0.17201 -0.16588 -0.17201 -0.15839 -0.15464 -0.19928 -0.19963 0.59118 0.57018 -0.66361 -0.66719 -0.205856 -0.20521 0.20661 0.20521 0.20849 0.20627 0.22864 0.22925 0.20707 0.20603 0.20613 0.20503 0.22193 0.21959 0.22356 0.21962 0.24843 0.22716 0.48366 -

Table S19. NBO charges for isomer I of the AP-H₂O complex and AP and H₂O isolated molecules. Bold values highlight the values of the oxygen and hydrogen atoms involved in the charge transfer

 $^{a}\mathrm{O}_{w}$ represents the oxygen atom in water.

 ${}^{\rm b}\,{\rm H}_{\rm w}$ represents the hydrogen atom in water.

5. The AP-H₂O II to I isomerization pathway (Fig. S1).

Fig. S1. The AP-H₂O II to I isomerization pathway: Barrier calculated at B3LYP/6-31+G(d,p) with zero-point energy correction.

6. Geometries of AP-H₂O (Table S20 & Fig. S2)

Bond di	stance/Å		Valence and	dihedral angles/°	
C2C1	1 392				
C3C2	1.392	C3C2C1	120.1		
C4C3	1.398	C4C3C2	120.1	C4C3C2C1	0.003
C5C4	1.398	C5C4C3	119.5	C5C4C3C2	-0.04
C6C5	1.388	C6C5C4	120.2	C6C5C4C3	0.05
C7C4	1.490	C7C4C3	121.9	C7C4C3C2	180.0
C8C7	1.504	C8C7C4	118.7	C8C7C4C3	-0.1
O9C7	1.226	O9C7C4	120.0	09C7C4C3	179.8
O9O10	2.839	C7O9O10	111.9	C4C7O9O10	-175.6
H11C2	1.081	H11C2C3	119.8	H11C2C3C4	179.9
H12C3	1.080	H12C3C2	119.5	H12C3C2C1	-180.0
H13C5	1.081	H13C5C4	118.5	H13C5C4C3	-179.9
H14C6	1.081	H14C6C5	119.9	H14C6C5C4	180.0
H15C1	1.081	H15C1C2	120.0	H15C1C2C3	-180.0
H16C8	1.089	H16C8C7	110.1	H16C8C7C4	-58.2
H17C8	1.090	H17C8C7	110.0	H17C8C7C4	60.1
H18C8	1.085	H18C8C7	109.9	H18C8C7C4	-179.2
H19O10	0.958	H19O10O9	114.5	H19O10O9C7	-157.8
H20O10	0.969	H20O10H19	104.8	H20O10H19H18	68.2

Table S20. MP2/6-311++G(2df,2pd) calculated geometries of AP-H₂O

Fig. S2. Comparing the r_e structural parameters of AP in the complex to those of the monomer.