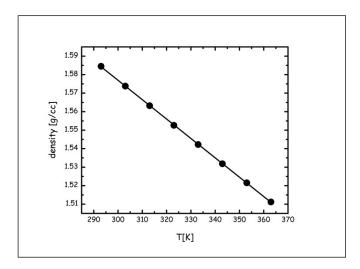
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

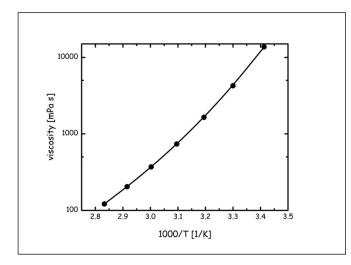
Structural features of selected protic ionic liquids based on a super-strong base.


Alessandro Triolo^{1,*}, Fabrizio Lo Celso², Carlo Ottaviani¹, Pengju Ji³, Giovanni Battista Appetecchi⁴, Francesca Leonelli⁵, Dean S. Keeble⁶ and Olga Russina^{7,*}.

- ¹Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche, (ISM-CNR) Rome, Italy
 - ² Department of Physics and Chemistry, Università di Palermo, Palermo, Italy.
 - ³ Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
 - ⁴ ENEA, SSPT-PROMAS-MATPRO Technical Unit, Rome, Italy.
 - ⁵ Department of Environmental Biology, University of Rome Sapienza, Rome, Italy
 - ⁶ Diamond Light Source, Harwell Campus, Didcot OX11 0DE UK
 - ⁷ Department of Chemistry, University of Rome Sapienza, Rome, Italy

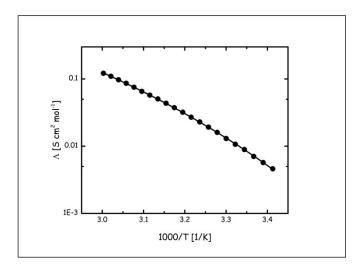
Corresponding Authors: A. T. (triolo@ism.cnr.it); O.R. (olga.russina@uniroma1.it)

Supporting information

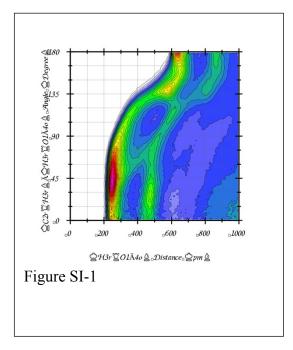

Density.

Density of [DBUH][IM14]. Experimental data have been modelled with a linear trend (continuous line):

 ρ [g/cc]=a*T[K] + b, with a= 0.001047 (3.10-6) K⁻¹ and b=1.891 (1.10-3) (R²=0.99994)


Viscosity.

Viscosity of [DBUH][IM14]. Experimental data have been modelled with the trend (continuous line):


 η (mPa s)= $\eta_o \exp [B/(T-T_o)]$; with $\eta_o = 0.070 (0.001)$ mPa s, B=1172 (1) K⁻¹, T_o=197 (1) K. (R²=0.99992)

Molar conductance.

Molar conductance of [DBUH][IM14]. Experimental data have been modelled with the trend (continuous line):

 Λ (S cm² mol⁻¹)= Λ_0 exp [-B/(T-T_0)]; with Λ_0 = 139 (3) S cm² mol⁻¹, B=890 (2) K⁻¹, T_0=208 (2) K. (R²=0.99985)

Combined Distribution Function obtained from the MD study of an aprotic IL based on the [IM14] anion and the 1-octyl,3-methylimidazolium cation ([C8mim][IM14]), highlighting the structural features of the hydrogen bonding interactions therein between the anion and the acidic H atom between the two imidazolium Nitrogen atoms.