Supporting Information

High Performance Optical Temperature Sensing via Selectively

Partitioning Cr⁴⁺ in the Residual SiO₂-rich Phase of Glass-ceramics

Zhanwen Zhang,^{a, †} Xinfang Li,^a Changjiang Wang,^b Xvsheng Qiao^b

a. Civil Aviation Flight University of China Luoyang College, Luoyang 471001, China

 b. State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
+ Corresponding author. E-mail: ziyu4983@sina.com; Tel.: +86-379-62328265.

Figure S1 Tanabe-Sugano diagrams of Cr⁴⁺ ions in a tetrahedral crystal

field ($\Delta/B \approx 19.3$, B=798.2 cm⁻¹)

Figure S2 Tanabe-Sugano diagrams of Cr³⁺ ions in an octahedral crystal

field ($\Delta/B \approx 25.0$, B= 723.3 cm⁻¹).

Figure S3 Thermal resolution of Cr4+ temperature sensing in the

investigated glass-ceramics.

Figure S4 Thermal resolution of Cr³⁺ temperature sensing in the

investigated glass-ceramics.