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Figure S1. Typical Cs-STEM images of (a) 1.6 nm Pd/y-Al,0O3, (b) 2.6 nm Pd/y-AL,O3, (c) 4.1 nm Pd/y-Al,O;, and (d) 5.2
nm Pd/’Y-A1203

Table S1. Counted particle numbers of Pd/y-Al,O; in Figure S2.

Catalyst Counted particle number
1.5 nm Pd/y-ALL,O; 245
1.6 nm Pd/y-ALL,O; 197
2.2 nm Pd/y-ALL,O; 370
2.6 nm Pd/y-AL,O; 203
4.1 nm Pd/y-ALL,O; 418
5.2 nm Pd/y-AlO; 185

9.0 nm Pd/y-ALO; 147
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Figure S2. Size distributions for the number of Pd particles of various Pd/y-Al,O; catalysts.
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Figure S3. CO conversion over 10 mg of various Pd/y-Al,O; catalysts.
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Figure S4. CO conversion over 10 mg of various Pd/8-Al,0; catalysts.
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Figure S5. CO conversion at 130°C on various amounts of 2.2 nm Pd/y-Al,0;. When the CO conversion on < 10 mg of the
catalyst was evaluated, the catalyst powder was diluted with inert quartz powder to be 10 mg of powder in the tube reactor.
A linear relationship between catalyst amount and CO conversion is seen on the figure in the range of <20 % CO

conversion. The data confirms that our kinetic analysis based on <20 % CO conversion does not contain the problems due

to thermal and gas diffusion effects.



Table S2. The list of data for TOF calculation

Catalyst Catalyst weight®  Molar amount of surface Pd®  CO conversion  CO oxidation rate¢ TOF (s7)
(mg) (X107 mol) (%) (X 10 mol-s)

1.5 nm Pd/y-ALOs 10 0.66 1.740.2 0.5140.06 0.076£0.010
1.6 nm Pd/y-Al,O; 10 1.34 6.0+1.3 1.79+0.38 0.134+0.028
2.2 nm Pd/y-AlL, 05 10 2.53 15.1+2.7 4.49+0.80 0.177+0.032
2.6 nm Pd/y-AL,O; 2 0.85 3.8+0.4 1.1240.11 0.13340.013
4.1 nm Pd/y-ALO; 2 1.03 4.4+2.6 1.30+0.79 0.079£0.010
5.2 nm Pd/y-ALO; 2 0.90 3.0+0.9 0.90+0.26 0.100+0.028
9.0 nm Pd/y-ALO; 10 2.35 8.5t1.7 2.5240.52 0.107+0.022
19 nm Pd/y-ALO; 10 1.11 52 1.55 0.140
1.2 nm Pd/0-Al,05 10 0.91 2.5 0.74 0.081

1.4 nm Pd/6-Al,04 10 1.56 5.4 1.61 0.103

1.5 nm Pd/6-AL,0; 10 3.42 5.0 1.49 0.044
3.8 nm Pd/0-AL,0; 10 2.74 3.4 1.01 0.037
5.4 nm Pd/6-Al,0; 2.5 0.99 0.9 0.28 0.028
7.3 nm Pd/0-AL,0; 10 2.89 35 1.04 0.036

14 nm Pd/6-AL,0; 10 1.47 1.8 0.54 0.037

19 nm Pd/6-AL0; 10 1.09 23 0.68 0.063

aCatalyst weight used to evaluate the TOF. PMolar amount of surface Pd (mol) was defined as (molar amount of Pd atom

(mol)) / (Pd dispersion (%) / 100). °CO oxidation rate (mol-s')) was defined as (flow rate of CO molecule (mol-s')) X (CO

conversion (%) / 100)
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Figure S6. Dependence of TOF at 130°C on average Pd particle size estimated from H, pulse chemisorption. The 0.1wt%
Pd/A1203 with high fraction of the isolated were excluded.



Table S3. The ratios of the IR band area of various CO species on Pd/Al,O5 catalysts.

Catalyst

Linear adsorbed
CO on Pd*
(2200-2100 cm™)

Linear adsorbed
CO on Pd°
(2100-2000 cm™!)

Bridge adsorbed
CO on Pd step
(2000-1960 cm'!)

Bridge adsorbed
CO on plane
(1960-1700 cm'!)

1.5 nm Pd/y-Al,0,
1.6 nm Pd/y-Al,04
2.2 nm Pd/y-Al,0,
2.6 nm Pd/y-Al,0,
4.1 nm Pd/y-Al,0,
5.2 nm Pd/y-Al,O;
9.0 nm Pd/y-Al,O4
19 nm Pd/y-Al,O;

1.2 nm Pd/6-Al,04
1.4 nm Pd/6-Al,0,
1.5 nm Pd/6-Al,04
3.8 nm Pd/6-Al,04
5.4 nm Pd/6-Al,0,
7.3 nm Pd/0-Al,04
14 nm Pd/6-Al,05

19 nm Pd/G-A1203
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Figure S7. Particle size dependence of fraction of corner site and Pd(111) (@) and corner site (A), Pd(111) ('¥), Pd(100)

(), edge site (or step) (m). We assumed a cubo-octahedron as a tentative model particle.
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Figure S8. Plot of TOFs (at 130°C) against the fraction of (a) linear adsorbed CO on Pd*, (b) bridge adsorbed CO on step site

and (c) linear adsorbed CO on plane.
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Figure S9. (a) IR spectra of adsorbed CO on Pd/ZSM-5. (b) The CO conversion of Pd/ZSM-5 as a function of temperature.
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Figure S10. Size distributions for the number of Pd particles of 2.2 nm Pd/y-Al,O; catalyst after prereduction by H, (red) and

CO oxidation reaction at 130°C (black).
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Figure S11. IR spectra of adsorbed CO on (a) 2.2 nm Pd/y-Al,0O5 and (b) 4.1 nm Pd/y-Al,O3, (¢) 5.4 nm Pd/6-Al,0; after
prereduction by H, (red) and CO oxidation at 130°C (black).
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Figure S12. Plot of TOFs (at 130°C) against the fraction of linear adsorbed CO on Pd° for Pd/Al,O; after prereduction by
H; (red) and CO oxidation (black).
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Figure S13. The dependence of TOFs on temperature for CO oxidation over Pd/y-Al,Os.
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Figure S14. The dependence of TOFs on partial pressure of (a) O, and (b) CO for CO oxidation over Pd/y-Al,Os.

Table S4. The apparent activation energy (E,) and the reaction order for CO oxidation over Pd/y-Al,Os.

Catalyst E. (kJ mol ") Reaction order of O, Reaction order of CO
1.5 nm Pd/y-ALL,O; 6618 0.84+0.15 -0.66x0.04
2.2 nm Pd/y-Al,O; 6617 0.89£0.02 -0.9840.12
4.1 nm Pd/y-Al,O; 71£11 0.69+0.03 -0.79£0.15
9.0 nm Pd/y-Al,04 72411 0.58+0.06 -1.0840.18
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Figure S15. IR spectra of adsorbed CO on 4.1 nm Pd/y-Al,O; measured under a flow of gaseous mixtures (0.4% CO, 10%

0,, Ar balance, 100 mL/min) at various temperatures.



