Supplementary Information

The Effect of CO₂ Loading on Alkanolamine Absorbents in Aqueous Solutions

Sergey M. Melnikov, Matthias Stein*

Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany

E-Mail: matthias.stein@mpi-magdeburg.mpg.de

Table S1. System specification of mixed MEA/W/CO₂ systems at various CO₂ loadings. Number of molecules of each constituent and box dimensions (nm).

	CO ₂ - Loading					
Cpd	0.0	0.1	0.3	0.5		
MEA	1600	1280	640	-		
MEACOO	-	160	480	800		
$MEAH^+$	-	160	480	800		
H ₂ O	12640	12640	12640	12640		
CO ₂	64	64	64	64		
Simulation box dimensions						
without unreacted CO ₂	8.1212	8.1213	8.1295	8.1431		
with unreacted CO ₂	8.1400	8.1403	8.1487	8.1632		

Table S2. System specification of mixed DEAB/W/CO₂ systems at various CO₂ loadings. Number of molecules of each constituent and box dimensions (nm).

	CO ₂ -Loading					
	0.0	0.169	0.364	0.578	0.815	
Cpd						
DEAB	1020	740	492	295	164	
$DEABH^+$	-	280	528	725	856	
HCO3 ⁻	-	64	214	455	806	
CO_{3}^{2-}	-	108	157	135	25	
H ₂ O	28980	28808	28609	28390	28149	
CO ₂	64	64	64	64	64	
Simulation box dimensions						
without unreacted CO ₂	10.4490	10.4066	10.3819	10.3864	10.4146	
with unreacted CO ₂	10.4662	10.4215	10.3954	10.3974	10.4264	

Table S3. Diffusion coefficients $(x10^{-5} \text{ cm}^2 \text{ s}^{-1})$ of pure and aqueous MEA at T=298K: experiment versus simulations.

Mixture	Our results	Experiments	AUA4(+SPCE	AUA4
compositions			water)	(+TIP4P2005
				water)
Pure MEA	0.094±0.001	0.055 ^a	0.113 ± 0.006	0.113 ± 0.006
30/70 wt/wt	0.663±0.028	0.69 ^b and 0.58 ^c	0.548 ± 0.001	0.422 ± 0.002

MEA/water				
06/94 wt/wt MEA/water	1.078±0.011	0.984 ^b and 1.00 ^d	1.030 ± 0.040	0.835 ± 0.004

[^a] M. N. Rodnikova, F. M. Samigullin, I. A. Solonina, and D. A. Sirotkin. Molecule mobility and structure of polar liquids. J. Struct. Chem. 2014, 55, 256-262.
[^b] Hikita, H.; Ishikawa, H.; Uku, K.; Murakami, T. Diffusivities of Mono-, Di-, and Triethanolamines in Aqueous Solutions. J. Chem. Eng. Data 1980, 25, 324-325.

[°] Thomas, W.J.; Mck. Nicholl, E. Diffusion measurements for ethanolamine water systems with a wavefront-shearing interferometer. J. appl. Chem. **1967**, *17*, 251-255.

[d] Snijder, E.D.; te Riele, M.J.M.; Versteeg, G.F.; van Swaaij, W.P.M. Diffusion Coefficients of Several Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1993, 38, 475-480.

Figure S1. Snapshots of MD simulation (box length 8.1295 nm) for the case of CO_2 -loaded aqueous MEA solution at 0.3 CO_2 loading. Unreacted MEA molecules are displayed as sticks, other molecules (water, CO_2 , MEACOO⁻ and protonated MEAH⁺) are shown as wireframes.

Figure S2. Snapshot of MD simulation (box length of 10.3954 nm) for the case of CO₂-loaded aqueous DEAB at 0.364 CO₂ loading. Unreacted DEAB molecules are displayed as sticks, other molecules (water, CO₂, carbonate, bicarbonate, and protonated DEABH⁺) are shown as wireframes.

Figure S3. RDFs of CO₂(C)-MEA(C) interactions in the MEA/W/CO₂ mixture at various loadings.

Figure S4. RDFs of MEA(C) interactions in the MEA/W/CO₂ mixture with other mixture species at CO₂-loading of 0.3.

Figure S5. RDFs of MEAH⁺(C) interactions in the MEA/W/CO₂ mixture with other mixture species at CO₂-loading of 0.3.

Loading	MEA	MEACOO	$MEAH^+$	CO ₂	Water
0.0	0.9795 ±	-	-	2.0109 ±	1.9811 ±
	0.0091			0.0266	0.0006
0.1	0.8584 ±	$0.4749 \pm$	0.5469 ±	1.7531 ±	1.7844 ±
	0.0029	0.0010	0.011	0.0049	0.0039
0.3	0.6379 ±	0.3142 ±	0.3677 ±	1.3406 ±	1.4370 ±
	0.0047	0.0069	0.0018	0.0050	0.0010
0.5	-	0.2233 ±	0.2551 ±	1.0088 ±	1.1403 ±
		0.0086	0.0062	0.0075	0.0015

Table S4. Diffusion coefficients for the MEA/W/CO₂ mixture at 313 K.

Figure S6. RDFs of $CO_2(C)$ – DEAB(N) interactions in the DEAB/W/CO₂ mixture at various loadings.

Figure S7. RDFs of DEAB(N) interactions in the DEAB/W/CO₂ mixture with other mixture species at CO₂-loading of 0.364.

Figure S8. RDFs of HCO_3 -(C) interactions in the DEAB/W/CO₂ mixture with other mixture species at CO₂-loading of 0.364.

Figure S9. RDFs of $CO_3^{-2}(C)$ interactions in the DEA/W/CO₂ mixture with other mixture species at CO_2 -loading of 0.364.

Cpd	DEAB	DEABH ⁺	HCO ₃ ⁻	CO_{3}^{2-}	CO ₂	Water
CO ₂ - Loading						
0.0	0.3060 ±	-	-	-	1.8371 ±	2.5551 ±
	0.0169				0.0224	0.0421
0.169	0.2871 ±	0.5161 ±	$0.8757 \pm$	$0.5334 \pm$	1.6701 ±	2.0751±
	0.0157	0.0116	0.0026	0.0176	0.0101	0.0199
0.364	0.3224 ±	$0.4039 \pm$	$0.6678 \pm$	$0.4098 \pm$	1.5216 ±	1.6518 ±
	0.0164	0.0158	0.0042	0.0041	0.0055	0.0099
0.578	$0.3341 \pm$	$0.3645 \pm$	$0.5952 \pm$	$0.3660 \pm$	$1.4626 \pm$	$1.5259 \pm$
	0.0170	0.0175	0.0080	0.0089	0.0127	0.0038
0.815	0.3740 ±	0.3642 ±	0.5783 ±	0.3221 ±	1.4491 ±	$1.5469 \pm$
	0.0155	0.0162	0.0067	0.0141	0.0171	0.0029

Table S5. Simulation diffusion coefficients for various DEAB/W/CO₂ mixtures at 313 K.

Figure S10. Calculated partial charges for bicarbonate and carbonate ions.