Chalcogen Bonding of Two Ligands to Hypervalent YF4 (Y=S, Se, Te, Po)

Wiktor Zierkiewicz,*1 Rafał Wysokiński,1 Mariusz Michalczyk,1 and Steve Scheiner*2

¹ Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

² Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, United States

*Correspondence to: wiktor.zierkiewicz@pwr.edu.pl; steve.scheiner@usu.edu

isolated monomer	r(Y-F _e)	r(Y-F _a)	∠(Fe-Y-Fe)	∠(F _a -Y-F _a)	$\Sigma \angle (F_e - Y - F_a)^a$
SF ₄	1.607	1.704	101.4	172.3	350.4
SeF ₄	1.723	1.804	100.5	169.2	346.0
TeF ₄	1.881	1.945	100.9	163.2	338.8
PoF ₄	1.972	2.049	99.2	168.2	344.8

Table S1. Structural parameters (distances in Å, angles in degrees) for isolated monomers of YF₄ calculated at MP2/aug-cc-pVTZ level.

^a sum of four F_e-Y-F_a angles.

Table S2. Harmonic frequencies (cm⁻¹) and infrared intensities (km/mol)^a calculated for isolated YF₄ monomers at MP2/aug-cc-pVDZ level of theory. Assignment is based on the calculated potential energy distribution (PED).

	SF_4	SeF ₄	TeF ₄	PoF ₄	PED (%) ^b
1	856 (98.5)	738 (55.6)	684 (55.4)	642 (47.2)	$v_{s}(Y-F_{e})$
2	837 (173.4)	722 (111.5)	676 (100.1)	631 (90.9)	$v_a(Y-F_e)$
3	758 (643.0)	642 (370.8)	610 (275.5)	550 (268.4)	$v_a(Y-F_a)$
4	559 (2.7)	579 (1.5)	579 (0.1)	560 (0.6)	$\nu_{s}(Y-F_{a})$
5	476 (0.4)	382 (11.9)	305 (14.8)	245 (10.2)	wag(Y-F _e)
6	476 (20.5)	348 (27.2)	272 (33.0)	205 (25.4)	def (F-Y-F)
7	414 (0.0)	347 (0.0)	288 (0.0)	233 (0.0)	twist(Y-F _a)
8	315 (10.7)	234 (13.1)	181 (14.5)	120 (17.1)	wag(Y-F _a)
9	201 (1.1)	160 (1.1)	116 (0.9)	92 (4.6)	def(F-Y-F)

^a IR intensity value shown in parentheses. ^b PED from the calculations for the SF₄ monomer. The predominant components of the PED matrix or their linear combination (e.g., stretching or bending). Abbreviations: v_s, symmetric stretching; v_a, antisymmetric stretching; wag, wagging deformation; def, out-of-plane deformation; twist, twisting deformation.

Fig. S1. Infrared spectra of isolated YF₄ calculated at MP2/aug-cc-pVDZ level.

Fig S2. NCI diagrams for *cis* and *trans* complexes. Colors represent: red – strong steric repulsions, brown – light repulsion, green – van der Waals interactions, blue – strong attraction.

Fig. S3. Depiction of lone pair orbital of the S atom in the (H₃N)…SF₄ complex (more distant NH₃ was removed) in full complex geometry of the trimer, on the 0.20 au isodensity surface.

	E _{def} of YF ₄	E _{def} of LBs	sum	V _{S,max}	V _{S,max}
cis				N' removed	N removed
$(H_3N)_2$ SF ₄	1.87	0.01/0.01	1.89	29.5	29.4
$(H_3N)_2$ SeF ₄	2.93	0.03/0.03	2.99	35.3	35.5
$(H_3N)_2$ TeF ₄	6.03	0.64/0.15	6.82	42.5	44.7
(H ₃ N) ₂ PoF ₄	4.64	0.70/0.11	5.45	55.2	54.6
trans					
(H ₃ N) ₂ SF ₄	46.32	1.31/0.01	47.64	4.3	64.3
$(H_3N)_2$ SeF ₄	32.79	1.10/0.01	33.90	15.5	64.9
$(H_3N)_2$ TeF ₄	19.89	0.69/0.61	21.16	28.0	74.0
(H ₃ N) ₂ PoF ₄	17.10	0.77/0.61	18.48	51.2	72.9

Table S3. Deformation energies (E_{def} , kcal/mol) of YF₄ complexes with 2 NH₃ calculated at the MP2/ aug-cc-pVDZ level of theory.

^c MEP extrema values (designated on the 0.001 isosurface) of (H₃N)...SF₄ in full complex geometry, N' means that the distant ligand was removed, while N means that closer ammonia ligand was removed.

	ee p · DE le · el	•		1
	interaction	ρ	$\nabla^2 ho$	Н
$(H_3N)_2$ SF ₄	S1 - N6	0.024	+0.072	+0.001
	S1 - N13	0.024	+0.073	+0.001
$(H_3N)_2$ SeF ₄	Se1 - N6	0.030	+0.075	-0.001
	Se1 - N13	0.030	+0.075	-0.001
(H ₃ N) ₂ ···TeF ₄	N5 - Te15	0.048	+0.089	-0.008
	N12-Te15	0.020	+0.049	-0.0001
(H ₃ N) ₂ PoF ₄	N5 - Po14	0.045	+0.112	-0.004
	N12- Po14	0.031	+0.078	-0.001
$(H_3N)_2$ ···SF ₄	S1 - N6	0.160	-0.301	-0.141
	S1 - N7	0.010	+0.033	+0.001
	F4 - H12	0.008	+0.038	+0.001
	F5 - H13	0.008	+0.038	+0.001
$(H_3N)_2$ ···SeF ₄	Se1 - N6	0.123	+0.038	-0.070
	Se1 - N7	0.014	+0.042	+0.001
	F4 - N7	0.008	+0.040	+0.001
	F5 - N7	0.008	+0.040	+0.001
$(H_3N)_2$ ···TeF ₄	N12- Te14	0.086	+0.191	-0.025
	N11- Te15	0.017	+0.044	+0.0003
(H ₃ N) ₂ PoF ₄	N13- Po14	0.080	+0.218	-0.016
	N12- Po17	0.028	+0.072	-0.001
k				

Table S4. AIM descriptors (au) of *cis* and *trans* complexes. Bond critical point (BCP) properties: electron density ρ , Laplacian of electron density $\nabla^2 \rho$, and total electron energy H, were obtained at the MP2/ aug-cc-pVDZ level.

Table S5. Calculated frequencies (cm ⁻¹) and infrared intensities (km/mol) ^a calculated for <i>cis</i>
complexes at MP2/aug-cc-pVDZ level of theory. Assignment is based on the calculated potential
energy distribution (PED).

	S	Se	Te	Ро	Assignment ^d
1	811 (184.2)	688 (118.1)	638 (98.5)	588 (98.9)	$vs(Y-F_e)$
2	787 (281.5)	662 (181.9)	605 (150.9)	560 (137.7)	$va(Y-F_e)$
3	701 (649.4)	584 (429.9)	567 (266.5)	479 (170.7)	va(Y-F _a)
4	523 (1.4)	537 (1.5)	526 (5.0)	512 (18.3)	$vs(Y-F_a)$
5	464 (27.5)	343 (78.1)	298 (47.4)	236 (35.3)	def (F-Y-F)
6	141 (3.9)	155 (8.3)	251 (66.1)	262 (33.4)	$\nu s(Y \cdots N)^c$
7	104 (4.4)	80 (5.0, 1.5)	139 (22.3)	203 (56.5)	va(Y…N') ^d

^a IR intensity value are shown in brackets. ^b Assignment from PED calculations. The predominant components of the PED matrix or their linear combination (e.g., stretching or bending). ^c $v(Y \dots N)$ for Y= Te, Po. ^d $v(Y \dots N')$ for Y= Te, Po.

Abbreviations: v_s , symmetric stretching; v_a , antisymmetric stretching; def, out-f-plane deformation.

Table S6. Calculated frequencies (cm⁻¹) and infrared intensities (km/mol)^a calculated for *trans* complexes at MP2/aug-cc-pVDZ level of theory. Assignment is based on the calculated potential energy distribution (PED).

	S	Se	Те	Ро	Assignment ^b
1	679 (80.3)	598 (26.0)	572 (29.2)	542 (21.2)	vs(Y-F)
2	632 (450.3)	562 (326.1)	547 (259.1)	506 (244.6)	va(Y-F)
3	630 (465.1)	561 (336.0)	546 (273.9)	503 (251.6)	vs(Y-F)
4	471 (0.1)	497 (0.0)	508 (0.5)	494 (17.3)	vs(Y-F)
5	485 (65.1)	363 (58.5)	283 (149.8)	235 (110.5)	def(F-Y-F)
6	432 (5.5)	432 (3.4)	405 (1.0)	401 (43.1)	v(YN)
7	116 (5.1)	130 (7.2)	135 (13.2)	187 (18.7)	v(YN')

^a IR intensity value are shown in brackets. ^b Assignment from PED calculations. The predominant components of the PED matrix or their linear combination (e.g., stretching or bending). Abbreviations: v_s , symmetric stretching; v_a , antisymmetric stretching; def, out-of-plane deformation.

Fig S4. Linear correlation between $v_s(Y^{\cdot\cdot}N)$ versus $V_{s,max}$ (closer NH₃ removed) in *cis* complexes (H₃N)₂...YF₄.