Electronic Supplementary Material (ESI)

Combined SERS/DFT studies of push-pull chromophores self-assembled monolayers: insights of their surface orientation.

V. Gadenne,^{b,c*} B. Grenier,^a C. Praveen,^a P. Marsal,^a J. C. Valmalette,^{b,d} L. Patrone,^{b,c} J. M. Raimundo^{a*}

^aAix Marseille Univ., CNRS, CINaM UMR 7325, Campus de Luminy, Case 913, 13288 Marseille Cedex 09, France. ^bAix Marseille Univ., Université de Toulon, CNRS, IM2NP UMR 7334, Campus de St Jérôme, 13397 Marseille Cedex 20, France. ^cAix Marseille Univ., Université de Toulon, CNRS, IM2NP UMR 7334, Yncréa Méditerranée, ISEN Toulon, Maison du Numérique et de l'Innovation, Place G. Pompidou, 83000 Toulon, France.

^dUniversité du Sud-Toulon-Var, CNRS, IM2NP UMR 7334, Bâtiment R, BP 20132, 83957 La Garde Cedex, France.

Email: virginie.gadenne@yncrea.fr; jean-manuel.raimundo@univ-amu.fr

1- Figure S1: Parallel (top) and antiparallel (down) dimers geometries obtained after M062X/6-31(d,p)	S1
calculations in dichloromethane using CPCM model.	
2- Figure S2: SAM (top) and calculated at M062X/6-31(d,p) theory level (down) T ₂ Raman spectra in	S2
dichloromethane.	
3- Figure S3: SAM (top) and calculated at M062X/6-31(d,p) theory level (down) T_3 Raman spectra in	S3
dichloromethane.	
4- Table S1: Experimental (in dichloromethane, in acetonitrile) and theoretical vibrational mode for T_2 -Id.	S4
5- Table S2: Experimental (in dichloromethane, in acetonitrile) and theoretical vibrational mode for T_3 -Id.	S 5
6- Table S3: Experimental (in dichloromethane, in acetonitrile) and theoretical vibrational mode for T_2 .	S6
7- Table S4: Experimental (in dichloromethane, in acetonitrile) and theoretical vibrational mode for T_3 .	S7
8- Figure S4: 1 Mulliken atomic charge in acetonitrile (a) and CH ₂ Cl ₂ (b) (M062X/6-31(d,p))	S8
9- Figure S5: Theoretical solvent effect for T ₂ -Id (M062X/6-31(d,p)).	S9
10- Figure S6: Theoretical solvent effect for T_3 -Id (M062X/6-31(d,p)).	S10
11- Figure S7: T ₂ -Id, Raman theoretical comparison between monomeric and dimeric-parallel state.	S11
12- Figure S8: Basis set effect for T_3 -Id.	S12
13- Table S5: vibrational modes shift between T_3 -Id 6-31(d,p) and T_3 -Id 6-311+(d,p) basis set in 1430 -	S13
1600 cm ⁻¹ spectra area for T_3 -Id.	
14- Figure S9: T ₃ -Id and T ₂ -Id Raman spectra in solid state	S14
15- Figure S10: T ₂ -Id Raman spectra in various area of the drop	S15

1- Figure S1: Parallel (top) and antiparallel (down) dimers geometries of T_2 -Id obtained after M062X/6-31(d,p) calculations in dichloromethane using CPCM model

2- Figure S2: SAM (top) in acetonitrile (a), dichloromethane (b) and calculated at M062X/6-31(d,p) theory level (down) T_2 Raman spectra.

For each theoretical spectra (figure S2,S3, S5-S8), the maximum intensity value has been used to normalize the theoretical spectra

3- Figure S3: SAM (top) in acetonitrile (a), in dichloromethane (b) and calculated at M062X/6-31(d,p) theory level (down) T_3 Raman spectra.

	scaled theoretical		
Europinontal	Bomon		
Experimental	Kaman	T 71 (1 1 1 1 (1	
Raman Shift	Frequencies	Vibrational description	
(cm ⁻¹)	calculated in		
	CH_2Cl_2 (cm ⁻¹)		
643	647	In benzene and pentanedione C wagging mode	
660-666	650 + 673	v C-S with Sulfur and carbon movement + δ C-S + δ C-C in benzene and	
		pentanedione δ C=C in benzene	
682-682		v C-S with Sulfur and carbon movement + breathing mode in pentanedione + δ	
	697	C=C and C-C in benzene	
726-727	716 + 722	v C-S with Sulfur and carbon movement	
	719	H wagging in benzene	
749-747	747	v C-S with Sulfur and carbon movement + δ C-C and C=C in benzene	
770-767		For the majority of vibrational modes: Twisting or Wagging for C and H in the	
	750 - 960	molecule	
	962	v C-C and C-S in thiophene + v C-B r + δ H-C. C=C and C-C in thiophenes	
	971	Benzene breathing mode + v C-C in pentanedione + v C-S in thiophenes δ H-	
	,,,,	C. C=C and C-C in thiophenes	
	989	Twisting in henzene	
	1035+1046	v C-C in thionhene and in pentanedione + v C-Br + δ H-C in thionhenes	
1062-1054	1061	$\delta C = C = C = H C$ in barrane + y C C in pantanedione	
1102-1034	1001	S L C in Dennene 2 and between this have and newtone diane to C C in	
1102-1100	1001	o H - C in Benzene, 2 and between uniopnene and pentanedione + v C - C in	
	1081	pentaneotone and 2	
	1121	o H-C in benzene	
1158-1155	1144 + 1156	v C-C in pentanedione and in $2 + \delta$ H-C, C-C and C=C in benzene + δ C=C and	
		C-C between thiophene and pentanedione.	
1181-1183	1186	In thiophenes: $v C=C$ and $C-S + \delta H-C$ and $C=C + \delta C-Br$	
1201-1217		Inter-ring v C-C and between thiophenes and in pentanedione + v C-S + δ H-C	
		in all the molecule + δ C-C , C-S and C=C in thiophenes. + benzene breathing	
	1209 +1237	mode	
1227-1228		Inter-ring v C-C between thiophenes and in pentanedione + v C-S + δ H-C in all	
	1215	the molecule $+ \delta C - C$ and C = C in thiophenes.	
	1264	δ C-C , C=C, H-C in Benzene + v C-C in pentanedione	
1293		v C-S + v C-C in thiophenes and between thiophene and pentanedione + δ for H-	
		C, C-C, C-S and C=C in thiophene and between thiophene and pentanedione +	
	1301	δ C-Br	
1327-1325	1337	v C=C in benzene + v C-C in pentanedione and benzene+ δ H-C in benzene	
1350-1349		δ C=C, C-C and H-C between thiophene and pentanedione + v C-C in	
	1359	pentanedione	
1381-1388	1361	In thiophenes: v C-C and C-S + δ C=C, C-C , C-S and H-C + inter ring δ C-C	
1431-1430	1440 + 1451	v C=C, C-C and C-C inter-ring in thiophenes + δ C=C, C-C and C-S in	
		thiophenes $+\delta$ H-C in all the molecule $+\delta$ C-Br	
1471-1474		v C=C in thiophenes and Benzene + v C-C in all the molecule + δ C=C and C-C	
	1459	in benzene + δ H-C in benzene and thiophenes δ C-S in thiophenes	
		v C=C in benzene + v C-C in pentanedione and benzene + δ H-C. C-C and C=C	
	1461	in benzene	
1516-1516	1532	In thiophenes: $\mathbf{y} \mathbf{C} = \mathbf{C} + \mathbf{\delta} \mathbf{C} = \mathbf{C}$. H-C. C-C and C-S + $\mathbf{\delta} \mathbf{C} - \mathbf{Br}$	
1565-1578-	1002	In thiophenes: $\mathbf{v} = \mathbf{C} + \mathbf{i}$ there ring $\mathbf{v} = \mathbf{C}$ and $\mathbf{\delta} = \mathbf{C} + \mathbf{\delta} = \mathbf{C}$.	
1600-1564-		$\mathbf{S} + \delta \mathbf{C} \cdot \mathbf{B} \mathbf{r}$	
1575-1507	1575		
10/0-10//	1 1 1 1 0		

4- Table S1: Experimental (in dichloromethane, in acetonitrile) and theoretical vibrational mode for T_2 -Id.

δ C=C: C=C Bending mode, δ C-C : C-C Bending mode, δ C-S : C-S Bending mode, δ H-C: C-H Bending mode , δ C-Br:

C-Br Bending mode, v C-C : C-C bending mode, v C-S : C-S bending mode, v H-C: C-H bending mode, v C-Br. v C=C: C=C Stretching mode, v C-C : C-C Stretching mode, v C-S : C-S Stretching mode, v H-C: C-H Stretching mode, v C-Br: C-Br Stretching mode induced by carbon movement

2= The thiophene which is the closest to the electron-withdrawing group.

	Scaled theoretical	
Experimental	Raman	
Raman shift	Frequencies	Vibrational description
(cm ⁻¹)	calculated in	
	CH_2Cl_2 (cm ⁻¹)	
	647	In benzene and pentanedione C wagging mode
669-686- 669-	632 + 664 +	v C-S with Sulfur and carbon movement + δ C-S + δ C-C in benzene and
685	678	pentanedione + δ C=C in benzene.
695-693	697	v C-S with sulfur and carbon movement + breathing mode in pentanedione
		$+\delta$ C=C and C-C in benzene
	713 + 719 +721	v C-S with Sulfur and carbon movement
729	717	H wagging in benzene
750-749	747	v C-S with Sulfur and carbon movement $+\delta$ C=C and C-C in benzene
	750-960	Twisting or Wagging for C and H in the molecule.
		Benzene breathing mode + \mathbf{v} C-C in pentanedione + \mathbf{v} C-S in thiophenes
	970	δ H-C, C=C and C-C in thiophenes
	988	Twisting in benzene
1057-1054	1030 + 1045 + 1036	v C-C in thiophene and pentanedione + δ H-C in thiophenes. + v C-Br
	1062	δ C=C, C-C, H-C in benzene + v C-C in pentanedione
1099-1100		δ H-C in Benzene, 3 and between thiophene and pentanedione + v C-C in
	1082	pentanedione and 3
	1121	δ H-C in benzene
1157-1157	1144 + 1157	v C-C in pentanedione and in $3 + \delta$ H-C, C-C and C=C in benzene + δ
		C=C and C-C between thiophene and pentanedione
	1178	In thiophenes: v C=C and C-S + δ H-C and C-C
1192-1193	1189	In thiophenes: v C=C and C-S + δ H-C and C-C + Inter-ring δ C-C
1225-1222		Inter-ring v C-C between thiophenes and in pentanedione + v C-S + δ H-C in
		all the molecule + δ C-C, C-S and C=C in thiophenes. + benzene breathing
	1210 + 1223	$mode + \delta C-Br$
		In thiophenes: $\mathbf{v} \mathbf{C} = \mathbf{C}$ and $\mathbf{C} - \mathbf{S} + \mathbf{\delta} \mathbf{H} - \mathbf{C}$ and $\mathbf{C} - \mathbf{C}$ + Inter-ring $\mathbf{\delta} \mathbf{C} - \mathbf{C}$ and \mathbf{v}
	1212	C-C
		Inter-ring v C-C between thiophenes and in pentanedione + v C-S + δ H-C
	1243	in all the molecule + δ C-C and C=C in thiophenes.
	1264	δ C-C, C=C, H-C in Benzene + v C-C in pentanedione.
		v C-S + v C-C in thiophenes and between thiophene and pentanedione + δ
1329-1327		for H-C, C-C, C-S, C=C and in thiophene and between thiophene and
	1286 + 1326	pentanedione + δ C-Br
1350-1351	1339	v C=C in benzene + v C-C in pentanedione and benzene + δ H-C in benzene
		δ C=C, C-C and H-C between thiophene pentanedione + v C-C in
	1359	pentanedione
1204 1204		In thiophenes: v C-C and C-S + δ C=C, C-C , C-S and H-C inter ring δ C-
1384-1384	1366	C
1425 1420 1451*		v C=C, C-C and C-C inter-ring in thiophenes + δ C=C, C-S and C-C in
1455-1450-1451	1437	thiophenes $+ \delta$ H-C in all the molecule
1470-1471-1482*	1451+1474	v C=C, C-C and C-C inter-ring in thiophenes + δ C=C, C-S and C-C in
		thiophenes $+\delta$ H-C in all the molecule $+\delta$ C-Br
		v C=C in thiophenes and Benzene + v C-C in benzene and in pentanedione
	1458	$+\delta$ C=C, C-C and H-C in benzene
		v C=C in benzene + v C-C in pentanedione and benzene + δ H-C, C-C and
	1462	C=C in benzene.
1500-1513-1501	1528	In thiophenes: v C=C + δ C=C , C-C , C-S and H-C + δ C-Br
1574-1599-1567-		In thiophenes: $v C=C + inter ring v C-C$ and $\delta C-C + \delta H-C$, C-C , C=C
1576-1599*	1558 +1590	and $C-S + \delta C-Br$

5- Table S2: Experimental (in dichloromethane, in Acetonitrile) and theoretical vibrational mode for T₃-Id

δ C=C: C=C Bending mode, δ C-C : C-C Bending mode, δ C-S: C-S Bending mode, δ H-C: C-H Bending mode, v C-Br: C-Br Stretching mode induced by carbon movement

v C=C: C=C Stretching mode, v C-C : C-C Stretching mode, v C-S: C-S Stretching mode, v H-C: c-h Stretching mode, δ C-Br : C-Br Bending mode induced by carbon movement
The thiophene which is the closest to the electron-withdrawing group.
Splitted band

Experimental	Scaled theoretical		
F	Raman	Vibrational description	
Domon Shift (om-1)	Frequencies	violational accomption	
Kaman Sinit (Cin')	calculated in		
	CH_2Cl_2 (cm ⁻¹)		
680	660	v C-S with Sulfur and carbon movement + δ C-S	
701-700	698+699	H-C twisting	
718	724 + 725	v C-S with Sulfur and carbon movement	
751		For the majority of vibrational modes: Twisting or Wagging for C and H in	
	750 - 960	the molecule.	
	1030 + 1033	ν C-C + δ H-C	
1058	1058+1059	v C-C + δ H-C + v C=C for C=C away from the bridge between thiophenes	
1155-1154	1191	v C=C for C=C close to the bridge between thiophenes + v C-S + δ H-C	
1207-1224		Inter-ring v C-C and δ C-C	
	1207	in the rest of molecule + $v C-S + \delta H-C + \delta C-C + \delta C=C$	
1315		Inter-ring v C-C	
	1227	in the rest of molecule + $v C-S + \delta H-C + \delta C-C + \delta C=C$	
1356	1316	$v C-S + v C-C + \delta H-C + \delta C-C + \delta C=C$	
1389-1388	1353	v C-C and C-S + δ C=C, C-C and H-C + inter ring δ C-C	
1422-1410	1436	$v C=C + C-C + \delta C=C, C-C$, H-C and C-S + inter ring $\delta C-C$ and $v C-C$	
1472	1465	$v C=C + C-C + \delta C=C, C-C$, H-C and C-S + inter ring $\delta C-C$	
1534-1507	1531	$v C=C + \beta C=C, C-C$, C-S and H-C.	
1552	1581	v C=C + inter ring v C-C and δ C-C + β H-C, C-C and C=C.	

6- Table S3: Experimental (in dichloromethane, in acetonitrile) and theoretical vibrational mode for T2.

 δ C=C: C=C Bending mode, δ C-C : C-C Bending mode, δ C-S: C-S Bending mode, δ H-C: C-H Bending mode v C=C: C=C Stretching mode, v C-C : C-C Stretching mode, v C-S: C-S Stretching mode, v H-C: C-H Stretching mode

Experimental	Scaled theoretical		
	Raman	Vibrational description	
Raman Shift	Frequencies	violational description	
(cm ⁻¹)	calculated in		
	$CH_2Cl_2(cm^{-1})$		
	634 + 675	v C-S with Sulfur and carbon movement + δ C-S	
	688 + 689	H-C twisting	
	722 + 725 + 725	v C-S with Sulfur and carbon movement	
	750 - 960	For the majority of vibrational modes: Twisting or Wagging for C and H in the molecule.	
	1025 + 1029 +	$v C-C + \delta H-C$	
	1036		
1051-1050	1057+1057	v C-C + δ H-C + v C=C for C=C away from the bridge between thiophenes	
1155-1180-		v C=C for C=C close to the bridge between thiophenes + v C-S + δ H-C	
1162	1177 + 1202		
1220-1215		Inter-ring v C-C and δ C-C	
	1217	in the rest of molecule + v C-S + δ H-C + δ C-C + δ C=C	
	1241	Inter-ring δ C-C in the rest of molecule + v C-S + δ H-C + δ C-C + δ C=C	
	1217	Inter-ring δ C-C in the rest of molecule + v C-S + δ H-C + δ C-C + δ C=C	
	1295	$v C-S + \gamma C-C + \delta H-C + \delta C-C + \delta C=C$	
1387	1340 + 1358	v C-C and C-S + δ C=C, C-C and H-C + inter ring δ C-C	
1421-1475-	1454 + 1488	$v C=C + C-C + \delta C=C, C-C$, H-C and C-S + inter ring $\delta C-C$ and $v C-C$	
1475			
1445-1434	1447	$v C=C + C-C + \delta C=C, C-C$, H-C and C-S + inter ring $\delta C-C$	
1516-1513	1530	$v C=C + \delta C=C$, C-C, C-S and H-C.	
1553-1549	1568 + 1598	v C=C + inter ring v C-C and δ C-C + δ H-C, C-C and C=C.	

7- Table S4: Experimental (in dichloromethane, in acetonitrile) and theoretical vibrational mode for T_3 .

 δ C=C: C=C Bending mode, δ C-C : C-C Bending mode, δ C-S: C-S Bending mode, δ H-C: C-H Bending mode γ c=c: c=c Stretching mode, γ C-C : C-C Stretching mode, γ C-S: C-S Stretching mode, γ H-C: C-H Stretching mode

8- Figure S4: 1 Mulliken atomic charge in acetonitrile (a) and CH₂Cl₂ (b) (M062X/6-31(d,p))

a)

b)

The only observed difference is for the maximal intensities. Indeed, in CH_2Cl_2 this intensity is obtained at 1437 cm⁻¹ whereas it is at 1474 cm⁻¹ for Acetonitrile calculation.

11- Figure S7: 1, Raman theoretical comparison between monomeric and dimeric-parallel state.

Vibrational mode distribution is the same for monomers and dimers. Dimerization induces vibrational modes duplication. These results are the same for Cp21, bithiophene and terthiophene in all spectra regions when a comparison between monomeric and dimeric-parallel or monomeric and dimeric-antiparallel state is performed.

12- Figure S8: Basis set effect for 2.

As we can see in Figure S9 the only differences between the calculations for Cp21 in Dichloromethane with 6-311+(d,p) basis set and 6-31(d,p) basis set are in the 1400-1600 spectra area. Indeed, as we can see in table S1 some vibrational modes are shifted. For example, the Vibrational mode at 1437 cm⁻¹ for 6-31(d,p) basis set calculation is the same as the one at 1420 cm⁻¹ for 6-311+(d,p) basis set calculation.

13- Table S5: vibrational modes shift between T_3 -Id 6-31(d,p) and T_3 -Id 6-311+(d,p) basis set in 1430 -1600 cm⁻¹ spectra area for 2.

2 6-31(d,p)	2 6-311+(d,p)
1437 -	▶1420
1451 ◄	▶1429
1457	▶1447
1461 -	▶1452
1475 -	▶1455
1527	▶1508
1557	▶1538
1590	▶1571
1602	▶1579

14- Figure S9: T₃-Id and T₂-Id Raman spectra in solid state

15- Figure S10: T_3 -Id and T_2 -Id Raman spectra measured in various areas of the drop

