Supporting Information

Electronic relaxation dynamics in $[Au_{25}(SR)_{18}]^{-1}$ (R = CH₃, C₂H₅, C₃H₇, MPA, PET) thiolate-protected nanoclusters

Ravithree D. Senanayake and Christine M. Aikens* [†]Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA

* cmaikens@ksu.edu, 1-785-532-0954, fax: 1-785-532-6666

The electronic structure of the R=MPA system has a different pattern of excitations compared to R=H, CH₃, C₂H₅, C₃H₇. In R=MPA, the first excitation is mainly constructed from a HOMO \rightarrow LUMO transition (S₁ state) which has a high weight (0.8587). Likewise, excited states 4, 5 and 6 also have one transition which has a high weight and they directly resemble the S₄, S₅ and S₆ states, respectively, that were defined for the FSSH-TDKS calculations. The other ligand systems' excited states are a mix of several excitations based on their weights as shown in Table S1 below.

Table S1. The TDDFT excitations, energy, oscillator strength, weights and most weighted transitions involved in the ~1.35 eV peak of the $[Au_{25}(SR)_{18}]^{-1}$ (R = CH₃, C₂H₅, C₃H₇, MPA, PET) clusters.

Excited states for R= CH ₃	Energy (eV)	Oscillator strength	Weight	Most weighted transitions
			0.5339	HOMO → LUMO+1
			0.1832	HOMO-1 → LUMO
4	1.34	0.0217	0.1519	HOMO-2 → LUMO
			0.0943	HOMO → LUMO
			0.0122	HOMO-1 → LUMO+1
	1.35	0.0230	0.6838	HOMO-1 → LUMO
-			0.2163	HOMO → LUMO+1
5			0.0418	HOMO-1 → LUMO+1
			0.027	HOMO → LUMO
			0.8776	HOMO-2 → LUMO+1
6	1.27	0.0220	0.0544	HOMO → LUMO
6	1.37	0.0228	0.0251	HOMO-2 → LUMO
			0.0101	HOMO → LUMO+1

Excited states for R= C ₂ H ₅	Energy (eV)	Oscillator strength	Weight	Most weighted transitions
			0.5041	HOMO → LUMO+1
			0.2451	HOMO-2 → LUMO
4	1.36	0.0235	0.1611	HOMO → LUMO
			0.0345	HOMO-1 → LUMO+1
			0.0249	HOMO-1 → LUMO
	1.37	0.0245	0.4358	HOMO-1 → LUMO
			0.2659	HOMO-2 → LUMO
5			0.2327	HOMO → LUMO+1
			0.0234	HOMO-1 → LUMO+1
			0.0144	HOMO → LUMO
			0.6122	HOMO-2 → LUMO+1
6	1.20	0.0252	0.2615	HOMO-1 → LUMO+1
6	1.39	0.0252	0.0586	HOMO → LUMO
			0.0329	HOMO-2 → LUMO

Excited states for R= C ₃ H ₇	Energy (eV)	Oscillator strength	Weight	Most weighted transitions
			0.4485	HOMO → LUMO+1
4	1.35	0.0244	0.2191	HOMO → LUMO
			0.2174	HOMO-2 → LUMO
	1.36	0.0261	0.3531	HOMO-1 → LUMO
5			0.3345	HOMO-2 → LUMO
			0.2366	HOMO → LUMO+1
6	1.38	0.0269	0.6256	HOMO-2 → LUMO+1
			0.2556	HOMO-1 → LUMO+1

Excited states for R= MPA	Energy (eV)	Oscillator strength	Weight	Most weighted transitions
			0.8587	HOMO → LUMO
			0.0699	HOMO → LUMO+1
1	1.13	0.0131	0.0222	HOMO-2 → LUMO
			0.0172	HOMO-1 → LUMO
			0.0137	HOMO-1 → LUMO+1
			0.7229	HOMO-1 → LUMO
2	1.14	0.0012	0.2606	HOMO → LUMO+1
			0.0118	HOMO-1 → LUMO+1
	1.16	0.0062	0.6455	HOMO → LUMO+1
			0.2313	HOMO-1 → LUMO
5			0.0900	HOMO → LUMO
			0.0164	HOMO-2 → LUMO+1
			0.9412	HOMO-1 → LUMO+1
			0.0162	HOMO-1 → LUMO
4	1.27	0.0220	0.0116	HOMO → LUMO
			0.0071	HOMO-2 → LUMO
			0.0044	HOMO-2 → LUMO+2
F	1.21	0.0177	0.9194	HOMO-2 → LUMO
5	1.31	0.0177	0.032	HOMO-2 → LUMO+1

			0.0143	HOMO → LUMO
			0.0097	HOMO-1 → LUMO+1
6	1.38	0.0176	0.9279	HOMO-2 → LUMO+1
			0.0301	HOMO-2 → LUMO

Excited states for R= PET	Energy (eV)	Oscillator strength	Weight	Most weighted transitions
			0.4067	HOMO-1 - LUMO
			0.3073	HOMO-1 - LUMO+1
4	1.35	0.0246	0.1241	HOMO - LUMO
			0.107	HOMO-2 - LUMO
			0.0313	HOMO - LUMO+1
	1.37	0.0308	0.5929	HOMO - LUMO+1
			0.2286	HOMO-2 - LUMO
5			0.0805	HOMO-1 - LUMO
			0.0361	HOMO - LUMO
			0.0267	HOMO-1 - LUMO+1
			0.8557	HOMO-2 - LUMO+1
6	1.40	0.0305	0.0615	HOMO - LUMO+1
			0.0406	HOMO-1 - LUMO

Energy vs time at 300K for Au₂₅(SC₃H₇)₁₈

S7

Figure S1. Orbital energy variation with time during the MD simulation for $[Au_{25}(SR)_{18}]^{-1}$ (R= C₂H₅, C₃H₇, PET).

Figure S2. Evolution of the populations of S_1 , S_2 , S_3 , S_4 , S_5 , S_6 states. Panels a–f are relaxations from S_1 to S_6 , respectively, with the energy correction for $[Au_{25}(SCH_3)_{18}]^{-1}$.

GS growth time (ps)							
Excited state	0-5 ps	5-10 ps	10-15 ps	Different temperature ramp MD	Average	Std. Dev	
S_1	24	48	44	56	43	14	
S_2	24	64	45	61	48	18	
S_3	44	57	38	72	53	15	
S_4	65	68	50	73	64	10	
S_5	35	84	56	88	66	25	
S ₆	61	78	54	99	73	20	
			Decay	time (ps)			
Excited state	0-5 ps	5-10 ps	10-15 ps	Different temperature ramp MD	Average	Std. Dev	
S_1	12	13	8	13	12	2.3	
S_2	6.0	4.4	2.7	4.3	4.4	1.4	
S ₃	7.1	3.5	2.9	5.2	4.7	1.9	
S_4	4.6	2.3	1.9	2.6	2.8	1.2	
S ₅	4.3	2.5	2.4	3.5	3.2	0.9	
S ₆	3.7	1.9	1.8	2.4	2.4	0.9	

Table S2. Individual GS growth and decay time constants, averages, and standard deviations calculated for four different MD simulations for $[Au_{25}(SCH_3)_{18}]^{-1}$.

Figure S3. Evolution of the populations of the S_1 , S_2 , S_3 , S_4 , S_5 , S_6 states for $[Au_{25}(SC_2H_5)_{18}]^{-1}$ without the energy correction. Panels a–f are relaxations from S_1 to S_6 , respectively.

Figure S4. Evolution of the populations of the S_1 , S_2 , S_3 , S_4 , S_5 , S_6 states for $[Au_{25}(SC_2H_5)_{18}]^{-1}$ with the 0.55 eV energy correction. Panels a–f are relaxations from S_1 to S_6 , respectively.

Figure S5. Evolution of the populations of the S_1 , S_2 , S_3 , S_4 , S_5 , S_6 states for $[Au_{25}(SC_3H_7)_{18}]^{-1}$ without the energy correction. Panels a–f are relaxations from S_1 to S_6 , respectively.

Figure S6. Evolution of the populations of the S_1 , S_2 , S_3 , S_4 , S_5 , S_6 states for $[Au_{25}(SC_3H_7)_{18}]^{-1}$ with the 0.55 eV energy correction. Panels a–f are relaxations from S_1 to S_6 , respectively.

Figure S7. Evolution of the populations of the S_1 , S_2 , S_3 , S_4 , S_5 , S_6 states for $[Au_{25}(MPA)_{18}]^{-1}$ with the 0.55 eV energy correction. Panels a–f are relaxations from S_1 to S_6 , respectively.

Figure S8. Evolution of the populations of the S_1 , S_2 , S_3 , S_4 , S_5 , S_6 states for $[Au_{25}(MPA)_{18}]^{-1}$ without the energy correction. Panels a–f are relaxations from S_1 to S_6 , respectively.

Figure S9. Evolution of the populations of the S_1 , S_2 , S_3 , S_4 , S_5 , S_6 states for $[Au_{25}(MPA)_{18}]^{-1}$ with the 0.55 eV energy correction. Panels a–f are relaxations from S_1 to S_6 , respectively.

E	GS growth times (ps) with correction							
Excited state	Н	CH ₃	C ₂ H ₅	C ₃ H ₇	MPA	РЕТ		
S_1	313	77	129	102	99	118		
S_2	365	105	136	139	175	128		
S_3	441	168	184	207	128	140		
S_4	690	258	257	277	298	212		
S_5	750	215	476	184	188	176		
S_6	1429	477	566	473	395	346		

Table S3. GS growth times calculated for ligated clusters with the 0.55 eV energy correction.

Table S4. Decay times calculated for ligated clusters with the 0.55 eV energy correction.

Emoited state	Decay times (ps) with correction						
Excited state	Н	CH ₃	C ₂ H ₅	C ₃ H ₇	MPA	РЕТ	
S ₁	18	18	22	18	12	16	
S ₂	3.3	7.4	7.0	5.9	4.5	3.1	
S ₃	3.1	7.8	4.6	4.6	2.9	3.9	
S4	1.9	4.7	3.2	2.7	2.2	1.9	
S ₅	2.6	4.9	3.5	2.3	2.4	2.6	
S ₆	1.9	3.8	2.7	1.9	2.1	1.7	

Figure S10. Evolution of the populations of states initially excited into S_1 , S_2 , S_3 , S_4 , S_5 , S_6 (a-f, respectively) for $[Au_{25}(SCH_3)_{18}]^{-1}$ with the 0.55 eV energy correction in the presence of higher excited states.

Figure S11. Evolution of the populations of states initially excited into S_1 , S_2 , S_3 , S_4 , S_5 , S_6 (a-f, respectively) for $[Au_{25}(SC_2H_5)_{18}]^{-1}$ with the 0.55 eV energy correction in the presence of higher excited states.

Figure S12. Evolution of the populations of states initially excited into S_1 , S_2 , S_3 , S_4 , S_5 , S_6 (a-f, respectively) for $[Au_{25}(SC_3H_7)_{18}]^{-1}$ with the 0.55 eV energy correction in the presence of higher excited states.

Table S5. Decay time constants obtained for $[Au_{25}(SR)_{18}]^{-1}$ (R = CH₃, C₂H₅, C₃H₇, MPA, PET) nanoclusters for S₁-S₄₀ states. The subscript "a" – The PET decay times were calculated without adding the 0.55 eV correction to the S₁-S₆ states.

Decay time (ps)							
Excited state	methyl	ethyl	propyl	MPA	PET ^a		
S ₁	14	17	12	11	14		
S ₂	5.6	4.6	4.2	2.8	2.9		
S ₃	5.8	3.2	3.3	2.0	3.9		
S ₄	3.1	2.1	2.1	1.5	1.9		
S ₅	1.9	1.8	1.3	1.0	2.8		
S ₆	1.6	1.4	1.1	0.9	1.7		
S ₇	8.0	13	11	8.6	8.3		
S ₈	1.6	2.0	2.0	1.9	2.3		
S9	1.4	1.6	1.4	1.1	2.2		
S ₁₀	3.7	3.7	3.8	2.3	2.7		
S ₁₁	1.4	1.3	1.4	1.3	1.4		
S ₁₂	1.5	1.2	1.1	0.9	1.7		
S ₁₃	3.7	3.3	2.3	1.5	2.4		
S ₁₄	1.5	1.5	1.2	0.8	1.4		
S ₁₅	1.5	1.1	1.0	0.7	1.5		
S ₁₆	3.5	2.4	3.9	4.1	2.6		
S ₁₇	2.3	2.2	2.7	2.3	1.5		
S ₁₈	2.2	2.1	2.6	2.2	2.3		
S ₁₉	1.0	1.0	1.3	0.9	1.2		
S ₂₀	1.1	0.9	1.0	0.7	1.2		
S ₂₁	1.8	1.3	1.6	1.4	1.3		
S ₂₂	1.3	1.3	1.3	1.2	0.9		
S ₂₃	1.4	1.2	1.5	0.9	1.2		
S ₂₄	0.7	0.6	0.8	0.6	0.8		
S ₂₅	0.8	0.6	0.6	0.5	0.8		
S ₂₆	1.0	1.0	1.0	1.1	0.9		
S ₂₇	0.8	0.9	0.9	0.9	0.7		
S ₂₈	0.9	1.0	0.9	0.9	0.9		
S ₂₉	0.6	0.6	0.6	0.6	0.6		
S ₃₀	0.7	0.6	0.5	0.5	0.7		
S ₃₁	0.9	1.0	0.8	0.9	0.7		
S ₃₂	0.8	1.1	0.8	0.9	0.6		
S ₃₃	0.8	1.0	0.8	0.7	0.8		

S ₃₄	0.6	0.6	0.6	0.5	0.6
S ₃₅	0.7	0.6	0.5	0.4	0.6
S ₃₆	1.2	1.0	1.0	0.7	0.7
S ₃₇	1.1	0.9	0.9	0.7	0.6
S ₃₈	1.2	0.9	0.9	0.6	0.7
S ₃₉	0.8	0.6	0.7	0.4	0.6
S ₄₀	0.9	0.6	0.6	0.4	0.6

Figure S13. Evolution of the populations of states initially excited into S_1 , S_2 , S_3 , S_4 , S_5 , S_6 (a-f, respectively) for $[Au_{25}(MPA)_{18}]^{-1}$ with the 0.55 eV energy correction in the presence of higher excited states.

Figure S14. Evolution of the populations of states initially excited into S_1 , S_2 , S_3 , S_4 , S_5 , S_6 (a-f, respectively) for $[Au_{25}(PET)_{18}]^{-1}$ (without the 0.55 eV energy correction) in the presence of higher excited states

Excited	Transition	Excited	Transition
state	Transition	state	Transition
S ₁	HOMO → LUMO	S ₂₁	HOMO-4 → LUMO
S ₂	HOMO → LUMO+1	S ₂₂	HOMO-4 → LUMO+1
S ₃	HOMO \rightarrow LUMO+2	S ₂₃	HOMO-4 \rightarrow LUMO+2
S ₄	HOMO \rightarrow LUMO+3	S ₂₄	HOMO-4 \rightarrow LUMO+3
S ₅	HOMO → LUMO+4	S ₂₅	HOMO-4 → LUMO+4
S ₆	HOMO-1 → LUMO	S ₂₆	HOMO-5 → LUMO
S ₇	HOMO-1 → LUMO+1	S ₂₇	HOMO-5 → LUMO+1
S ₈	HOMO-1 \rightarrow LUMO+2	S ₂₈	HOMO-5 \rightarrow LUMO+2
S ₉	HOMO-1 \rightarrow LUMO+3	S ₂₉	HOMO-5 \rightarrow LUMO+3
S ₁₀	HOMO-1 \rightarrow LUMO+4	S ₃₀	HOMO-5 \rightarrow LUMO+4
S ₁₁	HOMO-2 → LUMO	S ₃₁	HOMO-6 → LUMO
S ₁₂	HOMO-2 \rightarrow LUMO+1	S ₃₂	HOMO-6 \rightarrow LUMO+1
S ₁₃	HOMO-2 \rightarrow LUMO+2	S ₃₃	HOMO-6 \rightarrow LUMO+2
S ₁₄	HOMO-2 \rightarrow LUMO+3	S ₃₄	HOMO-6 \rightarrow LUMO+3
S ₁₅	HOMO-2 \rightarrow LUMO+4	S ₃₅	HOMO-6 \rightarrow LUMO+4
S ₁₆	HOMO-3 → LUMO	S ₃₆	HOMO-7 → LUMO
S ₁₇	HOMO-3 \rightarrow LUMO+1	S ₃₇	HOMO-7 \rightarrow LUMO+1
S ₁₈	HOMO-3 \rightarrow LUMO+2	S ₃₈	HOMO-7 \rightarrow LUMO+2
S ₁₉	HOMO-3 \rightarrow LUMO+3	S ₃₉	HOMO-7 \rightarrow LUMO+3
S ₂₀	HOMO-3 \rightarrow LUMO+4	S ₄₀	HOMO-7 \rightarrow LUMO+4

Table S6. Excited states considered during separate electron and hole relaxations.

Figure S15. Evolution of the populations of S_6 , S_{11} , S_{16} , S_{21} , S_{26} , S_{31} , S_{36} states from the set 2 to set 8 electron relaxations respectively in $[Au_{25}(SCH_3)_{18}]^{-1}$.

Excited state	Transition	Decay time (ps) - Trial 1	Decay time (ps) - Trial 2			
	set 1 (hole created in HOMO)					
S ₁	HOMO → LUMO	13	13			
S ₂	HOMO \rightarrow LUMO+1	6.9	7.1			
S ₃	HOMO \rightarrow LUMO+2	6.9	6.7			
S ₄	HOMO \rightarrow LUMO+3	1.7	1.7			
S ₅	HOMO → LUMO+4	1.8	1.8			
	set 2 (hole cr	eated in HOMO-1)				
S ₆	HOMO-1 → LUMO	17	17			
S ₇	HOMO-1 \rightarrow LUMO+1	8.6	8.6			
S ₈	HOMO-1 \rightarrow LUMO+2	6.9	6.7			
S ₉	HOMO-1 \rightarrow LUMO+3	1.7	1.7			
S ₁₀	HOMO-1 \rightarrow LUMO+4	1.8	1.8			
set 3 (hole created in HOMO-2)						
S ₁₁	HOMO-2 → LUMO	16	16			
S ₁₂	HOMO-2 \rightarrow LUMO+1	8.7	8.7			
S ₁₃	HOMO-2 \rightarrow LUMO+2	6.9	6.9			
S ₁₄	HOMO-2 \rightarrow LUMO+3	1.7	1.7			
S ₁₅	HOMO-2 \rightarrow LUMO+4	1.8	1.8			
	set 4 (hole cr	eated in HOMO-3)				
S ₁₆	HOMO-3 → LUMO	11	11			
S ₁₇	HOMO-3 \rightarrow LUMO+1	7.9	7.7			
S ₁₈	HOMO-3 \rightarrow LUMO+2	6.7	6.8			
S ₁₉	HOMO-3 \rightarrow LUMO+3	1.7	1.7			
S ₂₀	HOMO-3 \rightarrow LUMO+4	1.7	1.7			
set 5 (hole created in HOMO-4)						
S ₂₁	HOMO-4 → LUMO	13	13			
S ₂₂	HOMO-4 → LUMO+1	8.7	8.5			
S ₂₃	HOMO-4 \rightarrow LUMO+2	6.6	6.5			
S ₂₄	HOMO-4 \rightarrow LUMO+3	1.7	1.7			
S ₂₅	HOMO-4 \rightarrow LUMO+4	1.8	1.7			
set 6 (hole created in HOMO-5)						
S ₂₆	HOMO-5 → LUMO	16	16			
S ₂₇	HOMO-5 → LUMO+1	9.2	9.5			
S ₂₈	HOMO-5 \rightarrow LUMO+2	6.4	6.6			
S ₂₉	HOMO-5 \rightarrow LUMO+3	1.7	1.7			
S ₃₀	HOMO-5 \rightarrow LUMO+4	1.7	1.7			
set 7 (hole created in HOMO-6)						
S ₃₁	HOMO-6 → LUMO	21	21			

Table S7. Calculated decay time constants for the eight electron relaxation sets.

S ₃₂	HOMO-6 \rightarrow LUMO+1	9.5	9.6		
S ₃₃	HOMO-6 \rightarrow LUMO+2	6.5	6.5		
S ₃₄	HOMO-6 \rightarrow LUMO+3	1.6	1.6		
S ₃₅	HOMO-6 \rightarrow LUMO+4	1.7	1.7		
set 8 (hole created in HOMO-7)					
S ₃₆	HOMO-7 → LUMO	23	23		
S ₃₇	HOMO-7 \rightarrow LUMO+1	9.8	10		
S ₃₈	HOMO-7 \rightarrow LUMO+2	6.1	6.2		
S ₃₉	HOMO-7 \rightarrow LUMO+3	1.6	1.6		
S ₄₀	HOMO-7 \rightarrow LUMO+4	1.6	1.7		

Figure S16. Evolution of the populations of S_1 , S_2 , S_3 , S_4 , S_5 states from the set 1 to set 5 hole relaxations, respectively, in $[Au_{25}(SCH_3)_{18}]^{-1}$.

Excited	Transition	Decay time (ps)	Decay time (ps)			
set 1 (electron excited into LUMO)						
S ₁	$HOMO \rightarrow LUMO$	18	20			
S ₄	HOMO-1 \rightarrow LUMO	89	8.7			
S ₁₁	HOMO-2 \rightarrow LUMO	57	5.6			
S ₁₆	HOMO-3 \rightarrow LUMO	2.7	2.7			
S ₂₁	HOMO-4 → LUMO	1.6	1.6			
S ₂₆	HOMO-5 → LUMO	1.0	1.0			
S ₃₁	HOMO-6 → LUMO	1.0	1.0			
S ₃₆	HOMO-7 → LUMO	1.3	1.3			
	set 2 (electron exc	ited into LUMO+1)			
S ₂	HOMO → LUMO+1	18	17			
S ₇	HOMO-1 \rightarrow LUMO+1	9.5	9.4			
S ₁₂	HOMO-2 \rightarrow LUMO+1	6.3	6.1			
S ₁₇	HOMO-3 \rightarrow LUMO+1	3.0	2.9			
S ₂₂	HOMO-4 → LUMO+1	1.7	1.7			
S ₂₇	HOMO-5 → LUMO+1	1.0	1.0			
S ₃₂	HOMO-6 \rightarrow LUMO+1	1.0	1.0			
S ₃₇	HOMO-7 \rightarrow LUMO+1	1.3	1.3			
	set 3 (electron exc	ited into LUMO+2)			
S ₃	HOMO \rightarrow LUMO+2	46	45			
S ₈	HOMO-1 \rightarrow LUMO+2	11	11			
S ₁₃	HOMO-2 \rightarrow LUMO+2	6.5	6.4			
S ₁₈	HOMO-3 \rightarrow LUMO+2	3.1	3.0			
S ₂₃	HOMO-4 \rightarrow LUMO+2	1.8	1.7			
S ₂₈	HOMO-5 \rightarrow LUMO+2	1.0	1.0			
S ₃₃	HOMO-6 \rightarrow LUMO+2	1.0	1.0			
S ₃₈	HOMO-7 \rightarrow LUMO+2	1.3	1.3			
	set 4 (electron excited into LUMO+3)					
S4	HOMO \rightarrow LUMO+3	44	42			
S ₈	HOMO-1 \rightarrow LUMO+3	10	11			
S ₁₄	HOMO-2 \rightarrow LUMO+3	6.7	6.6			
S ₁₈	HOMO-3 \rightarrow LUMO+3	3.0	3.0			
S ₂₄	HOMO-4 \rightarrow LUMO+3	1.7	1.7			
S ₂₈	HOMO-5 \rightarrow LUMO+3	1.0	1.0			
S ₃₄	HOMO-6 \rightarrow LUMO+3	1.0	0.9			
S ₃₈	HOMO-7 \rightarrow LUMO+3	1.2	1.3			
set 5 (electron excited into LUMO+4)						
S ₅	HOMO \rightarrow LUMO+4	49	48			
S ₁₀	$HOMO-1 \rightarrow LUMO+4$	11	11			

 Table S8. Calculated decay time constants for the five hole relaxation sets.

S ₁₅	HOMO-2 \rightarrow LUMO+4	6.4	6.5
S ₂₀	HOMO-3 \rightarrow LUMO+4	2.9	2.9
S ₂₅	HOMO-4 \rightarrow LUMO+4	1.6	1.7
S ₃₀	HOMO-5 \rightarrow LUMO+4	1.0	1.0
S ₃₅	HOMO-6 \rightarrow LUMO+4	1.0	1.0
S ₄₀	HOMO-7 \rightarrow LUMO+4	1.2	1.2