<u>Supporting Information</u> The effect of dimerization on the activation of

adenosine A1 receptor

Yang Li,^a Mukuo Wang,^a Na Gao,^{a,b} Dongmei Li,^{*,a} and Jianping Lin^{*,a,b}

Contents:

- Fig. S1. Schematic representation of the NECA-A₁R-M, NECA-A₁R and dNECA-A₁R systems used in the MD simulations.
- Fig. S2. Structure of A₁R and NECA in the NECA-A₁R system. A₁R is shown in a cartoon model, and NECA in the binding site is shown in a stick model.
- Fig. S3. Definitions of the collective variables CV_1 and CV_2 for metaMD. CV_1 (shown with gray dash line) is the distance between the centers of mass (COMs) of NECA and the seven transmembrane helical bundles of A₁R along the direction perpendicular to membrane (Z-direction), and CV_2 (shown with green dash line) is the distance between the COMs of NECA and residues Thr91^{3.36}, Phe171^{ECL2}, Glu172^{ECL2}, Thr277^{7.42} and His278^{7.43}.
- Fig. S4. Time dependences of RMSD of the nonhydrogen atoms of protein of each protomers with respect to the initial X-ray crystallographic structure for the (A) apo-A₁R, (B) NECA-A₁R and (C) dNECA-A₁R system. Time dependences of RMSD of NECA inside the orthosteric binding site was measured with respect to its docking pose coordinates for the (E) apo-A₁R, (F) NECA-A₁R and (G) dNECA-A₁R system in the cMD simulation.
- **Table S1.** Averaged values and standard deviations of the RMSD of the nonhydrogen atoms of protein of each protomers with respect to the initial X-ray crystallographic structure, and the

RMSD of NECA inside the orthosteric binding site was measured with respect to its docking pose coordinates for each protomer over the three parallel cMD trajectories.

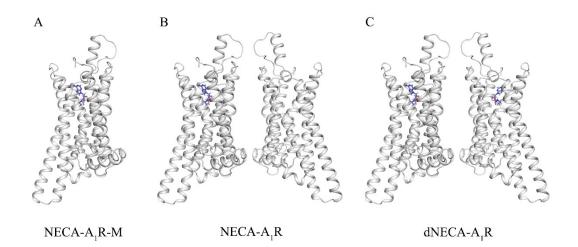
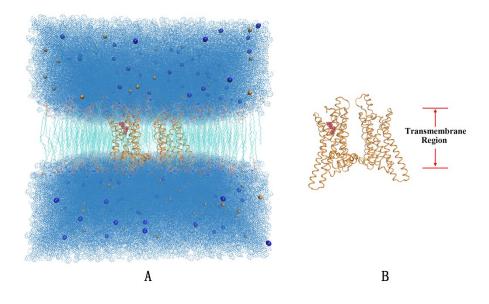
- Fig. S5. 2D Structure of NECA.
- Table S2. Averaged distances and standard deviations between the hydroxyl oxygen of the Thr91^{3.36} side chain and the N^{5'} of NECA, the centers of the phenyl group of Phe171^{ECL2} and the purine group of NECA, the carbonyl oxygen of Glu172^{ECL2} and the N⁶ of NECA, the imidazole ε-nitrogen of His251^{6.52} and the O^{5'} of NECA, hydrogen bond Hbond1 between the acylamino δ1-oxygen of Asn254^{6.55} and the N⁶ of NECA (Hbond1), the acylamino δ2-nitrogen of Asn254^{6.55} and the N⁷ of NECA (Hbond2), the distance between the hydroxyl oxygen of Thr277^{7.42} and the O^{3'} of NECA and the distance between the imidazole ε-nitrogen of His278^{7.43} and O^{2'} of NECA in the three parallel GaMD simulations.
- Fig. S6. Time dependences of RMSD of NECA respect to the relative to the docking pose for the NECA-A₁R-M system in the cMD simulation.
- Table S3. Average number of water molecules in the G-protein binding crevice of the inactive and active states of A₁R.
- **Fig. S6.** Time dependences of (A) TM3-TM6 distance, (B) RMSD of the DRY motif relative to the inactive starting structure, (C) the N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (D) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the second NECA-A₁R trajectory.
- Fig. S7. Time dependences of (A) TM3-TM6 distance, (B) RMSD of the DRY motif relative to the inactive starting structure, (C) the N--O distance between the guanidinium of

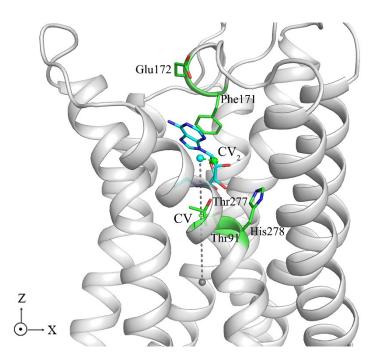
Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (D) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the third NECA-A₁R trajectory.

- **Fig. S8.** Time dependences of (A) TM3-TM6 distance, (B) RMSD of the DRY motif relative to the inactive starting structure, (C) the N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (D) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the second dNECA-A₁R trajectory.
- Fig. S9. Time dependences of (A) TM3-TM6 distance, (B) RMSD of the DRY motif relative to the inactive starting structure, (C) the N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (D) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the third dNECA-A₁R trajectory.
- Fig. S10. Potential of mean force (PMF) calculated for the TM3-TM6 distance vs. the RMSD of the DRY motif relative to the inactive starting structure for (A) P₁ and (B) P₂ of the apo-A₁R system. Time dependences of the (C) TM3-TM6 distance, (D) RMSD of the DRY motif relative to the inactive starting structure, (E) N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (F) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the apo-A₁R system.
- Fig. S11. Dynamic cross-correlations map of the apo-A₁R system in the GaMD simulations.
- Fig. S12. Dynamic cross-correlations map of the (A) NECA-A₁R based on the snapshots in 110-140 ns of the second NECA-A₁R trajectory, (B) NECA-A₁R based on the snapshots in

200-230 ns of the third NECA-A₁R trajectory, (C) dNECA-A₁R based on the snapshots in 130-160 ns of the second dNECA-A₁R trajectory, and (D) dNECA-A₁R based on the snapshots in 230-260 ns of the second NECA-A₁R trajectory in the GaMD simulations.

- **Table S4.** The highly correlated residues with the absolute values of correlation coefficients larger than 0.6 for the receptor in the NECA-A₁R and dNECA-A₁R systems.
- **Table S5.** The networks in the intracellular sides of the P₁ and P₂ in the GaMD simulation of the second NECA-A₁R and dNECA-A₁R trajectory.
- **Table S6.** The networks in the intracellular sides of the P₁ and P₂ in the GaMD simulation of the third NECA-A₁R and dNECA-A₁R trajectory.
- **Table S7.** Averaged values and standard deviations of the distances between COMs of P₁ and P₂ in the apo-A₁R, NECA-A₁R, and dNECA-A₁R systems over the three parallel GaMD trajectories.


Fig. S1. Schematic representation of the NECA-A₁R-M, NECA-A₁R and dNECA-A₁R systems

used in the MD simulations.

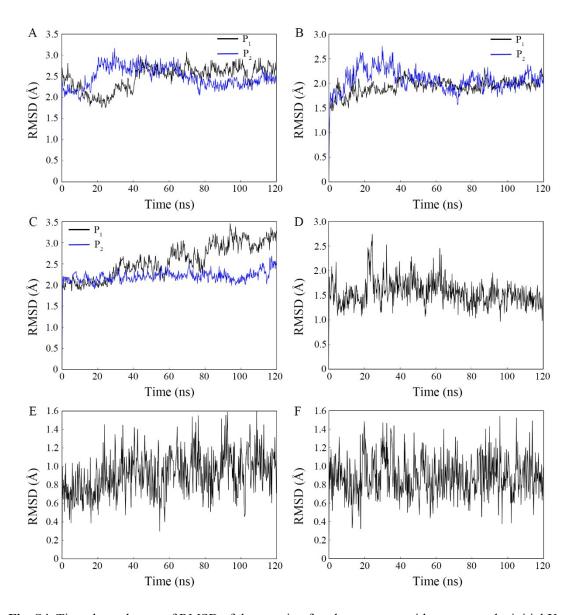


Fig. S2. Structure of A_1R and NECA in the NECA- A_1R system. A_1R is shown in a cartoon model,

and NECA in the binding site is shown in a stick model.

Fig. S3. Definitions of the collective variables CV_1 and CV_2 for metaMD. CV_1 (shown with gray dash line) is the distance between the centers of mass (COMs) of NECA and the seven transmembrane helical bundles of A₁R along the direction perpendicular to membrane (Z-direction), and CV_2 (shown with green dash line) is the distance between the COMs of NECA and residues Thr91^{3.36}, Phe171^{ECL2}, Glu172^{ECL2}, Thr277^{7.42} and His278^{7.43}.

Fig. S4. Time dependences of RMSD of the protein of each protomers with respect to the initial Xray crystallographic structure for the (A) apo-A₁R, (B) NECA-A₁R and (C) dNECA-A₁R system. Time dependences of RMSD of NECA inside the orthosteric binding site was measured with respect to its docking pose coordinates for the (E) apo-A₁R, (F) NECA-A₁R and (G) dNECA-A₁R system in the cMD simulation.

Table S1. Averaged values and standard deviations of the RMSD of the protein of each protomers with respect to the initial X-ray crystallographic structure, and the RMSD of NECA inside the orthosteric binding site was measured with respect to its docking pose coordinates for each protomer over the three parallel cMD trajectories.

System	RMSD of (Å		RMSD of NECA (Å)		
	Average	, SD	Average	SD	
P ₁ of apo-A ₁ R (cMD)	2.4	0.3	-		
P2 of apo-A1R (cMD)	2.4	0.1	-		
P ₁ of NECA-A ₁ R (cMD)	1.9	0.1	1.4	0.1	
P2 of NECA-A1R (cMD)	2.3	0.2	-		
P1 of dNECA-A1R (cMD)	2.7	0.6	1.0	0.3	
P2 of dNECA-A1R (cMD)	2.3	0.01	1.2	0.7	

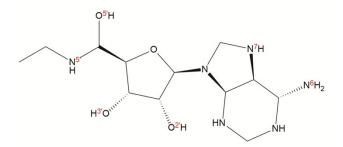
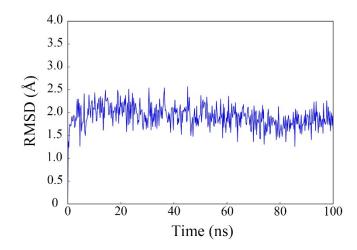



Fig. S5. 2D Structure of NECA.

Table S2. Averaged distances and standard deviations between the hydroxyl oxygen of the Thr91^{3,36} side chain and the N⁵' of NECA, the centers of the phenyl group of Phe171^{ECL2} and the purine group of NECA, the carbonyl oxygen of Glu172^{ECL2} and the N⁶ of NECA, the imidazole ε -nitrogen of His251^{6,52} and the O⁵' of NECA, hydrogen bond Hbond1 between the acylamino δ 1-oxygen of Asn254^{6,55} and the N⁶ of NECA (Hbond1), the acylamino δ 2-nitrogen of Asn254^{6,55} and the N⁷ of NECA (Hbond2), the distance between the hydroxyl oxygen of Thr277^{7,42} and the O³' of NECA and the distance between the imidazole ε -nitrogen of His278^{7,43} and O²' of NECA in the three parallel GaMD simulations.

Residue	P ₁ of NECA-A ₁ R		P ₁ of dNECA-A ₁ R		P ₂ of dNECA-A ₁ R	
Kesiuue	Average	SD	Average	SD	Average	SD
Thr91 ^{3.36}	3.5	0.7	3.0	0.02	3.0	0.01
Phe171 ^{ECL2}	4.0	0.1	3.8	0.1	4.0	0.03
Glu172 ^{ECL2}	4.5	1.1	3.2	0.01	3.3	0.1
His2516.52	2.9	0.03	3.0	0.04	2.9	0.01
Asn254 ^{6.55} (Hbond1)	2.9	0.01	2.9	0.01	2.9	0.004
Asn254 ^{6.55} (Hbond2)	3.1	0.002	3.1	0.01	3.1	0.01
Thr277 ^{7.42}	3.1	0.1	3.7	0.6	2.8	0.01
His278 ^{7.43}	3.1	0.4	4.3	0.8	3.2	0.2

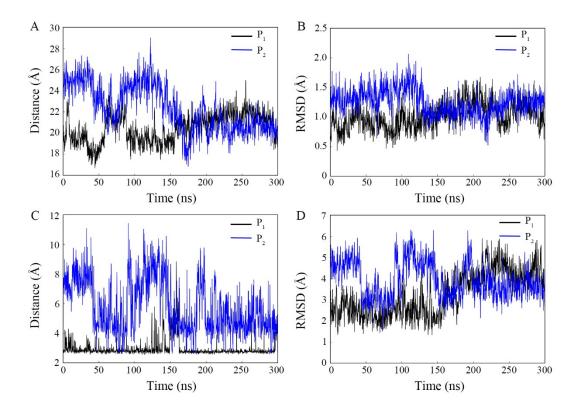
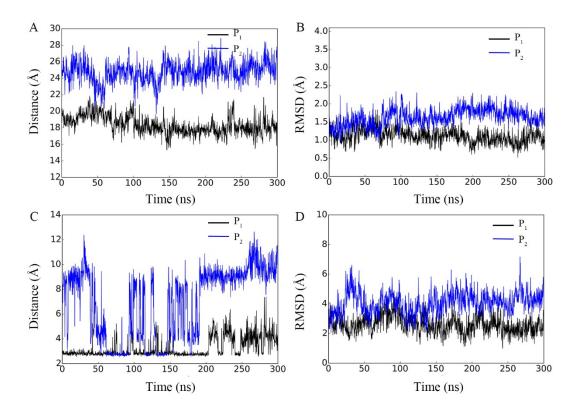
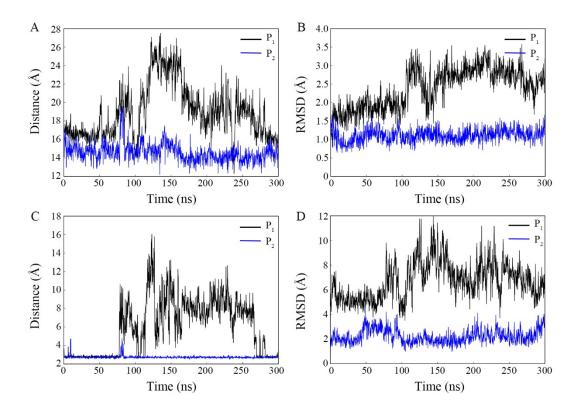
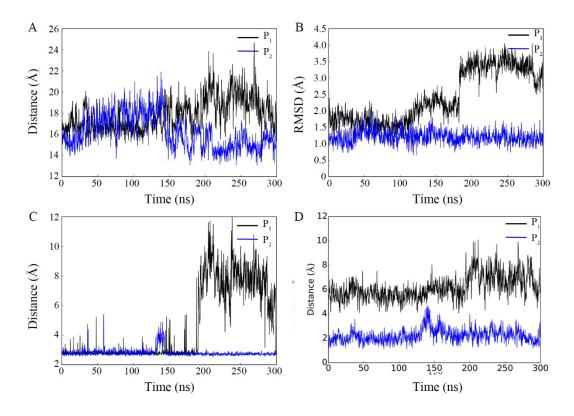

Fig. S6. Time dependences of RMSD of NECA respect to the relative to the docking pose for the NECA-A₁R-M system in the cMD simulation.

Table S3. Average number of water molecules in the G-protein binding crevice of the inactive and


System	P ₁		P ₂	2
	Average	SD	Average	SD
NECA-A ₁ R	15	1.5	^a 20	0.6
dNECA-A1R	^b 22	1.7	18	0.6

active states of A1R.


^aThe snapshots of the three parallel GaMD simulations in 260-290 ns, 110-140 ns, and 200-230 ns which correspond to the active state for the NECA-A₁R system are extracted from the trajectories to calculate the average number of water molecules here. ^bThe snapshots of the three parallel GaMD simulations in 235-265 ns, 130-160 ns and 230-260 ns which correspond to the active state for the dNECA-A₁R system are extracted from the trajectories to calculate the average number of water molecules here.


Fig. S7. Time dependences of (A) TM3-TM6 distance, (B) RMSD of the DRY motif relative to the inactive starting structure, (C) the N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (D) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the second NECA-A₁R trajectory.

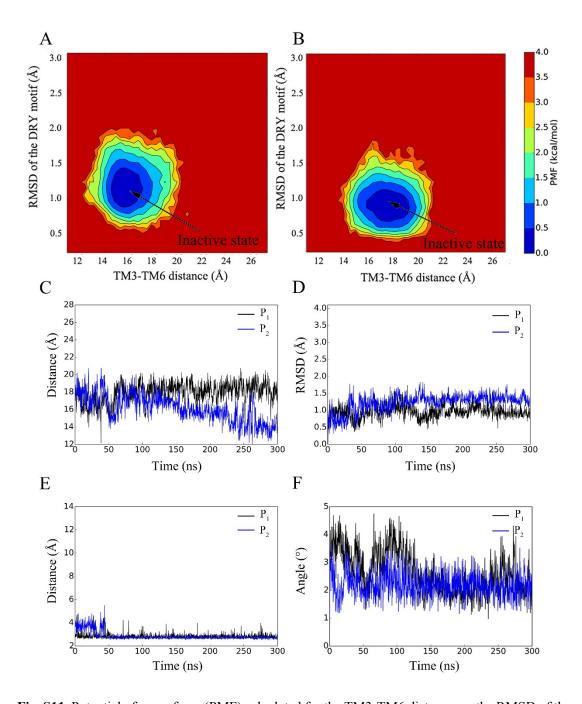

Fig. S8. Time dependences of (A) TM3-TM6 distance, (B) RMSD of the DRY motif relative to the inactive starting structure, (C) the N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (D) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the third NECA-A₁R trajectory.

Fig. S9. Time dependences of (A) TM3-TM6 distance, (B) RMSD of the DRY motif relative to the inactive starting structure, (C) the N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (D) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the second dNECA-A₁R trajectory.

Fig. S10. Time dependences of (A) TM3-TM6 distance, (B) RMSD of the DRY motif relative to the inactive starting structure, (C) the N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (D) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the third dNECA-A₁R trajectory.

Fig. S11. Potential of mean force (PMF) calculated for the TM3-TM6 distance vs. the RMSD of the DRY motif relative to the inactive starting structure for (A) P_1 and (B) P_2 of the apo-A₁R system. Time dependences of the (C) TM3-TM6 distance, (D) RMSD of the DRY motif relative to the inactive starting structure, (E) N--O distance between the guanidinium of Arg105^{3.50}/Arg108^{3.53} and the carboxyl of Glu229^{6.30} and (F) RMSD of the KxxK motif relative to the inactive starting structure in the GaMD simulation of the apo-A₁R system.

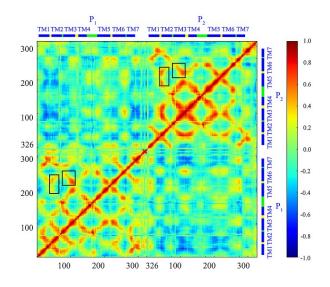


Fig. S12. Dynamic cross-correlations map of the apo- A_1R system in the GaMD simulations.

Fig. S13. Dynamic cross-correlations map of the (A) NECA-A₁R based on the snapshots in 110-140 ns of the second NECA-A₁R trajectory, (B) NECA-A₁R based on the snapshots in 200-230 ns of the third NECA-A₁R trajectory, (C) dNECA-A₁R based on the snapshots in 130-160 ns of the second dNECA-A₁R trajectory, and (D) dNECA-A₁R based on the snapshots in 230-260 ns of the second NECA-A₁R trajectory in the GaMD simulations.

Table S4. The highly correlated residues with the absolute values of correlation coefficients larger

System	P_{I}	P ₂
	15-28 in TM1 and 282-287 in TM7	
	20-35 in TM1 and 49-64 in TM2	
	42-52 in TM2 and 94-109 in TM3	
	42-52 in TM2 and 229-238 in TM6	15-19 in TM1 and 51-62 in TM2
	44-54 in TM2 and 125-133 in TM4	16-29 in TM1 and 278-284 in TM7
	47-51 in TM2 and 200-205 in TM5	66-72 in TM2 and 168-170 in ECL2
	52-57 in TM2 and 281-286 in TM7	76-82 in TM3 and 166-174 in ECL2
NECA-A ₁ R	76-82 in TM3 and 167-176 in ECL2	52-57 in TM2 and 281-285 in TM7
NECA-A _l K	88-101 in TM3 and 132-143 in TM4	86-94 in TM3 and 132-143 in TM4
	93-109 in TM3 and 124-130 in TM4	143-150 in TM4 and 173-183 in TM5
	96-110 in TM3 and 193-208 in TM5	178-183 in TM5 and 253-258 in TM6
	98-110 in TM3 and 226-242 in TM6	205-212 in TM5 and 225-230 in TM5
	135-155 in TM4 and 174-189 in TM5	
	177-188 in TM5 and 251-261 in TM6	
	204-209 in TM5 and 225-238 in TM6	
	247-254 in TM6 and 274-277 in TM7	
		17-35 in TM1 and 44-64 in TM2
		18-35 in TM1 and 275-291 in TM7
	15-35 in TM1 and 49-64 in TM2 19-35 in TM1 and 279-289 in TM7 46-55 in TM2 and 92-108 in TM3	44-62 in TM2 and 90-108 in TM3
		44-52 in TM2 and 200-204 in TM5
		44-55 in TM2 and 230-240 in TM6
	50-62 in TM2 and 87-90 in TM3	46-50 in TM2 and 124-128 in TM4
	45-54 in TM2 and 123-135 in TM4	48-63 in TM2 and 278-290 in TM7
dNECA-A ₁ R	65-88 in TM2 and 164-176 in ECL2	66-72 in TM2 and 167-173 in ECL2
unteca-Ajk	50-63 in TM2 and 278-285 in TM7	77-88 in TM3 and 165-180 in ECL2
	81-104 in TM3 and 124-145 in TM4	77-100 in TM3 and 127-145 in TM4
	132-152 in TM3 and 124-145 in TM4	92-111 in TM3 and 192-207 in TM5
	132-132 in 1M4 and 171-189 in 1M5 176-190 in TM5 and 247-258 in TM6 205-215 in TM5 and 219-230 in TM6	95-110 in TM3 and 226-244 in TM6
		134-153 in TM4 and 171-189 in TM5
		146-149 in ECL2 and 254-259 in TM6
		172-191 in TM5 and 248-260 in TM6
		247-254 in TM6 and 269-277 in TM7

than 0.6 for the receptor in the NECA-A $_1R$ and dNECA-A $_1R$ systems.

Table S5. The networks in the intracellular sides of the P_1 and P_2 in the GaMD simulation of the

	NECA-A ₁ R			dNECA-A ₁ R	
	P ₁	P ₂	\mathbf{P}_1	P ₂	
Leu99 – Ile199	Tyr106 – Ile199	Ala102 – Ile199	Tyr106 –Ile199	Leu99 - Met196	Arg108 – Glu229
Ala102 – Ile199	Tyr106 – Glu202	Arg105 - Val203		Ala102 - Met196	
Ala102 – Tyr200	Tyr106 - Val203	Tyr106 –Ile199		Ala102 – Ile199	
Val103 – Ile199	Arg108 – Glu229	Tyr106 – Glu202		Ala102 – Tyr200	
Arg105 - Val203	Val109 - Val203	Tyr106 - Val203		Val103 – Ile199	
Arg105 – Ile232	Val109 – Leu206	Val109 - Val203		Arg105 - Val203	
Arg105 – Ala233	Lys110 - Leu206	Val109 - Leu206		Tyr106 –Ile199	
Arg105 – Leu236				Tyr106 - Val203	

second NECA-A1R and dNECA-A1R trajectory.

Table S6. The networks in the intracellular sides of the P_1 and P_2 in the GaMD simulation of the

	NECA-A ₁ R			dNECA-A ₁ R	
	P ₁	P ₂	P ₁]	P ₂
Ala102 – Ile199	Arg108 – Glu229	Ala102 – Ile199	Ala102 – Ile199	Leu99 - Met196	Tyr106 – Ile199
Ala102 – Tyr200	Val109 – Leu206	Val103 – Ile199	Val103 – Ile199	Ala102 - Met196	Tyr106 – Glu202
Val103 – Ile199	Val109 – Ile207	Ala102 – Met196	Tyr106 –Ile199	Ala102 – Ile199	Tyr106 – Val203
Arg105 - Val203	Lys110 - Leu206			Ala102 – Tyr200	Arg108 – Glu225
Tyr106 –Ile199				Val103 – Ile199	Val109 - Ile207
Tyr106 – Glu202				Arg105 – Tyr200	Arg108 – Glu229
Tyr106 – Val203				Arg105 - Val203	Val109 – Glu229
Tyr106– Leu206				Arg105 – Glu229	Lys110 – Leu206

third NECA-A1R and dNECA-A1R trajectory.

Table S7. Averaged values and standard deviations of the distances between COMs of P_1 and P_2 in

	apo-A ₁ R (Å)		NECA-A ₁ R (Å)		dNECA-A ₁ R (Å)	
	Average	SD	Average	SD	Average	SD
P ₁ -P ₂ distance	33.3	0.2	35.2	0.7	35.5	0.3

the apo-A₁R, NECA-A₁R, and dNECA-A₁R systems over the three parallel GaMD trajectories.