Supplementary Information

Molecule-level graphdiyne coordinated transition metals as new class of

bifunctional electrocatalysts for oxygen reduction and oxygen electrode reactions

Zhen Feng, ^{a b} Renyi Li, ^a Yaqiang Ma, ^{*a} Yi Li ^a, Dong Wei, ^a Yanan Tang ^{*c} and Xianqi Dai ^{*a}

^a College of Physics, Henan Normal University, Xinxiang, Henan 453007, China

^b College of Materials Science and Engineering, Henan Institute of Technology, Xinxiang, Henan 453000, China

^c Quantum Materials Research Center, College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China

^a College of Physics, Henan Normal University, Xinxiang, Henan 453007, China. E-mail: xqdai@htu.cn (X. Dai), mayaqiang@htu.edu.cn (Y. Ma).

^b College of Materials Science and Engineering, Henan Institute of Technology, Xinxiang, Henan 453000, China ^c Quantum Materials Research Center, College of Physics and Electronic Engineering, Zhengzhou Normal

University, Zhengzhou 450044, China. E-mail: yntang2010@163.com (Y. Tang).

Supplementary Figures

Fig. S1. Optimized stable geometries of TM@GDY and adsorption configurations of oxygenated intermediates on the surface of various TM@GDY sheets. The brown, red, and white balls represent C, O, and H atoms, respectively.

The captured Ge atom is located above the surface of GDY and is out of the GDY plane with a distance of 2.46 Å, when the Ge@GDY captures the OOH, O and OH. Thus, we take no account of Ge@GDY in the following ORR and OER calculations.

Fig. S2. The total density of states of TM@GDY systems.

The DOS of the considered TM@GDY systems shows that the Ni@GDY, Pd@GDY and Pt@GDY monolayers exhibit semiconductor, the Fe@GDY and Co@GDY monolayers exhibit half-metal character, and other TM@GDY systems exhibit metal character.

Supplementary Tables

Systems	Species	*0	*O ₂	*OH	*OOH	O_2	H_{2}	H_2O
Mn@GDV	ΔZPE	0.09	0.14	0.34	0.39	0.10	0.27	0.56
MII(@GD I	$T\Delta S$	0.03	0.16	0.09	0.21	0.64	0.41	0.67
NECOV	ΔZPE	0.09	0.14	0.14 0.34 0.39 0.16 0.09 0.21 0.14 0.35 0.40	0.40	0.10	0.27	0.56
MUCDY	$T\Delta S$	0.03	0.15	0.09	0.21	0.64	0.41	0.67

Table S1 Zero point energy (*ZPE*) corrections and entropic contributions (at 298.15 K) to the free energies on TM@GDY systems.

Table S2 Binding energy (E_b) of TM atom and GDY, cohesive energy of bulk metal (E_{coh}) , energy difference (ΔE_b) between binding energy (E_b) and cohesive energy (E_{coh}) , total magnetic moments (M_{tot}) and the amounts of charge (ΔQ) transmitted from the TM atoms to the GDY monolayers ('-' means losing electrons) of TM @ GDY structure.

Systems	Sc@GDY	Ti@GDY	V@GDY	Cr@GDY	Mn@GDY
E _b (eV)	6.49	6.39	5.33	3.92	4.11
$E_{\rm coh}({\rm eV})$	4.19	5.46	5.37	4.01	3.86
$\Delta E_{\rm b}({\rm eV})$	2.30	0.93	-0.04	-0.08	0.25
$\Delta Q(\mathbf{e})$	+1.43	+1.28	+1.04	+0.89	+0.83
$M_{\rm tot}(\mu_{\rm B})$	0	1.15	2.55	3.64	3.54
Systems	Fe@GDY	Co@GDY	Ni@GDY	Cu@GDY	Zn@GDY
$E_{\rm b}({\rm eV})$	5.02	5.56	6.75	3.80	0.92
$E_{\rm coh}({\rm eV})$	4.78	5.36	4.90	3.51	1.12
$\Delta E_{\rm b}({\rm eV})$	0.24	0.20	1.85	0.29	-0.20
$\Delta Q(\mathbf{e})$	+0.50	+0.61	+0.49	+0.47	-
$M_{\rm tot}(\mu_{\rm B})$	2	1	0	0	0
Systems	Ga@GDY	Ge@GDY	Pd@GDY	Pt@GDY	-
$E_{\rm b}({\rm eV})$	3.64	3.81	4.42	4.98	-
$E_{\rm coh}({\rm eV})$	2.31	3.73	3.74	4.86	-
$\Delta E_{\rm b}({\rm eV})$	1.33	0.08	0.68	0.12	-
$\Delta Q(\mathbf{e})$	+0.67	-	+0.71	+0.11	-
$M_{\rm tot}(\mu_{\rm B})$	0	0	0	0	-

Systems	$\Delta G^{*}OOH(eV)$	$\Delta G^*O(eV)$	$\Delta G^{*}OH(eV)$
Sc@GDY	0.26	-1.70	-1.91
Ti@GDY	-0.30	-2.91	-2.35
V@GDY	-0.49	-2.77	-2.68
Cr@GDY	0.10	-2.05	-1.38
Mn@GDY	0.77	-1.70	-1.02
Fe@GDY	0.65	-1.10	-0.83
Co@GDY	1.64	-0.22	-0.57
Ni@GDY	1.52	0.21	0.01
Cu@GDY	1.23	1.02	-0.50
Ga@GDY	1.66	1.38	-0.27
Pd@GDY	2.11	1.76	0.69
Pt@GDY	1.81	1.15	0.21

Table S3 Gibbs adsorption free energy values (eV) of key oxygenated intermediates

 involved in the ORR on TM@GDY structures.

Table S4 Onset overpotentials of OER and ORR, *d*-band center for TM@GDY structures.

Systems	$\eta^{ m ORR}$ (V)	$\eta^{ m OER}\left({ m V} ight)$	<i>d</i> -band (eV)
Sc@GDY	2.14	-1.28	1.33
Ti@GDY	2.58	-1.94	0.58
V@GDY	2.32	-1.64	0.70
Cr@GDY	1.62	-1.47	0.60
Mn@GDY	1.25	-1.86	-0.50
Fe@GDY	1.07	-1.07	-0.60
Co@GDY	0.81	-0.60	-1.20
Ni@GDY	0.23	-0.63	-0.90
Cu@GDY	0.73	-0.84	-3.60
Ga@GDY	0.51	-0.98	-0.27
Pd@GDY	0.53	-0.39	-0.75
Pt@GDY	0.23	-0.27	-2.17

Supplementary note

*

Note S1

According to the developed theories for metal or other catalyst surfaces, the ORR electrocatalytic activity descriptors of a given catalyst are governed by the adsorption free energies of ORR intermediates including OOH*, O*, and OH*. The Gibbs adsorption free energy values of the different oxygenated intermediates (ΔG_{*O2} , ΔG_{*OOH} , ΔG_{*O} , and ΔG_{*OH}) are calculated as the following four reactions, respectively.

$$*+3OH^{-} \leftrightarrow *OOH+H_2O \quad \Delta G_{OOH} = G_{*OOH} + G_{H2O} - G^{*} - 3G_{OH} - (1)$$

$$+2OH \leftrightarrow *O+H_2O \qquad \Delta G_{O*} = G_{*O} + G_{H2O} - G^{*} - 2G_{OH}$$
⁽²⁾

*+OH⁻
$$\leftrightarrow$$
 OH $\Delta G_{\text{OH}} = G_{*\text{OH}} - G^* - G_{\text{OH}}^-$ (3)

Then, the ORR and OER reaction pathway on the strongest TM@GDY models were calculated. In alkaline media, the four electron ORR pathway could be summarized by the following elementary steps:

$$O_2^{+*+H_2O+e^-} \leftrightarrow ^{*OOH+OH^-}$$
 (SR₁)

$$*OOH+e^- \leftrightarrow *O+OH^-$$
 (SR₂)

$$*O+H_2O+e^- \leftrightarrow *OH+OH^-$$
 (SR₃)

$$*OH+e^- \leftrightarrow *+OH^-$$
 (SR₄)

where * stands for an adsorption site on catalysts.

At electrode potential U^0 , the ΔG for each step can be calculated by the following relations.

$$\Delta G_{1} = G_{*OOH} + G_{OH}^{-} - G_{O2} - G_{*} - G_{H2O} + eU^{0}$$

$$= G_{*OOH} + G_{H2O} - G^{*} - 3G_{OH}^{-} - G_{H2O} + 3G_{OH}^{-} + G_{OH} - G_{O2} - G_{H2O} + eU^{0}$$

$$= \Delta G_{OOH}^{*} - 2G_{H2O} + 4G_{OH}^{-} - G_{O2} + eU^{0}$$

$$= \Delta G_{OOH}^{*} - 4eU^{0} + eU^{0}$$

$$= \Delta G_{OOH}^{*} - 3eU^{0}$$
(4)

$$\Delta G_{2} = G_{*0} + G_{OH^{-}} - G_{*OOH} + eU^{0}$$

$$= G_{*0} + G_{H20} - G^{*} - 2G_{OH^{-}} - G_{H20} + G^{*} + 2G_{OH^{-}} + G_{OH} - G_{*OOH} + eU^{0}$$

$$= \Delta G_{O^{*}} - G_{H20} + G^{*} + 2G_{OH^{-}} + G_{OH} - (G_{*OOH} + G_{H20} - G^{*} - 3G_{OH^{-}}) + G_{H20} - G^{*} - 3G_{OH^{-}} + eU^{0}$$

$$= \Delta G_{O^{*}} - G_{H20} + G^{*} + 2G_{OH^{-}} + G_{OH} - \Delta G_{OOH^{*}} + G_{H20} - G^{*} - 3G_{OH^{-}} + eU^{0}$$

$$= \Delta G_{O^{*}} - \Delta G_{OOH^{*}} + eU^{0}$$
(5)

$$\Delta G_{3} = G_{*OH} + G_{OH} - G_{*O} - G_{H2O} + eU^{0}$$

$$= G_{*OH} - G^{*} - G_{OH} - G^{*} + G_{OH} - G_{OH} - G_{OH} - G_{H2O} - G^{*} - 2G_{OH} - G_{H2O} - G^{*} - 2G_{OH} - G_{H2O}$$

$$+ eU^{0}$$

$$= \Delta G_{OH} + G^{*} + G_{OH} - G_{OH} - \Delta G_{O} + G_{H2O} - G^{*} - 2G_{OH} - G_{H2O} + eU^{0}$$

$$= \Delta G_{OH} - \Delta G_{O} + eU^{0}$$
(6)

$$\Delta G_{4} = G_{\text{OH}^{-}} + G_{*} - G_{\text{OH}^{*}} + eU^{0}$$

= $G_{\text{OH}^{-}} + G_{*} - (G_{*\text{OH}^{-}} - G^{*} - G_{\text{OH}^{-}}) - G^{*} - G_{\text{OH}^{-}} + eU^{0}$
= $-\Delta G_{\text{OH}^{*}} + eU^{0}$ (7)

In alkaline media, the OER pathway could be summarized as,

*+OH
$$\leftrightarrow$$
*OH-+e- (SR_a)

$$*OH+OH^- \leftrightarrow *O+H_2O+e^-$$
 (SR_b)

$$*O+OH^- \leftrightarrow *OOH+e^-$$
 (SR_c)

*OOH+OH-
$$\leftrightarrow$$
 *+O₂(g)+H₂O+e- (SR_d)

where * stands for an adsorption site on catalysts.

At electrode potential U^0 , the ΔG for each step can be calculated by the following relations.

$$\Delta G_{a} = G_{OH^{*}} - eU^{0} - G_{OH^{-}} - G_{*}$$

$$= G_{*OH} - G^{*} - G_{OH^{-}} + G^{*} + G_{OH^{-}} - eU^{0} - G_{OH^{-}} - G_{*}$$

$$= \Delta G_{OH^{*}} - eU^{0}$$

$$= -\Delta G_{4}$$
(8)

$$\Delta G_{b} = G_{*0} + G_{H20} - eU^{0} - G_{*OH} + G_{OH}^{-}$$

$$= G_{*0} + G_{H20} - G^{*} - 2G_{OH}^{-} + G^{*} + 2G_{OH}^{-} - eU^{0} - (G_{*OH} - G^{*} - G_{OH}) - G^{*} - G_{OH} + G_{OH}^{-}$$

$$= \Delta G_{O*} + G^{*} + 2G_{OH}^{-} - eU^{0} - \Delta G_{OH*} - G^{*} - G_{OH}^{-} + G_{OH}^{-}$$

$$= \Delta G_{O*} - \Delta G_{OH*} - eU^{0}$$

$$= -\Delta G_{3}$$
(9)

$$\Delta G_{c} = G_{*OOH} - eU^{0} - G_{*O} - G_{OH} - G_{*OOH} - G_{*OOH} - G_{*OOH} + G_{H2O} - G^{*} - 3G_{OH} - G_{H2O} + G^{*} + 3G_{OH} - eU^{0} - (G_{*O} + G_{H2O} - G^{*} - 2G_{OH}) + G_{H2O} - G^{*} - 2G_{OH} - G_{OH} - G_{OH} - G_{OH} - G_{OH} - G_{OOH} - G_{OH} - G_{OH} - G_{OOH} - G_{OH} - G_$$

$$\Delta G_{d} = G_{*} + G_{H2O} + G_{O2} - eU^{0} - G_{*OOH} - G_{OH}^{-}$$

$$= G_{*} + G_{H2O} + G_{O2} - eU^{0} - (G_{*OOH} + G_{H2O} - G^{*} - 3G_{OH}^{-}) + G_{H2O} - G^{*} - 3G_{OH}^{-} - G_{OH}^{-}$$

$$= -\Delta G_{OOH^{*}} + 2G_{H2O} - 4G_{OH}^{-} + G_{O2} - eU^{0}$$

$$= -\Delta G_{OOH^{*}} + 4eU^{0} - eU^{0}$$

$$= -\Delta G_{OOH^{*}} + 3eU^{0}$$

$$= -\Delta G_{1}$$
(11)

The onset overpotential (η) which used to evaluate the performance of ORR and OER can be obtained as follows.

$$\eta^{\text{ORR}} = \max[\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4]/\text{e-0.22eV}$$
(12)

$$\eta^{\text{OER}} = \max[\Delta G_a, \Delta G_b, \Delta G_c, \Delta G_d]/e + 0.22 \text{eV}$$
(13)

The relationship for the Gibbs free energy and the *OOH, *O, and *OH intermediates for the different TM@GDY monolayers can be expressed as the following two reactions.

$$\Delta G_{\text{OOH}*} = 0.84 \Delta G_{\text{OH}*} + 1.67 \tag{14}$$

$$\Delta G_{\rm O*} = 1.50 \Delta G_{\rm OH*} + 0.75 \tag{15}$$

Based on the linear relationship between ΔG_{*OOH} , ΔG_{*O} and ΔG_{*OH} , the equations describing the ORR process for the dual volcano plot are therefore.

$$\eta^{\text{ORR}} = 0.84 \Delta G \text{OH}^* + 0.085 \quad \Delta \text{GOH}^* \ge 0.082 \text{ eV}$$
 (16)

$$\eta^{\text{ORR}} = -\Delta G \text{OH}^* + 0.235 \quad \Delta \text{GOH}^* \le 0.082 \text{ eV}$$
(17)

The equations describing the OER process for the dual volcano plot are therefore.

$$\eta^{\text{OER}} = 0.66 \Delta G \text{OH}^* - 0.245 \quad \Delta G \text{OH}^* \le 0.146 \text{ eV}$$
 (18)

$$\eta^{\text{OER}}$$
=-0.50 ΔGOH^* -0.075 0.146 eV $\leq \Delta GOH^* \leq 1.5$ eV (19)

$$\eta^{\text{OER}=-\Delta GOH^* + 0.675} \quad \Delta GOH^* \ge 1.5 \text{ eV}$$

$$\tag{20}$$