Size effects on rotational particle diffusion in complex fluids as probed by Magnetic Particle Nanorheology

Melissa Hess,^{ab} Eric Roeben,^a Patricia Rochels,^a Markus Zylla,^a Samira Webers,^c Heiko Wende,^c Annette M. Schmidt*^a

^a Institute of Physical Chemistry, Chemistry Department, Universität zu Köln, Luxemburger Str. 116, 50939 Köln, Germany, email: annette.schmidt@uni-koeln.de

^b Institute for Complex Systems (ICS-2), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

^c Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, D-47057 Duisburg, Germany

SI-Fig. 1. IR spectra of probe particles CF_12 (black), CF@SiO₂_29 (red) and b) CF@SiO₂_42 (green).

The IR spectrum of the CF_12 particles shows a broadened peak at \sim 3350 cm⁻¹ indicating residues of water. The CH₂ stretch band of the PAA, at 2900 cm⁻¹ is only weakly observable in a broadened band.^{1,2} At 1571 cm⁻¹ - 1407 cm⁻¹ the stretch modes of COO⁻ are clearly visible.³ For the silica coated particles, the dominant bands at 1200 cm⁻¹(Si-O-Si stretching, longitudinaloptical), 1060 cm⁻¹ (Si-O-Si stretching, transverse-optical), 951 cm⁻¹ (Si-OH stretching) and 798 cm⁻¹ (Si-O bending) are assigned to the vibration modes of silica. ^{4,5} The bands at 2359 cm⁻¹ and 2343 cm⁻¹ are connected to the asymmetric stretching mode of gas phase CO₂ from the atmosphere and are neglected.^{6,7} An important band is found close to 600 cm⁻¹ for all particle batches, belonging to the Me-O modes in ferrite nanoparticles.¹

SI-Fig. 2. ζ potential measurements in dependence on pH value for probe particles CF_12 (blue), CF@SiO₂_29 (red) and b) CF@SiO₂_42 (green). The black line is a guide to the eye.

SI-Fig. 3. ACS spectra of probe particles CF_12 (blue), CF@SiO₂_29 (red) and b) CF@SiO₂_42 (green) fitted using a single Debye relaxation process including a particle size distribution (black lines).

SI-Tab. 1. Summary of critical concentrations ϕ_{ξ} ($\xi = r_h$) and ϕ_a ($a = r_h$) for different probe particles.

Probes	ϕ_{ξ} [v%]	$\phi_{a[{\sf v}\%]}$
CF_12	4.5	21.9
CF@SiO ₂ 29	1.4	7.0
CF@SiO42	0.9	4.3

SI-Fig. 4. Loss moduli determined by macrorheology (full symbols) and nanorheology (empty symbols) in dependence on frequency *f* for PEG 4k aqueous solutions for probe particles a) CF@SiO₂_42, b) CF@SiO₂_29 and c) CF_12. The volume concentration is varied between 1.8 m% - 42.0 m% (dark red: $\phi = 1.8$ v%; red: $\phi = 4.5$ v%; orange: $\phi = 9.0$ v%; light orange: $\phi = 13.5$ v%, yellow: $\phi = 18.1$ v%, light green: $\phi = 22.8$ v%; olive green: $\phi = 27.5$ v%; turquoise: $\phi = 32.3$ v%; light blue: $\phi = 37.2$ v%; blue: $\phi = 42.0$ v%).

SI-Fig. 5. Loss moduli determined by macrorheology (full symbols) and nanorheology (empty symbols) in dependence on frequency *f* for PEG 20k aqueous solutions for probe particles a) CF@SiO₂_42, b) CF@SiO₂_29 and c) CF_12. The volume concentration is varied between 1.8 m% - 37.2 m% (dark red: $\phi = 1.8$ v%; red: $\phi = 4.5$ v%; orange: $\phi = 9.0$ v%; light orange: $\phi = 13.5$ v%, yellow: $\phi = 18.1$ v%, light green: $\phi = 22.8$ v%; olive green: $\phi = 27.5$ v%; turquoise: $\phi = 32.3$ v%; light blue: $\phi = 35.2$ v%; blue: $\phi = 37.2$ v%).

SI-Fig. 6. Loss moduli determined by macrorheology (full symbols) and nanorheology (empty symbols) in dependence on frequency *f* for PEG 35k aqueous solutions for probe particles a) CF@SiO₂_42, b) CF@SiO₂_29. The volume concentration is varied between 1.8 - 35.2 v% (dark red: $\phi = 1.8$ v%; red: $\phi = 4.5$ v%; orange: $\phi = 9.0$ v%; light orange: $\phi = 13.5$ v%, yellow: $\phi = 18.1$ v%, light green: $\phi = 22.8$ v%; olive green: $\phi = 27.5$ v%; turquoise: $\phi = 32.3$ v%; light blue: $\phi = 35.2$ v%).

SI-Fig. 7. Viscosity determined by macrorheology (full symbols) and nanorheology (empty symbols) in dependence on frequency *f* for PEG 4k aqueous solutions for probe particles a) CF@SiO₂_42, b) CF@SiO₂_29 and c) CF_12. The volume concentration is varied between 1.8 m% - 42.0 m% (dark red: $\phi = 1.8$ v%; red: $\phi = 4.5$ v%; orange: $\phi = 9.0$ v%; light orange: $\phi = 13.5$ v%, yellow: $\phi = 18.1$ v%, light green: $\phi = 22.8$ v%; olive green: $\phi = 27.5$ v%; turquoise: $\phi = 32.3$ v%; light blue: $\phi = 37.2$ v%; blue: $\phi = 42.0$ v%).

SI-Fig. 8. Viscosity determined by macrorheology (full symbols) and nanorheology (empty symbols) in dependence on frequency *f* for PEG 20k aqueous solutions for probe particles a) CF@SiO₂_42, b) CF@SiO₂_29 and c) CF_12. The volume concentration is varied between 1.8 m% - 37.2 m% (dark red: $\phi = 1.8$ v%; red: $\phi = 4.5$ v%; orange: $\phi = 9.0$ v%; light orange: $\phi = 13.5$ v%, yellow: $\phi = 18.1$ v%, light green: $\phi = 22.8$ v%; olive green: $\phi = 27.5$ v%; turquoise: $\phi = 32.3$ v%; light blue: $\phi = 35.2$ v%; blue: $\phi = 37.2$ v%).

SI-Fig. 9. Viscosity determined by macrorheology (full symbols) and nanorheology (empty symbols) in dependence on frequency f for PEG 35k aqueous solutions for probe particles a) CF@SiO₂_2, b) CF@SiO₂_1 and c) CF. The volume concentration is varied between 1.8 - 35.2 v% (dark red: $\phi = 1.8$ v%; red: $\phi = 4.5$ v%; orange: $\phi = 9.0$ v%; light orange: $\phi = 13.5$ v%, yellow: $\phi = 18.1$ v%, light green: $\phi = 22.8$ v%; olive green: $\phi = 27.5$ v%; turquoise: $\phi = 32.3$ v%; light blue: $\phi = 35.2$ v%).

SI-Fig. 10. Concentration dependence of terminal diffusion coefficient D_t of particles in entangled athermal polymer solutions normalized by their diffusion coefficient $D_s = k_B T/(n_s d)$ in pure solvent. Dashed line is for intermediate size particles (b < d < a(1)), and solid line is for large particles (d > a(1)). The crossover concentrations φ_d^{ξ} and φ_d^{a} , at which the correlation length ξ and the tube diameter a are on the order of particle size d. Dotted line corresponds to the crossover taking into account the contribution of hopping process to the particle mobility. Logarithmic scales. Reprinted with permission from L.-H. Cai, S. Panyukov and M. Rubinstein, *Macromolecules*, 2011, **44**, 7853–7863. Copyright 2011 American Chemical Society.

References

- 1 C. Cannas, A. Musinu, A. Ardu, F. Orrù, D. Peddis, M. Casu, R. Sanna, F. Angius, G. Diaz and G. Piccaluga, *Chem. Mater.*, 2010, **22**, 3353–3361.
- 2 Q. Dai, M. Lam, S. Swanson, R.-H. R. Yu, D. J. Milliron, T. Topuria, P.-O. Jubert and A. Nelson, *Langmuir*, 2010, **26**, 17546–17551.
- 3 S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang and G. Li, J. Am. Chem. Soc., 2004, 126, 273–279.
- 4 Y.-H. Lien and T.-M. Wu, J. Colloid Interface Sci., 2008, **326**, 517–521.
- 5 T. Zhang, J. Ge, Y. Hu, Q. Zhang, S. Aloni and Y. Yin, *Angew. Chemie*, 2008, **120**, 5890–5895.
- 6 P. A. Gerakines, W. A. Schutte, J. M. Greenberg and E. F. van Dishoeck, *arXiv Prepr. astro-ph/9409076*, 1994, 1–17.
- 7 J. Vercheval, C. Lippens, C. Muller, M. Ackerman, M. Lemaitre, J. Besson, A. Girard and J. Laurent, *Ann. Geophys.*, 1986, **4**, 161–164.