Supporting materials

Statistically Understanding Roles of Nanostructure Features in Interfacial Ice Nucleation for Enhancing the Icing Delay Performance

Yizhou Shen ${ }^{\text {a,* },}$, Xinyu Xie ${ }^{\text {a }}$, Yuehan Xie ${ }^{\text {a }}$, Jie $\mathrm{Tao}^{\text {a,c, }, \text {, Jiawei Jiang }}{ }^{\text {a }}$, Haifeng Chen ${ }^{\text {b }}$, Yang Lu ${ }^{\text {a }}$, Yangjiangshan Xu^{a}
${ }^{\text {a }}$ College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
${ }^{\text {b }}$ Department of Materials Chemistry, Qiuzhen School, Huzhou University, 759, East 2nd Road, Huzhou 313000, P. R. China
c Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, P. R. China

* Assoc. Professor Yizhou Shen, E-mail: shenyizhou@nuaa.edu.cn.

Professor Jie Tao, E-mail: taojie@nuaa.edu.cn.

KEYWORDS: nanostructure feature; solid-liquid interface; ice nucleation; icephobic materials

Figure S1. A self-made measurement device for the icing delay performance.

Calculated process for the ice nucleation rate

The ice nucleation behaviors of the water droplets on these sample surfaces were investigated via employing the classical nucleation theory. In this work, we describe the nucleation rate (unit: nuclei s^{-1} in a certain volume) of water droplet on cooled surface, building upon the framework developed by A. Alizadeh and B. Zobrist. ${ }^{1,2}$

$$
\begin{equation*}
J_{\text {totall }}(T)=J_{\text {bulk }}(T) V+J_{l g}(T) S_{l g}+J_{s l}(T) S_{s l} \tag{1}
\end{equation*}
$$

Where $J_{\text {total }}(T), J_{\text {bulk }}(T), J_{l g}(T)$, and $J_{s l}(T)$ are the corresponding temperature-dependent total, bulk, liquid-gas, solid-liquid interface nucleation rates, respectively. V, $S_{l g}, S_{s l}$ represent the volume of the liquid, the liquid-gas contact area, the solid-liquid contact area, respectively. Also, the $J_{\text {bulk }}(T)$ can be expressed by:

$$
\begin{equation*}
J_{b u l k}(T)=\frac{k T}{h} \exp \left[-\frac{\Delta Q_{d i f f}(T)}{k T}\right] \times n^{\prime} \exp \left[-\frac{\Delta G^{*}(T)}{k T}\right] \tag{2}
\end{equation*}
$$

Where k and h are the Boltzmann $\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$ and Planck constant $\left(6.626 \times 10^{-34} \mathrm{~J}\right.$ s). T is the absolute temperature, and n is the volume number density $\left(3.1 \times 10^{28} \mathrm{~m}^{-3}\right)$ of water molecules. The Gibbs free energy $\Delta G^{*}(T)$ and diffusion activation energy $\Delta Q_{\text {diff }}(T)$ are provided by:

$$
\begin{align*}
& \Delta G^{*}(T)=\frac{16 \pi \quad \gamma^{3} T_{m}^{2}}{3 \Delta H_{m, v}{ }^{2}\left(T_{m}-T\right)} \tag{3}\\
& \Delta Q_{d i f f}(T)=\frac{k T^{2} E}{\left(T-T_{0}\right)^{2}} \tag{4}
\end{align*}
$$

Where the E and T_{0} are the fit parameters, and the values of $T_{0}=118 \mathrm{~K}$ and $E=892 \mathrm{~K}$ have been determined via the experimental results by Smith and Kay. ${ }^{3}$

We assumed that the ice nucleation occurring at the interface of liquid-solid is only dominated by the heterogeneous nucleation. The $J_{s l}(T)$ can be given by:

$$
\begin{equation*}
J_{s l}(T)=\frac{k T}{h} \exp \left[-\frac{\Delta Q_{d i f f}(T)}{k T}\right] \times n \exp \left[-\frac{\Delta G^{*}(T) f(\theta)}{k T}\right] \tag{5}
\end{equation*}
$$

In this case, $n\left(10^{19} \mathrm{~m}^{-2}\right)$ is the number density of water molecules at the interface, and $f(\theta)$ is the wetting parameter, determined by the chemical component, ranging from 0 (complete heterogeneous nucleation) to 1 (homogeneous nucleation). $f(\theta)$ can be given by:

$$
\begin{equation*}
f(\theta)=\frac{1}{4}(2+\cos \theta)(1-\cos \theta)^{2} \tag{6}
\end{equation*}
$$

For the nucleation occurring at the interface of liquid-gas, we assumed that it was the homogeneous nucleation. As a consequence, the $J_{l g}(T)$ approximately equals to $J_{b u l k}(T)$ except the value $\left(10^{19} \mathrm{~m}^{-2}\right)$ of n. Furthermore, to calculate the actual water-solid contact area, the apparent contact area S^{*} between the water droplet and solid surface with a radius (r) can be calculated by: ${ }^{4}$

$$
\begin{gather*}
S^{*}=\pi r^{2} \tag{7}\\
r=\left[\frac{3 V}{\pi\left(2-3 \cos \theta^{*}+\cos ^{3} \theta^{*}\right)}\right]^{1 / 3} \sin \theta^{*} \tag{8}
\end{gather*}
$$

Where V is the volume of the reference water $\operatorname{droplet}\left(V=4 \mu \mathrm{~L}\right.$ in this work), θ^{*} is the WCA of the water droplet on the sample surface. The reference droplet on the superhydrophobic nanostructure surfaces well conforms to the Cassie-Baxter wetting model:

$$
\begin{equation*}
\cos \theta^{*}=r^{*} f \cos \theta+f-1 \tag{9}
\end{equation*}
$$

Where f is the fraction of the projected area of the solid surface that is wet by the liquid and r^{*} is the roughness factor of the wetting area. ${ }^{5}$ In this wetting case, the contact
interface mainly consists of the solid-liquid and solid-air interfaces. Also, the fraction (f) of the projected area of the solid surface that is wet by the liquid is very small (approximately 10\%), therefore the wetting interface can be considered to follow the Young's equation and the r^{*} is considered to be approximately equal to one. Lastly, the actual water-solid contact area can be easily calculated to be $6.934 \mathrm{~mm}^{2}$ for the flat substrate surface, $0.953 \mathrm{~mm}^{2}$ for the layered nanoporous structures, and $0.035 \mathrm{~mm}^{2}$ for the nanocone structures. Consequently, combining our experimental results about the 4 $\mu \mathrm{L}$ water droplet on the sample surfaces, we gave the ice nucleation as a function of temperature.

Reference

1. Alizadeh, A.; Yamada, M.; Li, R.; Shang, W.; Otta, S.; Zhong, S.; Ge, L.; Dhinojwala, A.; Conway, K. R.; Bahadur, V.; Vinciquerra, A. J.; Stephens, B.; Blohm, M. L. Dynamics of Ice Nucleation on Water Repellent Surfaces. Langmuir 2012, 28, 3180-3186.
2. Zobrist, B.; Koop, T.; Luo, B. P.; Marcolli, C.; Peter, T. Heterogeneous Ice Nucleation Rate Coefficient of Water Droplets Coated by a Nonadecanol Monolayer. J. Phys. Chem. C 2007, 111, 2149-2155.
3. Smith, R. S.; Kay, B. D. The Existence of Supercooled Liquid Water at 150 K. Nature 1999, 398, 788-791.
4. Hao, P.; Lv, C.; Zhang, X. Freezing of Sessile Water Droplets on Surfaces with Various Roughness and Wettability. Appl. Phys. Lett. 2014, 104, 161609.
5. Marmur, A. Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or

Not To Be? Langmuir 2003, 19, 8343-8348.

