Supplementary Material

Generalized solid strengthening rule for biocompatible Zn-based alloys, a comparison with Mg-based alloys

Yuanqi Guo^{1, 2}, Shihao Zhang^{1, 2}, Bo Wei^{1, 2}, Dominik Legut³, Timothy C. Germann⁴,

Haijun Zhang^{5, 6} and Ruifeng Zhang^{1, 2,*}

¹School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China ²Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China

³IT4Innovations Center, VSB-Technical University of Ostrava, CZ-70833 Ostrava, Czech Republic.

⁴Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ⁵National United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, China

⁶Department of Vascular & Intervention, Tenth Peoples' Hospital of Tongji University, Shanghai 200072, China

*: Correspondence and requests for materials should be addressed to R.F.Z. (e-mail: zrf@buaa.edu.cn)

Figure S1. The flow chart for the solid solution strengthening calculation. The details of PNADIS code can be refereed to our previous publication. ¹

Figure S2. The calculated γ -surface for (a) pure Mg and (b) pure Zn.

Figure S3. The influence of second neighbor SFEs on the predicted (a) $\Delta \tau_{\text{CRSS}}/c^{2/3}$ (in MPa) and (b) $\Delta E_{barrier}/c^{1/3}$ (in eV) for several Mg-based alloys.

Figure S4. The map of solute-dislocation interaction energy with respect to the atomic positions for a basal edge dislocation in (a) Mg-Al and (b) Mg-Zn.

Figure S5. A comparison between $\Delta V_{misfit} / V_0 = \varepsilon_{11}^m + \varepsilon_{22}^m + \varepsilon_{33}^m$ calculated by Tehranchi et al.² and those obtained through $3 \times \varepsilon_b$.

Figure S6. The convergence test of (a) $\varepsilon_{SFE,1}$ and (b) $\varepsilon_{SFE,2}$ for Mg-Al, Mg-Ca, Mg-Cu and Mg-Zn. (c) The number of atoms per slip plane that corresponds to N_{atom} of x-axis in Fig. (a) and (b).

Figure S7. Correlation between chemical misfit ε_{SFE} on basal (0001) plane and volume misfit ε_{b} in Mg-based alloys. The pink circle symbols indicate the values previously reported for Mg-based alloys by Yasi et al.³

Figure S8. The calculated valence charge density differences (VCDD) around I_2 stacking fault for pure Mg and Mg-based alloys. The unit of VCDD is electrons/Bohr³.

Figure S9. (a) The calculated dislocation structure and (b) the pressure field (in GPa) for an edge dislocation of pure Mg, which are obtained by PNADIS code¹.

Figure S10. The total energy change of a dislocation for Mg-Al alloy during minimization process.

Figure S11. (a) The predicted τ_{CRSS}^{M-X} versus temperature for Mg-Al alloys with different Al-concentration. The solid lines are obtained in the present work, the dot lines indicate other theoretical works^{2, 4} and the dot symbols indicate experimental values.^{5, 6} (b) The τ_{CRSS}^{M-X} versus temperature relationships for Mg-Y alloy and Mg-Dy alloy. The results of Tehranchi et al.² and experiment values⁷ are shown in dot lines and scatters.

Figure S12. The predicted τ_{CRSS} of Mg-0.89%Al alloy under several certain temperatures using different line tension values, compared with the experiment data and previous results by Tehranchi et al.² and Leyson et al.⁴

Figure S13. The guideline maps of energy barrier $\Delta E_{\text{barrier}}/c^{1/3}$ for (a) Mg-based alloys and that for (b) Zn-based alloys, and the distribution of $\Delta \tau_{\text{CRSS}}/c^{2/3}$ for (c) Mg-based and (d) Zn-based alloys.

н																	He
Li	Be	Conf. 1										F	Ne				
220.8	444.6																
1.31	3.29			0.0	00 MP	a			1800 N	4Pa							
Na	Mg	1										Al	Si	Р	s	CI	Ar
180.0				$-\Delta \tau_{c}$	$c^{2/3}$	for Mg-	-based a	alloys (I	MPa)—		\rightarrow	215.5	487.2				
2.07		←		E_{bar}	$c^{1/3}$ f	or Mg-	based a	lloys (e	V) —			1.97	2.84				
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
928.2	548.5	200.1	286.3	448.1	596.5	319.7	621.8	675.7	852.3	479.0	215.1	201.2	349.1	773.9			
3.56	1.07	2.31	3.29	3.82	2.82	3.57	4.07	4.02	3.28	2.30	1.97	2.21	2.50	5.34		_	
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pb	Ag	Cd	In	Sn	Sb	Te		Xe
1346.6	1060.7	2.03	330.0	361.1	3.82	764.5	1194.7	928.6	803.2	318.1	4.5.1	198.9	466.2	931.2			
Cs	Ba	2.95 La*	1.54 Hf	7.02 Ta	- 3.82 W	Re	0s	5.20	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
1786,6	1636,6		406,6	431,9	640,2	962,0	1282.2	1223,5	916,2	435,9	100,6	201.6	386,0	800,6			
5.70	5.58		1.54	2.93	3.99	4.35	4.60	4.62	4.27	3.20	1.45	1.13	1.81	2.39			
		-												1			
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er				
		1144.3	986.9	963.0	898.2	834.8	958.3	889.2	673.7	877.9	600.3	572.1	533.0				
	4.20 3.43 3.89 3.72 3.55 4.26 4.19 3.10 4.02 2.92										2 92	2.82	2 62	I			8
H								1142	0110	1.02	2.72		2.02	1			Не
Н			•							1.02	2.72		2.02	1			He
H Li	Be			Со	nf. 2			1122		1.02	2.72	В	С	N	0	F	He Ne
н Li 42.7	Ве 120.4		•	Со	nf. 2					1.02	2.72	В	C	N	0	F	He Ne
н Li 42.7 5.17	Be 120.4 10.99		•	Co 0.0	nf. 2	a			450 M	1Pa		В	C	N	0	F	He
H Li 42.7 5.17 Na	Be 120.4 10.99 Mg			Co 0.0	onf. 2	a			450 M	1Pa		B	C	N	O S	F	He Ne Ar
н Li 42.7 5.17 Na 48.1	Be 120.4 10.99 Mg	•		Со 0.0 	onf. 2 00 MP	a for Mg-	-based a	ılloys (1	450 M	1Pa		B Al 52.6	C Si 115.7	N P	O S	F	He Ne Ar
H Li 42.7 5.17 Na 48.1 6.88	Be 120.4 10.99 Mg	+		$\begin{array}{c} \text{Co} \\ 0.0 \\ \Box \\ - \mathcal{L}_{\text{ball}} \\ - \mathcal{L}_{\text{ball}} \end{array}$	nf. 2 00 MP mss/c ^{2/3} f	a for Mg- `or Mg-	based a	lloys (i lloys (i	450 M MPa)	1Pa	→ →	B Al 52.6 6.66	C Si 115.7 9.70	N P	O S	F	He Ne Ar
H Li 42.7 5.17 Na 48.1 6.88 K	Be 120.4 10.99 Mg Ca	K Sc	Ti	Co 0.0 \Box $\Delta \tau_{c}$ E_{baa} V	nf. 2 00 MP $\frac{c^{2/3}}{c^{1/3}}$	a for Mg- `or Mg- Mn	-based a based a Fe	lloys (illoys (e	450 M MPa)- V) - Ni	IPa Cu	Zn	B Al 52.6 6.66 Ga	C Si 115.7 9.70 Ge	N P As	O S Se	F Cl Br	He Ne Ar Kr
H Li 42.7 5.17 Na 48.1 6.88 K 247.4	Be 120.4 10.99 Mg Ca 146.3	← Sc 34.1	Ti 70.7	Co 0.0 \Box $\Delta \tau_{cc}$ E_{bar} V 120.2	onf. 2 00 MP $r_{RSS}/c^{2/3}$ f $r_{rief}/c^{1/3}$ f Cr 161.7	a for Mg- `or Mg- Mn 86.9	-based a based a Fe 158.2	illoys (i lloys (e 183.2	450 M MPa)	1Pa Cu 126.9	Zn 58.0	B Al 52.6 6.66 Ga 50.2	C Si 115.7 9.70 Ge 78.4	N P As 145.0	O S Se	F Cl Br	He Ne Ar Kr
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55	Be 120.4 10.99 Mg Ca 146.3 11.96	 Sc 34.1 4.43 	Ti 70.7 7.79	Co 0.0 $\Delta \tau_{c}$ E_{bar} V 120.2 10.92	nf. 2 00 MP $ress/c^{2/3}$ f $ress/c^{2/3}$	a for Mg- or Mg- 86.9 9.37	based a based a Fe 158.2 11.94	alloys (1 lloys (1 lloys (c 183.2 13.57	450 M MPa) V) – Ni 214.7 13.92	1Pa Cu 126.9 11.09	Zn 58.0 7.63	B Al 52.6 6.66 Ga 50.2 6.61	C Si 115.7 9.70 Ge 78.4 7.75	N P As 145.0 9.61	O S Se	F Cl Br	He Ne Ar Kr
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55 Rb	Be 120.4 10.99 Mg 200 146.3 11.96 Sr	Sc 34.1 4.43 Y	Ti 70.7 7.79 Zr	Co 0.0 \Box $\Delta \tau_{cc}$ E_{bar} V 120.2 10.92 Nb	$\frac{1}{12.74} = \frac{1}{12.74} = $	a for Mg- or Mg- Mn 86.9 9.37 Te	-based a based a Fe 158.2 11.94 Ru	lloys (i lloys (i lloys (c 183.2 13.57 Rh	450 MPa)- WPa)- V) - 214.7 13.92 Pb	Pa Cu 126.9 11.09 Ag	2.02 Zn 58.0 7.63 Cd	B Al 52.6 6.66 Ga 50.2 6.61 In	C Si 115.7 9.70 Ge 78.4 7.75 Sn	N P As 145.0 9.61 Sb	O S Se Te	F Cl Br	He Ne Ar Kr Xe
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55 Rb 350.3 18.10	Be 120.4 10.99 Mg 2094 146.3 11.96 Sr 279.4 14.28	Sc 34.1 4.43 Y 133.4 10.45	Ti 70.7 7.79 Zr 53.7	Co 0.0 $-\Delta \tau_{cc}$ E_{bar} V 120.2 10.92 Nb 93.9 0.20	$\frac{1}{12.74} = \frac{1}{12.74} = $	a for Mg- or Mg- 86.9 9.37 Te 171.8	-based a based a Fe 158.2 11.94 Ru 286.9	alloys (i lloys (i lloys (c 183.2 13.57 Rh 203.7	450 M MPa) V) Ni 214.7 13.92 Pb 197.9	1Pa 1Pa 126.9 11.09 Ag 80.7 8.57	Zn 58.0 7.63 Cd 11.4	B Al 52.6 6.66 Ga 50.2 6.61 In 32.1 4.24	C Si 115.7 9.70 Ge 78.4 7.75 Sn 75.3 (50)	N P As 145.0 9.61 50.1 150.1	O S Se Te	F Cl Br	He Ne Ar Kr Xe
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55 Rb 350.3 18.19 Cs	Be 120.4 10.99 Mg Ca 146.3 11.96 Sr 279.4 16.38 Ba	 Se 34.1 4.43 Y 133.4 10.45 La* 	Ti 70.7 7.79 Zr 53.7 5.52 Hf	Co 0.0 $\Delta \tau_{c}$ E_{bar} 120.2 10.92 Nb 93.9 9.39 Ta	onf. 2 00 MP $\frac{1}{10000000000000000000000000000000000$	a for Mg- or Mg- 9.37 Te 171.8 11.29 Re	-based a based a Fe 158.2 11.94 Ru 286.9 15.47 Os	ulloys (i lloys (i lloys (c 183.2 13.57 Rh 203.7 12.07	450 M MPa) V) Ni 214.7 13.92 Pb 197.9 13.13 Pt	1Pa Cu 126.9 11.09 Ag 80.7 8.57 Au	Zn 58.0 7.63 Cd 11.4 3.31 He	B Al 52.6 6.66 Ga 50.2 6.61 In 32.1 4.24 TI	C Si 115.7 9.70 Ge 78.4 7.75 Sn 75.3 6.50 Ph	N P As 145.0 9.61 50.1 9.18 8i 8i	O S Se Te	F Cl Br I	He Ne Ne Kr Kr Kr
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55 Rb 350.3 18.19 Cs	Be 120.4 10.99 Mg 146.3 11.96 Sr 279.4 16.38 Ba 412 9	Sc 34.1 4.43 Y 133.4 10.45 La*	Ti 70.7 7.79 Zr 53.7 5.52 Hf 67 9	Co 0.0 E_{bar} E_{bar} 120.2 10.92 Nb 93.9 7a 108.8	nf. 2 00 MP mss/c ^{2/3} f rrier/c ^{1/3} f 161.7 12.74 Mo 162.8 12.76 W	a for Mg- or Mg- Mn 86.9 9.37 Te 171.8 11.29 Re 244 9	-based a based a Fe 158.2 11.94 Ru 286.9 15.47 Os 310.9	ulloys (i lloys (c 183.2 13.57 Rh 203.7 12.07 Ir 301 1	450 M MPa) V) Ni 214.7 13.92 Pb 13.13 Pt 234 2	1Pa 126.9 11.09 Ag 80.7 Au 116.8	Zn 58.0 7.63 Cd 11.4 3.31 Hg 25.8	B Al 52.6 6.66 Ga 50.2 6.61 In 32.1 4.24 TI 35.9	C Si 115.7 9.70 Ge 78.4 7.75 Sn 75.3 6.50 Pb 76.9	N P 145.0 9.61 50.1 9.18 Bi 149.8	O S Se Te Po	F Cl Br I At	He Ne Ar Kr Kr Rn
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55 Rb 350.3 18.19 Cs 445.0 19.86	Be 120.4 10.99 Mg 146.3 11.96 Sr 279.4 16.38 Ba 412.9 19.32	Sc 34.1 4.43 Y 133.4 10.45 La*	Ti 70.7 7.79 Zr 5.52 Hf 67.9 6.27	Co 0.0 $\Delta \tau_{c_{c}}$ E_{bar} V 120.2 Nb 93.9 9.39 Ta 108.8 9.81	nf. 2 00 MP (RSS/C ^{2/3} f (Cr 161.7 12.74 Mo 162.8 12.76 W 174.0 13.26	a for Mg- or Mg- <u>Mn</u> 86.9 9.37 Te 171.8 11.29 Re 244.9 14.98	based a based a Fe 158.2 11.94 Ru 286.9 15.47 Os 310.9 16.24	alloys (i lloys (i lloys (c 183.2 13.57 Rh 203.7 12.07 Ir 301.1 16.18	450 M MPa) V) Ni 214.7 13.92 Pb 197.9 13.13 Pt 234.2 14.69	Cu 126.9 11.09 Ag 80.7 8.57 Au 116.8 10.73	Zn 58.0 7.63 Cd 11.4 3.31 Hg 25.8 4.84	B Al 52.6 6.66 Ga 50.2 6.61 In 32.1 4.24 TI 35.9 4.60	C Si 115.7 9.70 Ge 78.4 7.75 Sn 75.3 6.50 Pb 76.9 7.02	N P As 145.0 9.61 50.1 9.18 Bi 149.8 9.55	O S Se Te Po	F Cl Br I At	He Ne Ar Kr Xe Rn
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55 Rb 350.3 18.19 Cs 445.0 19.86	Be 120.4 10.99 Mg 200 146.3 11.96 Sr 279.4 16.38 Ba 412.9 19.32	Sc 34.1 4.43 Y 133.4 10.45 La*	Ti 70.7 7.79 Zr 5.3.7 5.52 Hf 67.9 6.27	Co 0.0 $\Delta \tau_{c}$ E_{bar} 120.2 10.92 Nb 93.9 9.39 Ta 108.8 9.81	nf. 2 00 MP _{RSS} /c ^{2/3} f rier/c ^{1/3} f 161.7 12.74 Mo 162.8 12.76 W 174.0 13.26	a for Mg- or Mg- 9.37 Te 171.8 11.29 Re 244.9 14.98	based a based a Fe 158.2 11.94 Ru 286.9 15.47 Os 310.9 16.24	lloys (i lloys (i lloys (e 183.2 13.57 Rh 203.7 12.07 Ir 301.1 16.18	450 N MPa)	Cu 126.9 11.09 Ag 80.7 8.57 Au 116.8 10.73	> 2.02 Zn 58.0 7.63 Cd 11.4 3.31 Hg 25.8 4.84	B Al 52.6 6.66 Ga 50.2 6.61 In 32.1 4.24 T1 35.9 4.60	C Si 115.7 9.70 Ge 78.4 7.75 Sn 75.3 6.50 Pb 76.9 7.02	N P As 145.0 9.61 Sb 150.1 9.18 Bi 149.8 9.55	O S Se Te Po	F Cl Br I At	He Ne Ar Kr Xe Rn
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55 Rb 350.3 18.19 Cs 445.0 19.86	Be 120.4 10.99 Mg Ca 146.3 11.96 Sr 279.4 16.38 Ba 412.9 19.32	Sc 34.1 4.43 Y 133.4 10.45 La*	Ti 70.7 7.79 Zr 5.52 Hf 67.9 6.27 Ce	Co 0.0 $\Delta \tau_{c}$ E_{bar} V 120.2 10.92 Nb 93.9 9.39 Ta 108.8 9.81 Pr	nf. 2 00 MP $c^{2/3}$ f $c^{2/3}$ f $c^{1/3}$ f $c^$	a for Mg- or Mg- 9.37 Te 171.8 11.29 Re 244.9 14.98 Pm	based a based a Fe 158.2 11.94 Ru 286.9 15.47 Os 310.9 16.24 Sm	lloys (lloys (Co 183.2 13.57 Rh 203.7 12.07 Ir 301.1 16.18 Eu	450 N MPa)- V) Ni 214.7 13.92 Pb 197.9 13.13 Pt 234.2 14.69 Ga	Cu 126.9 11.09 Ag 80.7 8.57 Au 116.8 10.73	2.02 Zn 58.0 7.63 Cd 11.4 3.31 Hg 25.8 4.84 Dy	B Al 52.6 6.66 Ga 50.2 6.61 In 32.1 4.24 TI 35.9 4.60 Ho	C Si 115.7 9.70 Ge 78.4 7.75 Sn 75.3 6.50 Pb 76.9 7.02 Er	N P As 145.0 9.61 Sb 150.1 9.18 Bi 149.8 9.55	O S Se Te Po	F Cl Br I At	He Ne Ar Ar Kr Kr Rn
H Li 42.7 5.17 Na 48.1 6.88 K 247.4 15.55 Rb 350.3 18.19 Cs 445.0 19.86	Be 120.4 10.99 Mg 146.3 11.96 Sr 279.4 16.38 Ba 412.9 19.32	Sc 34.1 4.43 Y 133.4 10.45 La* La 272.3	Ti 70.7 7.79 Zr 5.52 Hf 67.9 6.27 Ce 219.1	Co 0.0 $\Delta \tau_{cc}$ E_{bar} V 120.2 10.92 Nb 93.9 9.39 Ta 108.8 9.81 Pr 230.3	nf. 2 00 MP mss/c ²³ rrier/c ^{1/3} f Cr 161.7 12.74 Mo 162.8 12.76 W 174.0 13.26 Nd 213.7	a for Mg- or Mg- 86.9 9.37 Te 171.8 11.29 Re 244.9 14.98 Pm 197.5	based a based a Fe 158.2 11.94 Ru 286.9 15.47 Os 310.9 16.24 Sm 241.3	alloys (i lloys (i lloys (e Co 183.2 13.57 Rb 203.7 12.07 Ir 301.1 16.18 Eu 226.7	450 N MPa) V) Ni 214.7 13.92 Pb 197.9 13.13 Pt 234.2 14.69 Gd 157.1	Pa Cu 126.9 11.09 Ag 80.7 8.57 Au 116.8 10.73 Tb 215.6	2.02 Zn 58.0 7.63 Cd 11.4 3.31 Hg 25.8 4.84 Dy 139.7	B Al 52.6 6.66 Ga 50.2 6.61 In 32.1 4.24 Tl 35.9 4.60 Ho 132.5	C Si 115.7 9.70 Ge 78.4 7.75 Sn 75.3 6.50 Pb 76.9 7.02 Er 120.9	N P As 145.0 9.61 Sb 150.1 9.18 Bi 149.8 9.55	O S Se Te Po	F Cl Br I At	He Ne Ar Ar Ar

Figure S14. The calculated $\Delta \tau_{\text{CRSS}}/c^{2/3}$ and $\Delta E_{\text{barrier}}/c^{1/3}$ of an edge dislocation for Mgbased alloys under two configurations, i.e. Conf. 1 and 2. The darker colors mean the better strengthening effect, and lighter colors for the weaker strengthening effect.

Figure S15. Guideline maps for characteristic bow-out distance vs. the misfit parameters ε_{b} and ε_{SFE} for (a) Zn and (b) Mg.

Table S1. The calculated elastic constants C_{ij} , the derived Hill average bulk moduli B_H , shear moduli G_H and Young's moduli E_H (all in GPa), and the Poisson ratio v_H of pure Zn and Mg, which are used as the input parameters in the semidiscrete variational P-N model and solid solution strengthening model. Some data from experiments are also listed for comparison.

Material	Source	C_{II}	C_{12}	C_{13}	<i>C</i> ₃₃	C_{44}	B_H	G_H	E_H	v_H
	This work	164.4	45.2	49.8	53.3	37.5	63.9	37.1	93.2	0.257
	Exp. ⁸	160.8	43.1	43.7	54.2	40.0	61.7	39.5	97.7	0.236
hcp Zn	Exp. ⁹	163.7	36.4	53.0	63.5	38.8	68.3	39.6	99.6	0.257
	Exp. ¹⁰	179.1	37.5	55.4	68.8	45.95				
	Cal. 11	156	56	44	68	42				
	This work	68.1	23.7	18.9	70.4	21.0	36.6	22.5	55.9	0.245
han Ma	Exp. ¹²	59.5	26.12	21.8	61.55	16.35	35.55	17.21	44.45	0.292
ncp Mg	Cal. 13	69.12	21.84	20.01	70.84	16.37	36.98	20.70	52.34	0.264
	Cal. 14	63.1	22.2	22.7	66.3	22.6	36.4	21.5	53.8	0.254

		t symbol, and		the spin-polar	
	ε_{b}	$arepsilon_{ ext{SFE}}$		ε _b	$arepsilon_{ ext{SFE}}$
Ag	-0.161	1.735	Nb_pv	-0.188	-1.169
Al	-0.110	-1.267	Nd_3*	0.296	-4.484
As	-0.138	-4.479	Ni*	-0.326	3.735
Au	-0.231	1.377	Os	-0.408	5.654
Ba_sv	0.538	-6.067	Pb_d	0.104	-2.697
Be	-0.236	0.976	Pd*	-0.298	3.825
Bi_d	0.135	-4.739	Pm_3	0.278	-4.275
Ca	0.268	-1.793	Pr_3*	0.317	-4.678
Cd*	-0.043	-0.180	Pt	-0.356	3.717
Ce*	0.269	-5.215	Rb_sv	0.498	-4.499
Co*	-0.329	1.204	Re	-0.373	3.928
Cr	-0.304	1.147	Rh*	-0.253	5.015
Cs_sv	0.563	-6.774	Ru*	-0.377	5.463
Cu	-0.237	1.768	Sb	0.033	-5.413
Dy_3	0.207	-3.425	Sc	0.032	-1.704
Er_3	0.184	-3.220	Si	-0.188	-2.536
Eu_3	0.346	-3.684	Sm_3	0.363	-4.093
Fe*	-0.270	-2.239	Sn_d	0.022	-3.220
Ga_d	-0.114	-1.097	Sr_sv	0.433	-3.411
Gd_3	0.233	-3.723	Ta_pv	-0.203	-1.841
Ge_d	-0.132	-2.183	Tb_3	-0.320	-3.563
Hf_pv	-0.042	-2.875	Tc_pv	-0.233	4.265
Hg	-0.072	-0.545	Ti	-0.138	-1.502
Ho_3	0.195	-3.317	Tl_d	0.043	-1.701
In_d	0.009	-1.700	V	-0.242	-0.536
Ir*	-0.411	5.270	W_pv	-0.317	0.677
Κ	0.398	-2.675	Y_sv	0.212	-3.159
La*	0.363	-5.374	Zn	-0.141	-0.162
Li_sv	-0.056	1.789	Zr_sv	-0.018	-2.472
Mn*	-0.185	0.427			
Mo_pv	-0.295	1.340			
Na_pv	0.116	0.355			

Table S2. Calculated ε_b (volume misfit) and ε_{SFE} (chemical misfit) for 61 kinds of Mg-based alloys. The detailed PAW–GGA potential for each element (pv, sv, d, etc.)

	ε_{b}	$arepsilon_{ ext{SFE}}$		ε_{b}	$arepsilon_{ ext{SFE}}$
Ag	0.117	-0.582	Na_pv	0.250	-1.208
Al	0.055	-1.872	Nb_pv	0.273	-2.226
As	0.219	-4.402	Nd_3*	0.803	-6.942
Au	0.127	-0.806	Ni*	-0.141	-0.654
Ba_sv	1.096	-11.194	Os	0.004	-0.598
Be	-0.167	0.603	Pb_d	0.601	-9.792
Bi_d	0.711	-3.375	Pd*	0.010	-0.844
Ca	0.566	-2.818	Pm_3	0.766	-8.283
Cd*	0.239	-0.438	Pr_3*	0.844	-6.436
Ce*	0.977	-10.113	Pt	0.016	-1.143
Co*	-0.161	-0.896	Rb_sv	0.844	-15.494
Cr	-0.008	-1.537	Re	0.096	-0.361
Cs_sv	1.077	-6.045	Rh*	-0.040	-0.963
Cu	-0.087	0.338	Ru*	-0.012	-0.691
Oy_3	0.638	-5.935	Sb	0.528	-6.786
Er_3	0.597	-5.851	Sc	0.336	-6.224
Eu_3	0.580	-0.264	Si	0.057	-3.993
Fe*	-0.135	-1.933	Sm_3	0.740	-8.411
Ga_d	0.098	-1.950	Sn_d	0.443	-6.960
Gd_3	0.683	-10.819	Sr_sv	0.832	-12.978
Ge_d	0.164	-3.610	Ta_pv	0.274	-2.678
Hf_pv	0.380	-5.977	Tb_3	0.660	-7.888
Hg	0.300	-0.723	Tc_pv	0.072	-0.509
Ho_3	0.618	-6.247	Ti	0.155	-2.871
[n_d	0.340	-1.974	Tl_d	0.465	0.241
r*	-0.034	-0.877	V	0.058	-2.472
K	0.698	-2.519	W_pv	0.199	-1.402
_a*	1.103	-13.737	Y_sv	0.649	-5.880
_i_sv	-0.019	-0.210	Zr_sv	0.414	-7.494
Mg	0.159	-0.427			
Mn*	-0.019	-2.285			
Mo pv	0.176	-0.877			

Table S3. Calculated ε_b (volume misfit) and ε_{SFE} (chemical misfit) for 61 kinds of Znbased alloys. The detailed PAW–GGA potential for each element (pv, sv, d, etc.) are

$\Delta i_{CRSS} c$ (in with a) are listed as well, which are consistent with previous studies.							
	$arepsilon_{ m b}$ $arepsilon_{ m SFE}$		Con	f. 1	Con		
			$\Delta E_{\rm barrier}/c^{1/3}$	$\Delta \tau_{ m CRSS}/c^{2/3}$	$\Delta E_{\mathrm{barrier}}/c^{1/3}$	$\Delta \tau_{ m CRSS}/c^{2/3}$	-
Mg-Al	-0.110	-1.267	1.97	215.5	6.66	52.6	This work
			1.92	224.4	6.07	63.0	Ref. ⁴
			1.94	302.2	6.37	65.8	Ref. ²
	-0.11	-1.25					Ref. ³
Mg-Y	0.212	-3.159	2.93	561.7	10.45	133.4	This work
			2.62	575.1	8.47	135.2	Ref. ²
			1.5155	381	5.006	89	Ref. 15
	0.21	-1.70					Ref. ³
Mg-Dy	0.21	-3.42	2.9159	600.3	10.50	139.7	This work
			2.65	567.9	8.44	132.9	Ref. ²
Mg-Zn	-0.14	-0.16	2.30	215.1	7.63	58.0	This work
			2.23	400.8	7.69	84.6	Ref. ²
	-0.153	0.32					Ref. ³
Mg-Gd	0.23	-3.72	3.10	673.7	11.15	157.1	This work
			2.68	656.0	9.06	154.5	Ref. ²

 $\Delta \tau_{CRSS}/c^{2/3}$ (in MPa) are listed as well, which are consistent with previous studies.

Table S4. Misfit parameters ε_{b} and ε_{SFE} for several alloys compared with other first

principle calculations. The calculated energy barrier $\Delta E_{\text{barrier}}/c^{1/3}$ (in eV) and

(Note that the original data in Ref. 2 didn't contain the line tension, and data listed in Table S4 is obtained by the original data in Ref. 2 and our line tension 0.48 eV/Å for Mg-based alloys.)

		Conf. 1		Conf. 2				Conf. 1				Conf. 2		
	W _{c1}	$\Delta E_{barrier}/c^{1/3}$	$\Delta \tau_{ m CRSS}/c^{2/3}$	Wc2	$\Delta E_{barrier}/c^{1/3}$	$\Delta \tau_{ m CRSS}/c^{2/3}$		W _{c1}	$\Delta E_{barrier}/c^{1/3}$	$\Delta \tau_{ m CRSS}/c^{2/3}$	Wc2	$\Delta E_{barrier}/c^{1/3}$	$\Delta \tau_{ m CRSS}/c^{2/3}$	
Mg-Ag	11.08	2.48	318.1	39.96	8.57	80.7	Mg-Nb	11.56	2.82	361.1	40.36	9.39	93.9	
Mg-Al	10.81	1.97	215.5	38.94	6.66	52.6	Mg-Nd	10.25	3.72	898.2	38.60	13.24	213.7	
Mg-As	8.26	2.50	773.9	35.47	9.61	145.0	Mg-Ni	10.99	4.02	852.3	39.83	13.92	214.7	
Mg-Au	11.80	3.20	435.9	41.03	10.73	116.8	Mg-Os	10.50	4.60	1282.2	39.02	16.24	310.9	
Mg-Ba	11.01	5.58	1636.6	39.86	19.32	412.9	Mg-Pb	8.40	1.81	386.0	35.56	7.02	76.9	
Mg-Be	11.95	3.29	444.6	41.26	10.99	120.4	Mg-Pd	10.71	3.75	803.2	39.38	13.13	197.9	
Mg-Bi	7.94	2.39	800.6	34.95	9.55	149.8	Mg-Pm	10.18	3.55	834.8	38.47	12.67	197.5	
Mg-Ca	11.73	3.56	548.5	40.92	11.96	146.3	Mg-Pr	10.32	3.89	963.0	38.71	13.81	230.3	
Mg-Cd	11.73	1.00	43.1	40.74	3.31	11.4	Mg-Pt	11.18	4.27	916.2	40.11	14.69	234.2	
Mg-Ce	9.42	3.43	986.9	37.10	12.63	219.1	Mg-Rb	11.40	5.34	1346.6	40.44	18.19	350.3	
Mg-Co	11.98	4.07	675.7	41.30	13.57	183.2	Mg-Re	11.12	4.35	962.0	40.03	14.98	244.9	
Mg-Cr	11.97	3.82	596.5	41.28	12.74	161.7	Mg-Rh	9.29	3.26	928.6	36.88	12.07	203.7	
Mg-Cs	10.84	5.70	1786.6	39.60	19.86	445.0	Mg-Ru	10.37	4.36	1194.7	38.81	15.47	286.9	
Mg-Cu	11.64	3.28	479.0	40.79	11.09	126.9	Mg-Sb	7.13	2.19	931.2	34.00	9.18	150.1	
Mg-Dy	9.97	2.92	600.3	38.10	10.50	139.7	Mg-Sc	7.39	1.07	200.1	34.28	4.43	34.1	
Mg-Er	9.67	2.62	533.0	37.54	9.55	120.9	Mg-Si	10.51	2.84	487.2	38.48	9.70	115.7	
Mg-Eu	11.14	4.19	889.2	40.06	14.42	226.7	Mg-Sm	10.99	4.26	958.3	39.82	14.75	241.3	
Mg-Fe	11.29	3.57	621.8	39.81	11.94	158.2	Mg-Sn	7.13	1.55	466.2	34.00	6.50	75.3	
Mg-Ga	11.05	1.97	201.2	39.35	6.61	50.2	Mg-Sr	11.56	4.84	1060.7	40.68	16.38	279.4	
Mg-Gd	10.00	3.10	673.7	38.14	11.15	157.1	Mg-Ta	11.17	2.93	431.9	39.57	9.81	108.8	
Mg-Ge	9.93	2.21	349.1	37.71	7.75	78.4	Mg-Tb	10.88	4.02	877.9	39.05	13.54	215.6	
Mg-Hf	7.42	1.54	406.6	34.35	6.27	67.9	Mg-Tc	9.55	3.08	764.5	37.33	11.29	171.8	
Mg-Hg	11.37	1.45	100.6	39.97	4.84	25.8	Mg-Ti	10.94	2.31	286.3	39.16	7.79	70.7	
Mg-Ho	9.91	2.82	572.1	37.99	10.18	132.5	Mg-Tl	7.63	1.13	201.6	34.56	4.60	35.9	
Mg-In	7.13	1.01	198.9	34.00	4.24	32.1	Mg-V	11.91	3.29	448.1	41.12	10.92	120.2	
Mg-Ir	10.69	4.62	1223.5	39.35	16.18	301.1	Mg-W	12.02	3.99	640.2	41.38	13.26	174.0	
Mg-K	11.72	4.62	928.2	40.91	15.55	247.4	Mg-Y	10.23	2.93	561.7	38.56	10.45	133.4	
Mg-La	10.26	4.20	1144.3	38.60	14.95	272.3	Mg-Zn	11.97	2.30	215.1	41.25	7.63	58.0	
Mg-Li	8.17	1.31	220.8	35.26	5.17	42.7	Mg-Zr	7.25	1.34	330.0	34.14	5.52	53.7	
Mg-Mn	12.02	2.82	319.7	41.37	9.37	86.9								
Mg-Mo	11.93	3.82	602.2	41.22	12.76	162.8								
Mg-Na	11.87	2.07	180.0	41.03	6.88	48.1								

Table S5. Calculated w_c (in Å), $\Delta E_{barrier}/c^{1/3}$ (in eV) and $\Delta \tau_{CRSS}/c^{2/3}$ (in MPa) for 61

solutes in Conf. 1 and Conf. 2 of Mg-based alloys.

	W _c	$\Delta E_{barrier}/c^{1/3}$	$\Delta \tau_{ m CRSS}/c^{2/3}$		Wc	$\Delta E_{barrier}/c^{1/3}$	$\Delta \tau_{ m CRSS}/c^{2/3}$
Zn-Ag	25.29	6.12	157.2	Zn-Na	25.32	10.15	431.7
Zn-Al	18.91	4.08	167.0	Zn-Nb	24.46	10.62	524.5
Zn-As	20.69	9.07	630.8	Zn-Nd	24.31	21.80	2249.6
Zn-Au	24.98	6.44	181.0	Zn-Ni	25.09	6.90	204.7
Zn-Ba	23.77	26.63	3589.6	Zn-Os	17.70	1.63	32.5
Zn-Be	25.52	7.77	247.0	Zn-Pb	21.68	17.58	2062.9
Zn-Bi	25.33	20.38	1736.0	Zn-Pd	17.85	2.09	52.0
Zn-Ca	25.29	17.50	1286.4	Zn-Pm	23.56	20.93	2277.5
Zn-Cd	25.69	9.90	392.5	Zn-Pr	24.62	22.63	2330.8
Zn-Ce	23.72	24.65	3094.3	Zn-Pt	17.93	2.58	78.5
Zn-Co	24.86	7.52	250.5	Zn-Rb	21.10	22.13	3543.0
Zn-Cr	17.66	3.05	114.9	Zn-Re	25.50	5.37	118.3
Zn-Cs	25.15	26.81	3068.9	Zn-Rh	19.78	3.02	80.3
Zn-Cu	25.48	5.03	103.8	Zn-Ru	18.11	1.92	42.0
Zn-Dy	24.09	18.65	1691.5	Zn-Sb	22.82	16.20	1501.6
Zn-Er	23.91	17.79	1573.7	Zn-Sc	21.06	11.98	1044.6
Zn-Eu	25.72	17.87	1275.0	Zn-Si	17.95	5.96	416.9
Zn-Fe	21.95	6.50	272.0	Zn-Sm	23.36	20.41	2220.8
Zn-Ga	20.72	5.29	213.7	Zn-Sn	21.86	14.36	1340.8
Zn-Gd	21.82	19.16	2400.9	Zn-Sr	21.89	21.85	3091.6
Zn-Ge	20.31	7.57	464.7	Zn-Ta	23.92	10.60	557.1
Zn-Hf	21.85	12.96	1093.1	Zn-Tb	23.14	18.86	1950.3
Zn-Hg	25.65	11.51	533.4	Zn-Tc	24.77	4.38	85.7
Zn-Ho	23.80	18.18	1665.8	Zn-Ti	21.05	7.15	372.1
Zn-In	25.11	12.42	662.3	Zn-Tl	25.69	15.41	951.8
Zn-Ir	19.56	2.76	69.1	Zn-V	18.50	4.65	232.0
Zn-K	25.52	20.17	1663.7	Zn-W	24.79	8.65	333.8
Zn-La	22.96	26.52	3945.9	Zn-Y	24.17	18.88	1716.7
Zn-Li	23.13	1.80	17.7	Zn-Zr	21.17	13.76	1356.3
Zn-Mg	25.63	7.54	229.7				
Zn-Mn	17.74	4.02	197.0				
Zn-Mo	25.29	8.03	271.1				

Table S6. Calculated w_c (in Å), $\Delta E_{barrier}/c^{1/3}$ (in eV) and $\Delta \tau_{CRSS}/c^{2/3}$ (in MPa) for 61

kinds of Zn-based alloys.

Reference

- 1. S. H. Zhang, D. Legut and R. F. Zhang, *Comput. Phys. Commun.*, 2019, 240, 60-73.
- 2. A. Tehranchi, B. Yin and W. A. Curtin, Acta Mater., 2018, 151, 56-66.
- 3. J. A. Yasi, L. G. Hector and D. R. Trinkle, *Acta Mater.*, 2010, **58**, 5704-5713.
- 4. G. P. M. Leyson, L. G. Hector and W. A. Curtin, *Acta Mater.*, 2012, **60**, 5197-5203.
- 5. A. Akhtar and E. Teghtsoonian, *Acta Metall.*, 1969, **17**, 1339-1349.
- 6. A. Akhtar and E. Teghtsoonian, *Philos. Mag.*, 1972, **25**, 897-916.
- 7. S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo and T. Mohri, *Mater. Trans.*, 2008, 0804070382-0804070382.
- 8. E. Griineisen and E. Goens, Z. Fur Physik., 1924, 26, 235.
- 9. G. A. Alers and J. R. Neighbours, J. Phys. Chem. Solids, 1958, 7, 58-64.
- 10. G. Simmons and H. Wang, *Single crystal elastic constants and calculated aggregate properties*, The M.I.T. Press, Cambridge, 1971.
- 11. M. De Jong, I. Winter, D. C. Chrzan and M. Asta, *Physical Review B*, 2017, **96**, 014105.
- 12. A. R. Wazzan and L. B. Robinson, *Phys. Rev.*, 1967, **155**, 586.
- 13. S. H. Zhang, I. J. Beyerlein, D. Legut, Z. H. Fu, Z. Zhang, S. L. Shang, Z. K. Liu, T. C. Germann and R. F. Zhang, *Phys. Rev. B*, 2017, **95**, 224106.
- 14. C. Wang, H. Y. Wang, T. L. Huang, X. N. Xue, F. Qiu and Q. C. Jiang, *Sci Rep*, 2015, **5**, 10213.
- 15. D. Buey, L. Hector Jr and M. Ghazisaeidi, Acta Mater., 2018, 147, 1-9.