Electronic Supplementary Material

Detailed mechanism and kinetics of the reaction of Criegee intermediate CH₂OO with HCOOH investigated via infrared identification of conformers of hydroperoxymethyl formate and formic acid anhydride

Chen-An Chung,¹ Jou Wei Su,¹ and Yuan-Pern Lee^{1, 2, 3}*

¹Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001, Ta-Hsueh road, Hsinchu 30010, Taiwan

² Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan.

³Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan

(Received June xx 2019; accepted xx xx 2019; published online xx xx 2019)

*E-mail: <u>yplee@nctu.edu.tw</u>

A. Computational results

Geometries of possible intermediates in reaction CH₂OO + HCOOH are shown in Fig. S3. Harmonic and anharmonic vibrational wavenumbers and harmonic IR intensities of conformers P1 and P2 of hydroxylated secondary ozonide (HSOZ) and conformers P4–P6 of hydroperoxymethyl formate (HPMF) predicted with the B3LYP/aug-cc-pVTZ method are listed in Tables S1 and S2, respectively. Those of *syn-* and *anti-*FAN (formic acid anhydride) predicted with the B3LYP/aug-cc-pVTZ method are listed in Tables S1.

B. Estimate of the ratio of VIR/Vphotolysis

Because photolysis volume $V_{\text{photolysis}}$ is distinct from the IR-probe volume V_{IR} , we estimated the volume ratio to relate the IR absorption of CH₂OO with the true concentration of CH₂OO in the photolysis volume. The concentration *c* of each precursor can be estimated from its IR absorption according to the following equation:

$$c = \frac{\int A(v) \, dv \times \ln(10)}{S_{band} \times L} \tag{1}$$

in which A(v) is the absorbance (base 10), $\int A(v)dv$ is the integrated intensity, *S*_{band} is the band intensity, and *L* is the IR absorption length, 367 cm.

To simulate properly the reaction kinetics of $CH_2OO + HCOOH$, we must know the initial concentration of CH_2OO or CH_2I in the reactor. Because the self-reaction of CH_2OO has been well characterized,^{1.2,3,4} we found that we could estimate $[CH_2I]_0$, hence $[CH_2OO]_0$, on fitting the temporal profiles of $[CH_2OO]$ (integrated over region 905–915 cm⁻¹) in the photolysis experiments of CH_2I_2 and O_2 using the reported kinetic model and rate coefficients discussed in Sec. C; the reaction $CH_2OO + HCOOH$ was excluded from the model because no HCOOH was added in these experiments. Some representative temporal profiles of CH_2OO with their model fitted profiles (lines) are shown in Fig. S1; the satisfactory fits for the rise and decay of CH_2OO indicate that the model is adequate. From these fits, we derived $[CH_2I]_0$ in the photolysis volume. We derived $[CH_2I]_0$ in the IR-probe volume on probing the decrease in IR absorbance of CH_2I_2 upon photolysis according to eq. (1). The band intensity *S*_{band} for CH_2I_2 (in region 1090–1135 cm⁻¹) is 13.08×10^{-18} cm molecule⁻¹ (Ref. 5). We then derived ratio $V_{IR}/V_{photolysis}$ according to $[CH_2I]_0$ in the IR-probe volume and the photolysis volume. Several experiments at varied pressure were performed. The resultant ratios $V_{IR}/V_{photolysis}$ are presented in Fig. S2; the average value is 2.65 ± 0.24 .

C. High-resolution spectra from CH₂I₂/HCOOH/N₂/O₂ (0.162/0.120/44.5/65.1, $P_{\rm T} = 109.9$ Torr)

Observed spectra in region 850–1450 cm⁻¹ upon photolysis of a mixture of CH₂I₂/HCOOH/N₂/O₂ (0.162/0.120/44.5/65.1, $P_T = 109.9$ Torr) recorded with an external ADC at resolution 0.5 cm⁻¹ are presented in Fig. S4. Those in region 1600–1900 cm⁻¹ at resolution 1 cm⁻¹ are presented in Fig. S5.

D. Simulation of bands of HPMF

With program PGopher,⁶ we simulated the fundamental band of each vibrational mode of isomers P5 and P6 of HPMF using rotational parameters A", B", and C", ratios of rotational parameters A'/A", B'/B", and C'/C" (Table S4) and *a*-type/*b*-type ratios (Table S5) of each mode predicted with the B3LYP/aug-cc-pVTZ-pp method, $J_{max} = 200$, T = 298 K, and Gaussian width 0.64 cm⁻¹ (corresponding to the instrument resolution of 0.5 cm⁻¹).

Simulated *a*-, *b*-, and *c*-type spectra and the resultant spectra for bands $A_4(v_{12})$ and $A_5(v_{11})$ of HPMF (P5) are shown in Fig. S6. The squares of the projections of the dipole derivatives for each vibrational mode of HPMF onto rotational axes *a*, *b* and *c* determine the weighting of bands of types *a*, *b*, and *c* in each resultant vibrational absorption band. Because information was lacking, we assumed that the rotational contours and IR intensities of hot bands were the same as of the fundamental band. The contours of the hot bands were consequently derived from the fundamental band with intensities scaled according to a

Boltzmann distribution and positions shifted according to anharmonicity; the shifts depend on the difference in transition wavenumber between the fundamental band and the hot bands. We calculated, as initial estimates, the Boltzmann distributions of the excited states of the lowenergy modes according to the predicted anharmonic vibrational energies of the lowfrequency modes ($v_{24} = 79 \text{ cm}^{-1}$, $v_{23} = 123 \text{ cm}^{-1}$, $v_{22} = 214 \text{ cm}^{-1}$); the shifts among hot bands in a series were constant. A least-squares fit was performed on systematically varying the positions of the band origins (within $\leq 5 \text{ cm}^{-1}$ of the predicted values) and intensities (within $\pm 10\%$) for each band to obtain the best fit.

A comparison of the fitted contour with the experiment for bands A_4 (v_{12}) and A_5 (v_{11}) is presented in Fig. S7(a), in which the experimental data are presented with open circles and the simulated spectrum is shown as a thick red solid line. Each simulated feature consists of the fundamental band and hot bands in three series involving absorption from the excited states of the two torsional modes of least energy and one low-frequency bending mode; the dominant series of hot bands is associated with the torsion of OC–OC (v_{24}), another with the torsion of OO–CO. (v_{23}), and a third with the COC bending mode (v_{22}). The components of hot bands in each individual series for bands A_5 and A_4 are shown in Figs. S7(b) and S7(c), respectively, with the same color for each series. Detailed positions and relative intensities of these components for bands A_5 and A_4 are listed in Tables S6 and S7, respectively. This simulation is not unique and is presented only to explain why the observed bands are much broader than those simulated without contributions of hot bands.

E. Kinetic model to fit the reaction CH₂OO + HCOOH

CH₂OO was produced from the reaction CH₂I + O₂ upon irradiation at 248 nm with an excimer laser of a flowing mixture of CH₂I₂ and O₂ at 298 K. The initial concentration of CH₂I₂ in the cell, [CH₂I₂]₀, was determined on comparison of the integrated absorbance in region 1090–1135 cm⁻¹ with the literature value of band strength, as described in Sec. A; it

also agrees with the values obtained on comparison with a calibration curve obtained on measurement of its IR absorption of CH₂I₂ at varied pressure in a static cell. The initial concentration of CH₂I in the IR-proved volume was estimated from $-\Delta$ [CH₂I₂] upon irradiation. The initial concentration of CH₂I in the photolysis volume, [CH₂I]₀, is estimated by $-(V_{IR}/V_{photolysis}) \times \Delta$ [CH₂I₂] = $-2.65 \times \Delta$ [CH₂I₂]; the value of $V_{IR}/V_{photolysis}$ was discussed in Sec. A. This value was compared with [CH₂I₂]₀ × *y*, in which *y* is the fractional yield of photodissociation of CH₂I₂. The value of *y* was obtained from (*F*/hv₃₀₈) × σ_{308} , in which *F* is the laser fluence and σ_{308} is the absorption cross section of CH₂I₂ at 308 nm, 3.2×10^{-18} cm² molecule⁻¹.⁷ Values of [CH₂I]₀ derived from both methods are consistent, but we employed those derived from $-\Delta$ [CH₂I₂] because they are derived spectroscopically. The concentration of HCOOH was determined from its integrated absorbance (in region 1050–1085 cm⁻¹) and the associated band intensity 5.83×10^{-18} cm molecule⁻¹.^{8,9}

To measure rate coefficient *k* of the reaction CH₂OO + HCOOH, we employed a model slightly modified from that of our previous work,² as shown in Table S8. Following recent literature, 10 we separated the original channel (1c), CH₂I + O₂ \rightarrow other products, into two channels, (1c) and (1d), with products CH₂O + IO and those from decomposition of CH₂OO, respectively. Traces in Fig. S8 show representative experimental temporal profiles of HPMF and curves fitted from the model under various conditions. Traces in Fig. S9 show representative experimental temporal profiles of CH₂OO and curves fitted from the model under various conditions and the fitted results (k^{I}) of 32 measurements are shown in Table S9. A plot of first-order rate coefficient vs [HCOOH] is shown in Fig. 8 in the main text. The fitted bimolecular rate coefficient of each set of experiments is summarized in Table S10; the rate coefficient derived from fitting all data is $k_1 = (1.44\pm0.04) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹; the listed error represents one standard deviation in

the fit.

Considering the errors in the estimation of $[CH_2I]_0$ (~20 %), fitting error (12.8 %), error resulted from the uncertainties in rate coefficient of the self-reaction of CH₂OO (k_{self} in Table S8, the error of 25% transforms into an error of 1 % in k_1) and other standard errors in measurements of flow rates (1 %), temperature (1 %), and pressure (3 %), we estimated the overall uncertainty to be 24 %. A rate coefficient for the reaction of CH₂OO + HCOOH at 298 K is hence reported to be $k_1 = (1.4\pm0.3) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹.

F. Detailed mechanism of HPMF \rightarrow FAN

To prove that the revised two-channel model discussed in the main text, Sec. 4.4 is valid, we compared temporal profiles of HPMF on integrating regions 1330–1370 cm⁻¹ (which corresponds to a mixture of isomers P5 and P6 of HPMF) and 1157–1186 cm⁻¹ (which corresponds to mostly P6 of HPMF), respectively, as shown in Fig. S10.

Mada			P1			P2
Mode -	Harn	nonic	Anharmonic	Harn	nonic	Anharmonic
v ₁	3778	(47)	3582	3801	(54)	3612
V 2	3114	(3)	2970	3112	(10)	2961
V 3	3111	(21)	2967	3044	(32)	2914
v_4	3017	(64)	2794	3013	(70)	2806
ν5	1520	(1)	1425	1521	(0)	1437
V 6	1433	(71)	1391	1422	(267)	1385
ν7	1399	(10)	1369	1394	(11)	1361
V 8	1309	(4)	1273	1328	(35)	1300
V 9	1286	(12)	1251	1247	(39)	1217
V 10	1230	(3)	1199	1225	(3)	1194
v_{11}	1156	(29)	1135	1148	(14)	1128
v_{12}	1127	(391)	1095	1110	(451)	1077
v_{13}	1075	(103)	1043	1079	(66)	1053
v_{14}	1003	(92)	969	1026	(55)	998
v_{15}	949	(72)	925	966	(62)	945
v_{16}	889	(9)	861	914	(9)	890
v_{17}	867	(18)	848	870	(15)	852
ν_{18}	790	(25)	775	815	(4)	799
V19	732	(2)	719	730	(4)	717
v_{20}	555	(17)	542	566	(13)	555
v_{21}	508	(19)	469	486	(7)	477
V22	337	(20)	280	304	(37)	213
V23	294	(68)	163	284	(86)	117
v_{24}	130	(3)	134	128	(13)	124

Table S1 Harmonic and anharmonic vibrational wavenumbers (cm^{-1}) and harmonic IR intensities (km mol⁻¹) of conformers P1 and P2 of hydroxylated secondary ozonide (HSOZ) predicted with the B3LYP/aug-cc-pVTZ method

Mada	Р	4	Р	5	P6	
Mode	Harmonic	Anharmonic	Harmonic	Anharmonic	Harmonic Ar	harmonic
ν_1	3748 (56)	3564	3740 (43)	3538	3511 (260)	3304
v_2	3126 (6)	2985	3131 (6)	2983	3148 (3)	2998
V 3	3038 (33)	2885	3067 (9)	2978	3076 (16)	2973
V 4	2984 (38)	2853	3038 (48)	2889	3057 (42)	2902
V 5	1838 (395)	1801	1784 (323)	1751	1760 (281)	1727
V6	1485 (4)	1464	1479 (7)	1458	1497 (88)	1435
V 7	1425 (11)	1394	1410 (33)	1385	1470 (6)	1444
V8	1401 (15)	1370	1398 (4)	1364	1419 (5)	1385
V 9	1384 (38)	1352	1381 (41)	1346	1403 (4)	1369
V 10	1314 (19)	1279	1284 (1)	1256	1306 (10)	1275
v_{11}	1183 (176)	1155	1196 (301)	1157	1197 (269)	1147
v ₁₂	1091 (115)	1058	1138 (123)	1115	1150 (16)	1128
V 13	1037 (63)	1014	1090 (79)	1060	1076 (102)	1044
v_{14}	1031 (111)	1002	1040 (0)	1020	1049 (6)	1026
V15	1019 (141)	992	929 (109)	901	899 (7)	876
v_{16}	882 (31)	861	885 (38)	860	829 (130)	799
v ₁₇	693 (23)	681	780(1)	768	781 (12)	768
v_{18}	533 (6)	523	545 (2)	537	606 (115)	510
V19	424 (5)	416	407 (28)	395	542 (6)	535
V20	337 (9)	325	320 (50)	250	438 (6)	428
V ₂₁	272 (93)	189	270 (97)	255	302 (19)	291
V22	186 (25)	162	222 (4)	214	245 (8)	218
V23	141 (36)	136	140 (5)	123	205 (9)	198
V24	79 (1)	79	29 (2)	79	104 (2)	95

Table S2 Harmonic and anharmonic vibrational wavenumbers (cm⁻¹) and harmonic IR intensities (km mol⁻¹) of conformers P4–P6 of hydroperoxymethyl formate (HPMF) predicted with the B3LYP/aug-cc-pVTZ method

Mada		syr	ı-FAN		anti-	FAN
Mode	Harn	nonic	Anharmonic	Harn	nonic	Anharmonic
v ₁	3049	(35)	2897	3089	(9)	2939
V 2	3047	(46)	2897	3058	(32)	2902
V 3	1882	(322)	1844	1860	(157)	1832
V 4	1795	(188)	1763	1809	(443)	1781
V 5	1409	(2)	1375	1406	(4)	1374
V 6	1393	(2)	1359	1381	(2)	1353
ν7	1081	(696)	1041	1104	(609)	1065
V 8	1045	(0)	1024	1046	(0)	1025
V 9	1007	(111)	993	1034	(0)	1018
V 10	972	(4)	952	1005	(242)	971
v_{11}	797	(34)	781	781	(6)	766
V12	561	(14)	555	538	(6)	532
V13	216	(26)	203	252	(10)	248
V14	211	(1)	208	224	(11)	217
V15	103	(2)	83	75	(39)	89

Table S3 Harmonic and anharmonic vibrational wavenumbers (cm⁻¹) and harmonic IR intensities (km mol⁻¹) of *syn-* and *anti-*FAN (formic acid anhydride) predicted with the B3LYP/aug-cc-pVTZ method

N 1		HPMF (P5))		HPMF (P6))
Mode	A'/A''	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>A'/A''</i>	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''
ν_1	1.002	1.000	0.999	0.999	0.999	1.000
v_2	0.999	1.000	1.000	1.002	0.998	0.999
v 3	1.001	1.000	0.999	1.004	0.990	0.995
ν_4	0.996	1.000	1.000	1.000	0.999	1.000
ν5	0.998	1.000	0.999	0.999	0.999	0.999
ν_6	1.000	1.000	1.001	1.000	1.000	0.999
v_7	1.002	0.999	0.997	1.004	0.987	0.994
ν_8	1.000	1.001	1.000	0.999	0.999	0.998
V 9	0.998	0.999	0.999	0.998	0.998	0.997
v_{10}	0.996	1.000	1.001	0.998	0.999	0.999
ν_{11}	0.987	0.999	1.001	0.998	0.999	1.000
v_{12}	1.020	0.997	0.992	0.997	0.997	0.998
v ₁₃	0.982	0.999	1.003	1.001	0.999	0.999
v_{14}	0.999	0.999	0.999	0.998	0.998	0.998
v ₁₅	1.002	0.997	1.003	0.999	1.000	1.000
v_{16}	0.997	0.998	0.998	1.002	0.999	1.000
v_{17}	1.006	0.998	0.996	0.999	0.997	0.999
v_{18}	1.003	0.997	0.998	1.000	1.003	1.001
V19	0.968	1.003	1.010	1.001	0.996	0.998
v_{20}	1.022	0.996	0.992	0.998	1.001	0.999
v_{21}	1.001	0.999	1.000	1.000	0.999	0.999
v_{22}	1.005	0.998	0.998	0.999	1.000	1.000
V ₂₃	1.007	0.999	0.999	0.999	1.001	1.000
V24	0.991	1.000	1.005	0.995	1.011	1.004
	A'' / cm^{-1}	B'' / cm^{-1}	$C^{"}$ / cm ⁻¹	A'' / cm^{-1}	B'' / cm^{-1}	C" / cm ⁻¹
$\nu = 0$	0.4025	0.0603	0.0571	0.1949	0.1099	0.0750

Table S4 Rotational parameters of the ground state and vibrationally excited states (v = 1) of conformers P5 and P6 of HPMF predicted with the B3LYP/aug-cc-pVTZ method

Mode		HPMF (P5)			HPMF (P6)	
Mode	a-type	<i>b</i> -type	<i>c</i> -type	a-type	<i>b</i> -type	<i>c</i> -type
v ₁	0.11	0.80	0.09	0.91	0.09	0.00
V 2	0.10	0.00	0.90	0.10	0.56	0.34
V 3	0.01	0.79	0.20	0.01	0.51	0.48
V_4	0.14	0.78	0.08	0.91	0.03	0.06
ν5	0.65	0.25	0.10	0.01	0.99	0.00
v_6	0.48	0.31	0.21	0.34	0.60	0.06
ν7	0.83	0.15	0.02	0.26	0.04	0.70
V 8	0.48	0.52	0.00	0.46	0.31	0.23
V 9	0.32	0.40	0.28	0.01	0.98	0.01
V 10	0.03	0.00	0.97	0.27	0.70	0.03
v_{11}	0.97	0.03	0.00	0.51	0.47	0.02
v_{12}	0.87	0.04	0.09	0.56	0.01	0.43
v_{13}	0.97	0.00	0.03	0.95	0.00	0.05
v_{14}	0.89	0.11	0.00	0.93	0.05	0.02
V15	0.46	0.49	0.05	0.11	0.46	0.43
ν_{16}	0.98	0.02	0.00	0.98	0.00	0.02
v_{17}	0.96	0.04	0.00	0.75	0.12	0.13
ν_{18}	0.93	0.01	0.06	0.15	0.18	0.67
v ₁₉	0.49	0.02	0.49	0.43	0.08	0.49
v_{20}	0.37	0.08	0.55	0.05	0.12	0.83
v_{21}	0.88	0.01	0.11	0.56	0.13	0.31
V22	0.46	0.30	0.24	0.79	0.19	0.02
v ₂₃	0.92	0.06	0.02	0.13	0.87	0.00
v_{24}	0.01	0.13	0.86	0.46	0.49	0.05

Table S5 Ratios of *a*-, *b*-, and *c*-types of vibrational bands for each vibrational mode of conformers P5 and P6 of HPMF predicted with the B3LYP/aug-cc-pVTZ method

Transition	Relative population	Band origins / cm ⁻¹
11^{1}_{0}	1.00	1169.5
$11_0^124_1^1$	0.85	1176.5
$11_0^124_2^2$	0.58	1185.5
$11_0^124_3^3$	0.40	1191.5
$11_0^124_4^4$	0.13	1201.8
$11_0^124_5^5$	0.05	1210.0
$11_0^1 24_6^6$	0.02	1218.0
$11_0^1 23_1^1$	0.67	1163.5
$11_0^1 23_2^2$	0.35	1153.5
$11_0^1 23_3^3$	0.21	1145.5
$11_0^1 23_4^4$	0.11	1141.0
$11_0^1 23_5^5$	0.06	1134.0
$11_0^1 22_1^1$	0.42	1159.0
$11_0^1 22_2^2$	0.18	1141.0
$11_0^122_3^3$	0.05	1122.0

Table S6 Relative population of the lower state and band origins of hot bands employed in the simulation of the v_{11} band of HPMF (P5)

-

Transition	Relative population	Band origins / cm ⁻¹
12 <mark>1</mark>	1.00	1115.0
$12_0^124_1^1$	0.72	1110.5
$12_0^1 24_2^2$	0.45	1107.0
$12_0^1 24_3^3$	0.22	1103.0
$12_0^1 24_4^4$	0.10	1099.0
$12_0^1 24_5^5$	0.04	1095.0
$12_0^1 24_6^6$	0.01	1091.0
$12_0^1 23_1^1$	0.58	1121.0
$12_0^1 23_2^2$	0.32	1128.0
$12_0^1 23_3^3$	0.18	1133.0
$12_0^1 23_4^4$	0.10	1139.0
$12_0^1 23_5^5$	0.06	1145.0
$12_0^1 22_1^1$	0.37	1135.0
$12_0^1 22_2^2$	0.05	1155.0

Table S7 Relative population of the lower state and band origins of hot bands employed in the simulation of the v_{12} band of HPMF (P5)

	reaction	rate coefficient ^a	condition	reference
$k_{1a}{}^b$	$CH_2I + O_2 \rightarrow CH_2OO + I$	1.5×10 ⁻¹² /(1+1.1×10 ⁻¹⁹ [M])	P≥60 Torr	2
β	Fraction of survival of CH ₂ OO		P<60 Torr	2
	when P<60 Torr,	$\{1-0.47/(1+3.2\times10^{-18} [M])\}$		
	$\beta = k_{1a'}/k_{1a}$			
$k_{1b}{}^b$	$CH_2I + O_2 \rightarrow ICH_2OO$	$1.5 \times 10^{-12} - k_{1a}$	P≥60 Torr	2
k_{1c}^{b}	$CH_2I + O_2 \rightarrow other + I$	$k_{1a}(1-\beta) - k_{1d}$	P<60 Torr	2
$k_{1d}{}^b$	$CH_2I + O_2 \longrightarrow H_2CO + IO$	4.0×10^{-13}	P<60 Torr	10
k_{2a}	$CH_2OO + I \rightarrow CH_2I + O_2$	55k _{1a}		2
k_{2b}	$CH_2OO + I \rightarrow ICH_2OO$	55k _{1b}		2
k_{2c}	$CH_2OO + I \longrightarrow H_2CO + IO$	9.0×10 ⁻¹²		2
k_3	$CH_2OO+CH_2I \rightarrow C_2H_4I+O_2$	6.3×10 ⁻¹¹		11
k_{self}	$2CH_2OO \rightarrow 2H_2CO + O_2$	8.0×10^{-11}		1-4
k_4	$ICH_2OO + I \rightarrow ICH_2O + IO$	3.5×10 ⁻¹¹		12
k_5	$2ICH_2OO \rightarrow 2ICH_2O + O_2$	9.0×10 ⁻¹¹		12
k_6	$ICH_2O \rightarrow H_2CO + I$	10^6 s^{-1}		12
<i>k</i> 7	$2 IO \rightarrow I_2 + O_2$	9.9×10 ⁻¹¹		13
k_8	$CH_2OO + HCOOH \rightarrow product$	$k^{I} = k_{8} \times [HCOOH]_{0}$, fitted		

Table S8 Kinetic model employed in fitting the temporal profiles of CH₂OO + HCOOH

^{*a*} rate coefficient in cm³ molecule⁻¹ s⁻¹, unless specified otherwise, [M] in molecule cm⁻³. ^{*b*} $k_{1a} + k_{1b} + k_{1c} + k_{1d} = 1.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

C at	Durat	region	$[CH_2I_2]_0$	[CH ₂ I] ₀	[CH ₂ OO] ₀	[O ₂] ₀	[N ₂] ₀	[HCOOH]	k ^I
Set	Expt.	$/cm^{-1}$	/mTorr	$/10^{14 a}$	$/10^{14 a}$	/Torr	/Torr	/10 ^{15 a}	$/10^5 \ s^{-1}$
1	1	1157-1186	45	2.4	1.5	53	47	1.4	2.2
	2	1157-1186	45	2.4	1.5	53	47	1.7	2.6
	3	1157-1186	45	2.4	1.5	53	47	1.9	2.9
	4	1157-1186	45	2.4	1.5	53	47	2.2	3.6
	5	1157-1186	45	2.4	1.5	53	47	2.5	3.8
	6	1157-1186	45	2.4	1.5	53	47	3.0	4.3
	7	1157-1186	45	2.4	1.5	53	47	3.0	4.4
2	8	1157-1186	37	1.4	0.87	53	47	1.7	2.9
	9	1157-1186	37	1.4	0.87	53	47	2.0	3.2
	10	1157-1186	37	1.4	0.87	53	47	2.3	3.8
	11	1157-1186	37	1.4	0.87	53	47	2.5	4.2
	12	1157-1186	37	1.4	0.87	53	47	2.7	4.4
3	13	1157-1186	30	1.1	0.67	53	47	1.7	2.5
	14	1157-1186	30	1.1	0.67	53	47	2.0	3.0
	15	1157-1186	30	1.1	0.67	53	47	2.4	3.2
	16	1157-1186	30	1.1	0.67	53	47	2.6	3.8
	17	1157-1186	30	1.1	0.67	53	47	3.1	4.3
4	18	1157-1186	45	2.4	1.3	120	90	2.1	3.0
	19	1157-1186	45	2.4	1.3	120	90	2.3	3.3
	20	1157-1186	45	2.4	1.3	120	90	2.5	3.6
	21	1157-1186	45	2.4	1.3	120	90	2.7	3.8
	22	1157-1186	45	2.4	1.3	120	90	2.8	3.8
	23	1157-1186	45	2.4	1.3	120	90	2.9	4.0
	24	1157-1186	45	2.4	1.3	120	90	3.1	4.3
5	25	1157-1186	18	1.3	1.0	20	0	0.58	0.65
	26	1157-1186	18	1.3	1.0	20	0	1.0	1.1
	27	1157-1186	18	1.3	1.0	20	0	2.1	2.6
	28	1157–1186	18	1.3	1.0	20	0	2.5	3.1
6	29	1000-1050	42	2.9	2.1	40	0	1.5	1.9
	30	1000-1050	42	2.9	2.1	40	0	2.9	4.3
	31	1000-1050	42	2.9	2.1	40	0	3.6	5.0
	32	1000-1050	42	2.9	2.1	40	0	5.0	7.2

Table S9 First-order rate coefficients of reaction $CH_2OO + HCOOH$ in varied sets of experiments

^{*a*} in unit of molecule cm^{-3} .

	$P_{ ext{total}}$	k_1
Set	/Torr	$/10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
1	110	1.35
2	110	1.38
3	110	1.27
4	210	1.50
5	20	1.30
6	40	1.50
average of 6 sets		1.38±0.09
all data		$1.44{\pm}0.04$

Table S10 Bimolecular rate coefficients of the reaction $CH_2OO + HCOOH$ in six sets of experiments.

Fig. S1 Representative temporal profiles of CH₂OO in experiments of irradiated CH₂I₂/O₂ and model fitting. (a) $O_2 = 12$ Torr and CH₂I₂ = 0.05-0.14 Torr, (b). $O_2 = 20$ Torr and CH₂I₂ = 0.06-0.18 Torr. Integrated area 905-915 cm⁻¹.

Fig. S2 Measurements of ratios $V_{IR}/V_{photolysis}$ at varied integrated absorpbance change of CH₂I₂ upon irradiation at 248 nm. Integrated spectral range is 1090–1035 cm⁻¹. The red lines represent one standard deviation of the fit.

Fig. S3 Geometries of possible intermediates in reaction $CH_2OO + HCOOH$. The notations of the species in Long *et al.* [*J. Mol. Struct. THEOCHEM*, 2009, **916**, 159–167] are listed in parentheses. (a) HSOZ (P1), (b) HSOZ (P2), (c) HPMF (P4), (d) HPMF (P5), (e) HPMF (P6), (f) *anti*-FAN (P7), and (g) *syn*-FAN (P8) predicted with the B3LYP/aug-cc-pVTZ method. The bond distances are given in Å and the bond angles in degree.

Fig. S4 Observed spectra in region 850–1450 cm⁻¹ upon photolysis of a mixture of CH₂I₂/HCOOH/N₂/O₂ (0.162/0.120/44.5/65.1, $P_T = 109.9$ Torr) recorded with an external ADC. (a) Spectrum before photolysis. Difference spectra recorded 0–5 µs (b), 5–10 µs (c), and 20–25 µs (d) after irradiation of the sample at 308 nm. Resolution is 0.5 cm⁻¹. (e) Reference spectra of CH₂I₂ (black), HCOOH (red), and H₂CO (green). Spectra with CH₂I₂, HCOOH, and H₂CO removed are shown for 0–5 µs (f), 5–10 µs (g), and 20–25 µs (h). Absorption bands of CH₂OO and CH₂IOO are indicated with blue and red arrows, respectively, in (b). The region with severe interference from CH₂I₂ is indicated with grey rectangular background.

Fig. S5 Temporal evolution of observed spectra in region 1600–1900 cm⁻¹ upon photolysis of a mixture of CH₂I₂/HCOOH/N₂/O₂ (0.162/0.120/44.5/65.1, $P_T = 109.9$ Torr) recorded with an external ADC. (a) Spectrum before photolysis. Difference spectra recorded 0–5 µs (b), 5–10 µs (c), and 20–25 µs (d) after irradiation of the sample at 308 nm. Resolution is 1 cm⁻¹. (e) Reference spectra of HCOOH (blue), and H₂CO (red). Spectra with HCOOH and H₂CO removed are shown for 0–5 µs (f), 5–10 µs (g), and 20–25 µs (h). The region with severe interference from HCOOH is indicated with grey rectangular background.

Fig. S6 Simulated *a*-, *b*-, and *c*-type spectra and the resultant spectra for bands $A_4(v_{12})$ and $A_5(v_{11})$ of HPMF (P5).

Fig. S7 Comparison of the fitted contour with experiment for bands A_4 (v_{12}) and A_5 (v_{11}). (a) Experimental data (open circle) and simulated results (thick line: total; thin lines: fundamental and each series of hot bands). (b) The components of each individual series of hot bands for band A_5 . (c) The components of each individual series of hot bands for band A_4 .

Fig. S8 Representative experimental results and fitted temporal profiles for the decay of

CH₂OO at different [HCOOH]₀ for data set one.

Fig. S9 Comparison of decay profiles of HPMF obtained from integration in varied regions. (a) $1330-1370 \text{ cm}^{-1}$ (b) $1157-1186 \text{ cm}^{-1}$

References

- [1] Z. J. Buras, R. M. I. Elasmra and W. H. Green, J. Phys. Chem. Lett., 2014, 5, 2224–2228
- [2] W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee and J. J.-M. Lin, J. Chem. Phys., 141, 104308 (2014).
- [3] P.-L. Luo, Y. Endo and Y.-P. Lee, J. Phys. Chem. Lett., 2018, 9, 4391-4395.
- [4] R. Chhantyal-pun, A. Davey, D. E. Shallcross, C. J. Percival and A. J. Orr-Ewing, *Phys. Chem. Chem. Phys.*, 2015, 17, 3617–3626.
- [5] T. J. Johnson, T. Masiello and S. W. Sharpe, Atmos. Chem. Phys., 2006, 6, 2581-2591.
- [6] C. M. Western, PGOPHER, a Program for Simulating Rotational Structure, http://pgopher.chm.bris.ac.uk/.
- [7] C. Mössinger, D. E. Shallcross and R. A. Cox, *J. Chem. Soc. Faraday Trans.*, 1998, 94, 1391–1396.
- [8] A. Perrin and J. V. Auwera, J. Quant. Spectrosc. Radiat. Trans., 2007, 108, 363-370.
- [9] J. V. Auwera, K. Didriche, A. Perrin and F. Keller, J. Chem. Phys., 2007, 126, 124311.
- [10] S. Enami, J. Ueda, M. Goto, Y. Nakano, S. Aloisio, S. Hashimoto and M. Kawasaki, J. Phys. Chem. A, 2004, 108, 6347–6350.
- [11] Y.-T. Su, H.-Y. Lin, R. Putikam, H. Matsui, M. C. Lin and Y.-P. Lee, *Nat. Chem.*, 2014, 6, 477–483.
- [12] T. J. Gravestock, M. A. Blitz, W. J. Bloss and D. E. Heard, *ChemPhysChem*, 2010, **11**, 3928–3941.
- [13] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, Jr., R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe, *Atmos. Chem. Phys.*, 2007, 7, 981–1191.