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Figure S1: Radial distribution functions (RDFs), g(r), for the Larsen-Glover-Schwartz (LGS),1

Turi-Borgis (TB),2,3 and Jacobson-Herbert4 (PEWP-2) pseudopotential models of e−(aq). Panel

(a) shows the e− · · · hydrogen RDF and (b) shows the e− · · · oxygen RDF, where the electron

coordinate (e−) is the centroid of the one-electron wave function. These plots were constructed

using simulation data originally reported in Ref. 5.
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Figure S2: Overlay of the RDFs from Fig. 7, representing g(r) data from from two different

QM/MM simulations of e−(aq), one at the BLYP(SIC)+D3 level (from Ref. 6) and the other

at the HF+D3 level (from Ref. 7). The RDFs for the e− · · ·H coordinate are shown in green

[BLYP(SIC)+D3] and in orange (HF+D3), while those for the e− · · ·O coordinate are shown

in red [BLYP(SIC)+D3] and in blue (HF+D3). Dashed curves are the integrated coordination

numbers n(r) from the BLYP(SIC)+D3 simulation and should be read from the axis on the

right. The green and red arrows that point to the axis on the right suggest coordination numbers

obtained by integrating Eq. (4) that defines n(r), up to the first local minimum in either RDF.
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(a) LGS non-cavity (PBE+D3 / 3-21++G*)
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       (HF+D3 / 3-21++G*)

Figure S3: Resonance Raman (RR) spectra of e−(aq) computed within the instantaneous normal

modes (INM) approach, using the excited-state gradient approximation of Eq. (6).8 (a) INM-RR

spectrum computed at non-cavity liquid geometries obtained from a simulation using the LGS

model. (b) INM-RR spectrum computed from a QM/MM trajectory at the HF+D3/3-21++G*

level, which supports a stable cavity. These spectra represent ensemble averages of harmonic

stick spectra computed for QM/MM snapshots and then broadening with 20 cm−1 Lorentzian

functions, with RR intensity enhancements computed according to Eq. (6). The INM-RR spectra

in Figs. 8 and 9 were computed in the same way but use Lorentzian broadening of 45 cm−1.

Adapted from Ref. 8; copyright 2019 American Chemical Society.
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Figure S4: Temperature dependence of the aqueous electron’s absorption maximum, Emax(T ).

(a) Comparison of predictions from the TB, SR, LGS, and PEWP-2 pseudopotential models. All

simulation data are from Ref. 9 except for the PEWP-2 data, which are new.10 All simulations

were carried out at a fixed water density of 0.997 g/cm3. The SR and TB values of Emax are shifted

by −0.50 eV and −0.25 eV, respectively, as indicated. Experimental data are from Ref. 11. (b)

Predictions from the TB model using variable densities, where the density used in the simulation

corresponds to the experimental density of neat liquid water at the indicated temperature. Results

plotted are from simulations reported in Ref. 12 and experiments reported in Ref. 13. Note that

the energy (vertical) scale is the same in both panels but that the data in (b) span a much broader

range of temperatures, including supercritical data.
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Figure S5: Absorption spectra computed using the Jacobson-Herbert (PEWP-2) pseudopotential

model at several different temperatures, using bin widths of (a) 0.10 eV and (b) 0.15 eV. Excitation

energy data up to 2.5 eV were fit to a Gaussian envelope, with Emax as one fitting parameter.

This value of Emax is then used to plot the T -dependent absorption maximum for the PEWP-2

model in Fig. S4.
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