Supporting Material

Enhancement of supercapacitive properties of laser deposited graphenebased electrodes through carbon nanotube loading and nitrogen doping

Ángel Pérez del Pino^{*,1}, Marta Rodríguez López¹, Mohamed Ahmed Ramadan^{1,2}, Pablo García Lebière¹, Constantin Logofatu³, Immaculada Martínez-Rovira⁴, Ibraheem Yousef⁴, Enikö György^{1,5}

¹ Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.

² Faculty of Engineering, Helwan University, Helwan, Egypt

³ National Institute for Materials Physics, PO Box MG 7, 77125 Bucharest, Romania

⁴ ALBA synchrotron, Carrer de la Llum, 2-26, 08290 Cerdanyola del Vallès, Spain

⁵ National Institute for Lasers, Plasma and Radiation Physics, PO Box MG 36, 77125 Bucharest, Romania

*Corresponding author (Telephone:+34 935801853; E-mail: angel.perez@ctq.csic.es)

Figure S1. High-resolution (a, b) SEM and (c) TEM images of sample GO-CNT-NiO (0/1/5). Inset in (c): FFT of the selected crystallite (square in c).

Figure S2. High-resolution XPS and FTIRM results of GO-CNT-NiO samples. (a) Integrated area percentage of C1s components, (b) N1s signal of (5/1/5), (c) integrated area percentage of N1s components. (d) Characteristic FTIRM spectrum of (0/1/5)-ammonia sample.

GO	Assignment
800	C-O-C or C-H
890	C-O-C
980	C=C
1150	С-ОН
1550	C-C
1640	C=C
2900	ОН
3200	ОН

CNT	Assignment
1240	υ(C-O) <i>,</i> C-OH
1560	C-C

Urea	Assignment	
1150	v2 (or 2vL) amorphous	
1450	C-N , CN2	
1600	C-N, CN2, N-H	
1680	O+NH, CO	
3250	NH	
3330	vas NH2	
3420	vas NH2	

Melamine	Assignment	
800	δ oopring; δ twistNH2	
1020	δ rockNH2; vC-N(H2); δ ipring	
1200	δ rockNH2	
1420	vC-N(H2); $\boldsymbol{\delta}$ ipring	
1530	δ scissNH2; δ rockNH2; δ ipring	
1620	δ sciss NH2	
3100	vs NH2	
3320	vas NH2	
3410	vas NH2	
3460	vas NH2	

Table S1. Assignments of bands appearing in GO, CNT, urea and melamine raw materials.

GO-CNT-NIO	Assignment	
890	C-O-C	
1010	C=C	
1320	С-ОН / С-О-С	
1530	C-N, CN2, N-H	
1680	C=0	

NH ₃	Assignment	
750	γ CO, γNH2+CO out-of-	
	phase	
950	Second vibrational mode	
	of Ammonia	
1090	v2 (or 2vL) amorphous	
1260	С-ОН , С-О-С	
1350	C-OH, C-O-C , v2 + vL	
	Crystalline	
1510	C-N, CN2, N-H	
1700	C=0	
1790	H-N-H scissoring	
3100	vs NH2	
3530	N-H symmetric stretching	

Urea	Assignment	
770	γ CO, γNH2+CO out-of-	
	phase	
810	C-O-C or C-H	
890	v (C-N) , CN2	
1100	C-O	
1210	NH	
1480	C-N, CN2, N-H	
1600	C-O and NH2	
1700	O+NH, CO	

N 4 a la variar a	A : +	
Ivielamine	Assignment	
790	δ oopring; δ twistNH2	
1100	C-0	
1240	δ rockNH2	
1490	C-N, CN2	
1580	N-H	
1750	C=0	

Table S2. Assignments of bands appearing in GO-CNT-NiO (5/1/5) samples.

NH ₃	Assignment	
750	γ CO, γNH2+CO out-of-	
	phase	
930	C=C	
1070	v2 (or 2vL) amorphous	
1240	С-ОН , С-О-С	
1320	C-OH, C-O-C , v2 + vL	
	Crystalline	
1520	C-N, CN2, N-H	
1680	C=O	
1760	H-N-H scissoring	
2030	C=C=N stretching	
2640	C-H aldehyde	
2880	N-H stretching	
3100	vs NH2	
3430	NH	

Table S3. Assignments of bands appearing in GO-CNT-NiO (0/1/5)-ammonia sample.

	ESR (Ω)	CPE - n	R (kΩ)
(5/0/5)	24	0.93	50
(5/1/5)	23	0.94	54
(5/2/5)	32	0.93	97
(5/1/5)-NH ₃	23	0.93	> 1000
(5/1/5)-Urea	25	0.95	63
(5/1/5)-Mela.	37	0.94	260

Table S4. Equivalent circuit parameters obtained from regression of EIS data of GO-CNT-NiO electrodes.

Figure S3. Ratio between integrated areas of diffusion and capacitive components calculated from cyclic voltammetry measurements of GO-CNT-NiO and G-CNT-NiO samples. Ammonia, urea and melamine samples were obtained with GO-CNT-NiO targets with a relative concentration of (5/1/5). Triangular symbol belongs to the sample without graphene oxide.

Figure S4. Cyclic voltammetry curves of GO-CNT-NiO (5/1/5) and the equivalent ones obtained with ammonia / melamine / urea taken with 100 mV s⁻¹. Calculated capacitive and diffusion components are also depicted.

Figure S5. TEM images of (a) graphene sheet from the precursor powder, (b) graphene sheet from G-CNT-NiO (5/2/5) sample.

Figure S6. Galvanostatic charge-discharge cycle of G-CNT-NiO (5/0/5) electrode at applied current of 50 μ A cm⁻².