BEYOND MOLECULAR NITROGEN: TWO AMBIENT PRESSURE METASTABLE SINGLE- AND DOUBLE-BONDED NITROGEN ALLOTROPES BUILT FROM THREE-MEMBERED RINGS REVEALED

Sergey V. Bondarchuk

Department of Chemistry and Nanomaterials Science,

Bogdan Khmelnitsky Cherkasy National University,

blvd. Shevchenko 81, 18031 Cherkasy, Ukraine.

Tel: (+3) 80472 37-65-76;

Fax: (+3) 80472 37-21-42;

E-mail: bondchem@cdu.edu.ua

Phys. Chem. Chem. Phys.

LIST OF SUPPLEMENTARY FIGURES AND TABLES:

Fig. S1. Crystal packing of the DobN nitrogen allotrope	S3
Fig. S2. The applied model structures for NICS calculations at the B3LYP/6-311+G(d,p) level of theory	S3
Fig. S3. The Brillouin zone integration paths within the high-throughput band structure calculations	S4
Fig. S4. The calculated optical properties of the CubN and DobN allotropes	S4
Fig. S5. The nature of electronic bands, which are involved in the first 12 electronic transitions of CubN and DobN	S5
Fig. S6. The calculated IR spectra of several nitrogen allotropes.	S6
Table S1. Numerical IR and Raman spectral data of the CubN and DobN allotropes	S7
Fig. S7. Form of vibrations in the vibrational spectra of CubN and DobN	S8
Table S2. Chemical shielding and electric field gradient (EFG) tensors at the symmetry unique atoms in the CubN and DobN allotropes	S12
Table S3. The values of thermodynamic functions (at 298 K) for several allotropes of nitrogen	S12
Coefficients of the NASA polynomials for the studied nitrogen allotropes in the formatted form for the CEA2 program	S13
Table S4. The coefficients <i>a</i> and <i>b</i> at various Ae/At ratios	S13

 $5 \times 5 \times 5$

Fig. S1. Crystal packing of the DobN nitrogen allotrope.

Fig. S2. The applied model structures for NICS calculations at the B3LYP/6-311+G(d,p) level of theory.

Fig. S3. The Brillouin zone integration paths within the high-throughput band structure calculations.

Fig. S4. The calculated optical properties of the CubN and DobN allotropes.

Fig. S5. The nature of electronic bands, which are involved in the first 12 electronic transitions of CubN and DobN.

Fig. S6. The calculated IR spectra of several nitrogen allotropes.

Table S1. Numerical IR and Raman spectral data of the CubN and DobN allotropes

			CubN				DobN	
Mada			IR intensity	Raman			IR intensity	Raman
Mode	Symm.	$v (cm^{-1})$	$\left(rac{D}{ m \AA} ight)^2$ amu ⁻¹	intensity Å ⁴	Symm.	$v (cm^{-1})$	$\left(\frac{D}{\text{\AA}}\right)^2 \text{amu}^{-1}$	intensity Å ⁴
1	b	21.85		567.0088	b	148.59	0.2290	66.5660
2	а	99.51	0.3435	14.3009	а	159.94	0.3277	244.8286
3	а	99.51	0.3435	14.3009	а	159.94	0.3277	245.3315
4	а	99.51	0.3435	14.3009	а	198.74	0.2407	669.0525
5	С	170.98		72.1826	а	198.74	0.2407	669.0861
6	С	170.98		99.4036	b	222.26	2.4746	128.4505
7	а	288.23	1.1877	36.4249	а	242.17	0.4567	604.0838
8	а	288.23	1.1877	60.7469	а	242.17	0.4567	604.1904
9	а	288.23	1.1877	33.2708	b	248.59	3.8236	232.1349
10	а	323.79	1.4052	1171.8326	а	332.18	0.3470	1571.8549
11	а	323.79	1.4052	1171.9362	а	332.18	0.3470	1573.1543
12	а	323.79	1.4052	1163.9349	b	428.08	2.0469	687.7669
13	С	369.42		156.2332	а	491.98	0.0816	214.9953
14	С	369.42		177.2658	а	491.98	0.0816	215.6183
15	а	416.81	2.9618	270.4488	а	519.55	0.2581	203.7133
16	а	416.81	2.9618	270.4488	а	519.55	0.2581	204.0346
17	а	416.81	2.9618	270.4488	b	521.19	0.6272	1243.7423
18	а	450.98	0.0400	50.3312	b	536.80	0.1226	3284.3636
19	а	450.98	0.0400	39.5892	а	592.17	0.1511	267.9117
20	а	450.98	0.0400	87.8553	а	592.17	0.1511	268.3349
21	b	479.32		1115.2749	b	665.83	1.0627	906.3261
22	а	531.56	0.0850	149.3420	b	766.87	0.9995	15052.0833
23	а	531.56	0.0850	149.3420	а	782.80	5.3956	975.1451
24	а	531.56	0.0850	149.3420	а	782.80	5.3956	975.6277
25	b	537.89		1657.3019	b	834.62	31.0983	310.8172
26	а	626.72	0.9249	163.9845	а	855.46	1.8845	2574.2831
27	а	626.72	0.9249	163.9845	а	855.46	1.8845	2574.3534
28	а	626.72	0.9249	163.9845	b	938.29	0.1545	1993.8421
29	С	696.98		277.6668	а	985.81	4.2118	559.6803
30	С	696.98		294.0468	а	985.81	4.2118	560.4573
31	а	734.35	7.5689	2253.0295	а	1365.09	18.0682	369.2597
32	а	734.35	7.5689	2253.0295	а	1365.09	18.0682	369.3512
33	а	734.35	7.5689	2253.0295	b	1429.51	0.2284	1788.8490
34	а	832.59	1.9080	422.4139				
35	а	832.59	1.9080	419.6262				
36	а	832.59	1.9080	416.1194				
37	а	864.36	0.4289	13.9426				
38	а	864.36	0.4289	13.9426				
39	а	864.36	0.4289	13.9426				
40	а	897.32	0.0123	147.2006				
41	а	897.32	0.0123	159.3244				
42	а	897.32	0.0123	154.2677				
43	b	910.27		12859.6084				
44	С	915.03		1231.4492				
45	С	915.03		1257.0108				

Fig. S7. Form of vibrations in the vibrational spectra of CubN and DobN.

Mode 45

Fig. S7. (Continue).

Mode 9

Mode 13

Mode 17

Mode 21

Mode 2

Mode 10

Mode 14

Mode 18

Mode 3

Mode 7

Mode 11

Mode 15

Mode 19

Mode 4

Mode 8

Mode 12

Mode 16

Mode 20

Mode 24

Fig. S7. (Continue).

Mode 25

Mode 29

Mode 33

Mode 26

Mode 27

Mode 31

Mode 28

Mode 32

Fig. S7. (Continue).

Table S2.	Chemical	shielding a	nd electric	field g	radient	(EFG)	tensors	at the	symmetry	unique	atoms i	n the	CubN
and DobN	N allotropes	5											

A to		Shielding tensor	EFG tensor			
Atom	$\sigma_{iso}{}^a$ (ppm)	$\Delta (\text{ppm})^b$	η^c	$C_Q (MHz)^d$	$\eta_{\mathrm{Q}}{}^{e}$	
CubN						
N1	-21.69	-245.36	0.74	-5.077	0.74	
N2	9.03	-58.87	0.00	-7.817	0.00	
DobN						
N1	-138.59	-175.62	0.72	4.528	0.57	
N2	-56.29	-113.81	0.37	-5.973	0.22	
N3	-55.09	-303.56	0.45	-5.102	0.64	
N4	-175.65	332.02	0.67	-5.216	0.28	

^a $\sigma_{iso} = (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})/3.$ ^b $\varDelta = \sigma_{zz} - \sigma_{iso}$

 $c \eta = (\sigma_{xx} - \sigma_{yy})/\Delta$. $d C_Q = eQV_{zz}/h$, where V_{zz} is the largest component of the diagonalized EFG tensor, Q is the nuclear quadrupole moment, h is Plank's constant.

 ${}^e \eta_Q = (V_{xx} - V_{yy})/V_{zz}.$

Table S3. The values of thermodynamic functions (at 298 K) for several allotropes of nitrogen

Allotrope	Z^a	$ZPVE^{b}$	H^{c}	G^c	S^d	$C_{\mathrm{P}}{}^{e}$
cg-N	4	21.83946	1.65362	-0.60067	7.56096	17.24964
TrigN	12	22.11765	1.19821	-0.53941	5.82799	10.63478
CubN	16	18.28276	1.95812	-1.56037	11.80108	13.62955
DobN	12	19.73125	1.85304	-1.21648	10.29523	12.79239

^aNumber of atoms per asymmetric cell;

^bZero point vibrational energy in kJ mol⁻¹ atom⁻¹; ^cThe values in kJ mol⁻¹ atom⁻¹; ^dThe value in J mol⁻¹ atom⁻¹ K⁻¹;

^eThe value in J mol⁻¹ atom⁻¹ K⁻¹;

Coefficients of the NASA polynomials for the studied nitrogen allotropes in the formatted form for the CEA2 program

Sergey V. Bondarchuk, Jul 2019, PCCP cq-N 2 Jul/19 N 0.00 0.00 0.00 1 14.0067000 1.00 0.00 162155.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 200.000 0.0 1653.722 1.464961457D+05-1.722859637D+03 4.672535010D+00 8.650220080D-03-1.464428562D-05 1.047799694D-08-2.824569895D-12 0.00000000D+00 4.764523180D+04-3.269564480D+01 1000.000 5000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 1653.722 5.116849070D+05-2.643824933D+03 7.974976790D+00-1.440079005D-03 4.082376060D-07 -5.884210650D-11 3.379786850D-15 0.00000000D+00 5.316604330D+04-5.087714560D+01 TriqN Sergey V. Bondarchuk, Jul 2019, PCCP 2 Jul/19 N 1.00 0.00 0.00 0.00 0.00 1 14.0067000 172175.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 1198.335 6.950357460D+04-8.968382530D+02 3.201964380D+00 1.888625455D-03-3.608513300D-06 2.481505474D-09-6.098202680D-13 0.0000000D+00 4.574714400D+04-2.059626265D+01 5000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 1000.000 1198.335 2.939526713D+05-1.368628740D+03 4.168542490D+00-7.519585170D-04 2.135749298D-07 -3.082899071D-11 1.773208535D-15 0.00000000D+00 4.881605570D+04-2.621862733D+01 CubN Sergey V. Bondarchuk, Jul 2019, PCCP 2 Jul/19 N 1.00 0.00 0.00 0.00 0.00 1 14.0067000 212195.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 1958.139 8.100209800D+04-1.179547302D+03 5.859070430D+00-5.663365980D-03 7.190362790D-06 -5.195310910D-09 1.553321332D-12 0.00000000D+00 5.648520530D+04-3.406531680D+01 5000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 1000.000 1958.139 3.683647710D+05-1.437181908D+03 4.322421640D+00-8.070353720D-04 2.303999690D-07 -3.335812020D-11 1.921484947D-15 0.0000000D+00 5.900050760D+04-2.627362644D+01 DobN Sergey V. Bondarchuk, Jul 2019, PCCP 2 Jul/19 N 1.00 0.00 0.00 0.00 1 14.0067000 170130.000 0.00 2.0 3.0 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 4.0 0.0 1853.031 5.136501430D+04-7.659077700D+02 3.919368900D+00-2.140924671D-03 3.705942060D-06

5.136501430D+04-7.659077700D+02 3.919368900D+00-2.140924671D-03 3.705942060D-06 -3.399720980D-09 1.171719169D-12 0.00000000D+00 4.435977210D+04-2.288458024D+01 1000.000 5000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 1853.031 3.701397280D+05-1.515191407D+03 4.307950470D+00-8.224209220D-04 2.330125367D-07 -3.357717470D-11 1.928488807D-15 0.00000000D+00 4.935664670D+04-2.657034217D+01

Phase	Comb char	ustion nber	Ae/A	At = 1	= 1 Ae/At = 10		Ae/At = 25		Ae/At = 50		Ae/At = 68.9	
	а	b	а	b	а	b	а	b	а	b	а	b
cg-N	0.5779	0.2111	0.5466	0.2267	0.3433	0.3283	0.2827	0.3587	0.2390	0.3805	0.2193	0.3903
TrigN	0.6135	0.2571	0.5826	0.2087	0.3811	0.3095	0.3206	0.3397	0.2768	0.3616	0.2571	0.3715
CubN	0.7392	0.1304	0.7100	0.1450	0.5171	0.2415	0.4582	0.2709	0.4153	0.2923	0.3959	0.3021
DobN	0.6064	0.1968	0.5754	0.2123	0.3735	0.3132	0.3130	0.3435	0.2692	0.3654	0.2495	0.3753

Table S4. The coefficients a and b at various Ae/At ratios